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Abstract: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of lung cancer.
However, their clinical benefit is limited to a minority of patients. To unravel immune-related
factors that are predictive of sensitivity or resistance to immunotherapy, we performed a gene
expression analysis by RNA-Seq using the Oncomine Immuno Response Assay (OIRRA) on a total of
33 advanced NSCLC patients treated with ICI evaluating the expression levels of 365 immune-related
genes. We found four genes (CD1C, HLA-DPA1, MMP2, and TLR7) downregulated (p < 0.05) and
two genes (IFNB1 and MKI67) upregulated (p < 0.05) in ICI-Responders compared to ICI-Non-
Responders. The Bayesian enrichment computational analysis showed a more complex interaction
network that involved 10 other genes (IFNA1, TLR4, CD40, TLR2, IL12A, IL12B, TLR9, CD1E, IFNG,
and HLA-DPB1) correlated with different functional groups. Five main pathways were identified
(FDR < 0.0001). High TLR7 expression levels were significantly associated with a lack of response to
immunotherapy (p < 0.0001) and worse outcome in terms of both PFS (p < 0.001) and OS (p = 0.03).
The multivariate analysis confirmed TLR7 RNA expression as an independent predictor for both
poor PFS (HR = 2.97, 95% CI, 1.16–7.6, p = 0.023) and OS (HR = 2.2, 95% CI, 1–5.08, p = 0.049). In
conclusion, a high TLR7 gene expression level was identified as an independent predictor for poor
clinical benefits from ICI. These data could have important implications for the development of
novel single/combinatorial strategies TLR-mediated for an efficient selection of “individualized”
treatments for NSCLC in the era of immunotherapy.

Keywords: non-small-cell lung cancer (NSCLC); predictive biomarkers; immune gene expression;
immunotherapy; immune checkpoint inhibitor (ICI); PD-L1; Toll-like receptors (TLRs)
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1. Introduction

In recent years, immune checkpoint inhibitors (ICIs) have revolutionized the thera-
peutic landscape of many cancer types, including non-small-cell lung cancer (NSCLC) [1],
significantly improving patient outcomes. Several ICIs (anti-CTLA-4, anti-PD-1, and anti-
PD-L1) are able to restore the antitumor immune response and have been approved by the
U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for
therapy in advanced NSCLC and other solid tumors. The anti-PD-1 agent pembrolizumab
is approved for use as first- and second-line therapy in patients with advanced NSCLC
expressing PD-L1 in an immunohistochemical analysis [2,3]. Pembrolizumab has shown
survival benefits in the frontline setting for patients with metastatic NSCLC as a single-
agent monotherapy and with platinum-based agents in combination therapy, depending on
PD-L1 expressions ≥50% and <50%, respectively. Nivolumab (anti-PD-1) and atezolizumab
(anti-PD-L1) are both indicated for use as second-line therapies regardless of PD-L1 expres-
sion [4,5]. Such immunotherapeutic drugs can interfere with immune cells in the tumor
microenvironment, restoring the activity of antitumor T cells and facilitating control of the
tumor [6].

Despite unprecedented progress, much remains to be learned regarding how best to
leverage these new agents in oncology practices. Unfortunately, only a fraction of patients
benefits significantly from immunotherapy, with most patients not achieving an objective
response. It is noteworthy that the expression of PD-L1 is not always a predictor of efficacy
of PD-1 or PD-L1 inhibitors, and conversely, evidence has shown that some patients can
respond even to low or absent PD-L1 expression [7]. In addition to the urgent need for an
international standard method for a PD-L1 expression analysis, there is a compelling need
for a better understanding of the factors that could potentially predict the response and
resistance to immunotherapy. Newer advanced technologies can be used to explore and
evaluate the tumor microenvironment and the complexities of tumor and immune system
interactions, going beyond the assessment of single analytes such as PD-L1. Recent studies
have suggested that Tumor Mutational Burden (TMB), Microsatellite Instability and Mis-
match Repair Deficiency, assessment of the Tumor Immune Microenvironment (TME) by
T-cell tumor infiltration level evaluations, and gene expression profiles (GEPs) can correlate
with the clinical response to immunotherapy [8–10]. Recent data have also suggested that
immune-related gene signatures may predict the clinical response to immunotherapy. Ay-
ers et al. [10] identified immune-related signatures that correlated with the clinical benefits
from ICIs using a learn-and-confirm paradigm based on data from different clinical studies
of pembrolizumab. Both genomic and transcriptomic features of tumors can contribute
to the response to an immune checkpoint blockade. Recent genomic mutational studies
have highlighted the driver genetic alterations that underlie the tumor immune response.
Anti-PD-1/PD-L1 therapy does not achieve a significant survival improvement in patients
with EGFR mutations [11–13] or with co-occurring KRAS/STK11 alterations [14]. The search
for biomarkers able to predict the response to an immune checkpoint blockade is becoming
increasingly important for patient selection. As the use of ICIs also in first-line therapy is
rapidly changing the treatment scenario for advanced NSCLC, robust predictive biomark-
ers might prove critical for therapeutic decisions, especially in the case of reliable negative
predictive factors, which may potentially allow selection of those patients who do not
benefit from the use of an ICI in addition to or in place of platinum-based chemotherapy,
irrespective of PD-L1 expression.

The study of the tumor microenvironment (TME) by a transcriptomic analysis could
shed light on the primary cancer immune resistance that represents one of the critical
challenges in immuno-oncology. To this aim, in the present study, we investigated the
immune-related transcriptomic landscape of advanced NSCLC tumors to understand the
predictors of the immune response to help identify the patients most likely to benefit from
immunotherapy.
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2. Materials and Methods
2.1. Patient Selection

The present study included a retrospective cohort of patients with advanced NSCLC
who received a second or a subsequent line therapy of an anti-PD-1 inhibitor (nivolumab) at
the Medical Oncology Division of Santa Maria della Misericordia Hospital in Perugia, Italy
during the period from July 2015 to June 2019. A total of 43 eligible patients were initially
identified. The medical records of the patients were retrospectively reviewed. Only patients
with available clinical data and tumor tissues were considered to be eligible. All tumor
samples were collected before ICI treatment. Ten specimens were excluded because of their
poor quality and unsuitability for the gene expression analysis. The study was approved by
the local ethical committee “CEAS UMBRIA” (Comitato Etico Aziende Sanitarie Umbria)
with code number 2870/16 and was conducted in accordance with ethical principles of
the latest version of the Declaration of Helsinki. Written informed consent for the gene
expression analyses was obtained from each patient recruited in the study.

2.2. RNA Sequencing by Oncomine Immune Response Research Assay

RNA-sequencing was performed at the Molecular Biology Laboratory of Medical
Oncology Division of S, Maria della Misericordia Hospital in Perugia, Italy, using the
Oncomine Immune Response Research Assay (OIRRA) panel (Thermo Fisher Scientific,
Carlsbad, CA, USA) to sensitively measure the expression levels of 395 genes associated
with 36 functional groups, including checkpoint pathways, lymphocyte regulation, cy-
tokine interactions, lymphocyte, and tumor marker. For RNA extraction, 2–5 sections of
10 µm-thick formalin-fixed paraffin-embedded (FFPE) tissues were prepared. One slide
at the beginning of each serial section was stained with hematoxylin-eosin (H&E) and
histopathologically examined by a board-certified pathologist to determine the tumor cell
contents. After macrodissection of the tumor area, RNA was isolated using the RNeasy
FFPE Kit (Qiagen GmbH, Hilden, Germany) on a QiaCube robotic workstation accord-
ing to the manufacturer’s instructions. RNA concentrations were determined with the
Qubit RNA HS Assay Kit and a Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Carls-
bad, CA, USA). RNA quality assessment was performed by a real-time qPCR functional
RNA quantitation (FRQ) assay. NGS libraries were prepared automatically on the Ion
Chef™ system (Thermo Fisher Scientific) using the OIRRA-Chef Ready panel and 10 ng of
RNA previously reverse-transcribed into cDNA through the SuperScript VILO™ cDNA
synthesis kit (Thermo Fisher Scientific). A diluted 50-pM single pool of cDNA libraries,
quantified by qPCR with the Ion Library TaqMan® Quantitation Kit, was used for the
sequencing of the 395 immune-related genes. Template preparation and enrichment were
automatically performed using the Ion Chef™ system and the Ion PGM Hi-Q View Chef
Kit. The sequencing step was performed on the Ion PGM System using the Ion 318™
Chip v2 (all from Thermo Fisher Scientific). Alignment of the sequences to the reference
immuneresponse_V3.1 and counting of the sequencing reads and normalized gene level
counting data were performed using the ImmuneResponseRNA plug-in in Torrent Suite
software. A gene-level differential expression analysis was performed with Transcriptome
Analysis Console (TAC) 4.0 software.

2.3. PD-L1 Testing

Immunohistochemistry (IHC) for PD-L1 was performed at the Section of Anatomic
Pathology and Histology of Perugia University, Italy, using the PD-L1 22C3 pharmDx
kit (Dako North America Inc., Carpinteria, CA, USA) on the Dako Autostainer Link 48
according to the manufacturer’s instructions. Unstained tissue sections 4-m-thick were
prepared from the most representative area of each case. At least 100 viable tumor cells
were required for a valid interpretation of PD-L1 staining. Slides were counterstained with
Mayer’s hematoxylin. Results were evaluated with known positive and negative tissue
controls. The percentage of PD-L1 expression in the invasive tumor cells was calculated



Genes 2021, 12, 992 4 of 14

as the number of viable invasive carcinoma cells showing membranous staining of any
intensity divided by the total number of viable invasive carcinoma cells.

2.4. Bayesian Network Analysis

A gene network analysis based on the Bayesian algorithm was performed by Gene-
MANIA database querying with the genes selected through a RNA expression analysis.
We predicted the genes associated with RNA expression analysis and their interaction
networks using a linear regression-based algorithm that calculates a single composite
functional association network based on multiple data sources and a label propagation
algorithm that was used to predict the gene function given the composite functional associ-
ation network. Predicted genes were scored based on their relevance to the original query
genes [15]. The Homo sapiens database of GeneMANIA was used (updated on 17 March
2017). We performed query using GO biological process parameters.

2.5. Statistical Analysis

The gene-level expression results obtained from the sequencing run were normalized
by Read Per Million (RPM) and downloaded from Torrent Suite software to be uploaded
on TAC 4.0 software. The gene expression levels by the univariate ANOVA analysis were
considered upregulated or downregulated with fold changes >2 or <−2, respectively, and
a p-value < 0.05. Gene expression levels were assessed as continuous and categorical
variables. We used the median values of each gene as the cut-off to discriminate low
and high gene expression levels. Patients were divided into two groups based on their
clinical responses to ICI, according to the Response Evaluation Criteria in Solid Tumor
(RECIST) v1.1. Patients showing their best response, complete response, partial response,
or stable disease >6 months were considered as Responder (ICI-R), while those patients
showing disease progression or the stable disease lasting ≤6 months were considered as
Non-Responders (ICI-Non-R).

Descriptive statistics were calculated, including frequencies, percentages, frequency
tables for categorical variables, and mean ± standard deviation (SD) or median for quanti-
tative variables. The categorical variables were evaluated by X2 or Fisher’s exact test when
appropriate.

The objectives were to describe the clinical outcome in terms of the overall (whole
body) response rate (ORR, meaning complete + partial responses), disease control rate
(DCR, meaning complete + partial responses + stable disease), and DCB (meaning complete
+ partial responses + stable disease >6 months and corresponding to a percentage of
ICI-Responders) in all patients and according to their gene expression. Progression-free
survival (PFS) was defined as the time in months from the date of the first dose of ICI
treatment to first disease progression at any site. Overall survival (OS) was defined as the
time in months from the date of first dose of the anti-PD-1 inhibitor until death from any
cause. The Kaplan–Meier method was used to analyze the PFS and OS and estimate the
medians with two-sided 95% confidence intervals (CI).

Survival curves were compared using the log-rank test. Cox’s regression models
(univariate and multivariate) were applied to estimate the Hazard Ratio and 95% CI and
to identify the prognostic factors independently associated with the survival times. All
factors with statistically significant results from the univariate approach were included in
the final multivariate model.

Significance was set at ≤0.05 in all tests. Statistical analyses were performed with
STATA v. 16.1 (StataCorp LP, College Station, TX, USA).

3. Results
3.1. Patients

A total of 33 Stage IV NSCLC patients were included in the study. All patients were
treated at the Medical Oncology Division of Santa Maria della Misericordia Hospital in
Perugia with a single agent immune checkpoint inhibitor after at least one anticancer



Genes 2021, 12, 992 5 of 14

therapy in the metastatic setting. The clinicopathological characteristics of the patients
are reported in Table 1. The majority of patients received one or two previous lines of
treatments (n = 19, 57.6%; n = 11, 33.3%, respectively). The median age at the beginning of
ICI treatment was 67 years (range, 46–84); 67% (n = 22) were male, and 82% (n = 27) had a
former or current smoking history. The performance status was 0 in 10 (30%) patients and
1 or 2 in 14 (42%) and nine (27%) patients, respectively. The histological subtypes included
23 adenocarcinomas (70%) and 23 squamous cell carcinomas (30%). PD-L1 expression
according to the IHC evaluation was <1% in 21 (63.6%) patients and ≥1% in 12 (36.4%)
patients, of which 10 patients encompassed 1–49% (30.3%) and only two patients (6.1%)
>50%. At the time of the last follow-up (15 March 2021), four patients (12%) were still alive.

Table 1. Clinicopathological characteristics of the patients.

Characteristics
Patients

n = 33 %

Median Age, years (range) 67 (46–84)

Gender
Female 11 33.3
Male 22 66.7

Smoking History
Never smokers 6 18

Former/Current smokers 27 82

Histology
Squamous cell carcinomas 10 30.3

Adenocarcinomas 23 69.7

Performance Status *
0 10 30
1 14 42
2 9 27

N. lines of therapy before ICI
1 19 57.6
2 11 33.3
≥3 3 9.1

PD-L1 status
<1% 21 63.6

1–49% 10 30.3
≥50% 2 6.1

Genetic alterations **
EGFR, p.E746_A750del 1 3

EGFR, p.L858R 1 3
EGFR, p.S768_D770dup+p.P772T 1 3

Exitus
Live 29 88
Dead 4 12

* Before ICI treatment; ** adenocarcinoma histology.

3.2. Tumor Response Evaluation

Table 2 shows the clinical response to treatment with ICI according to the RECISTv1.1
criteria. Of 33 patients, 10 patients (30%) and four patients (12.1%) experienced a partial
response (PR) and stable disease (SD), respectively, while 19 patients (57.6%) showed
progressive disease (PD) as their best response. At the time of the last follow-up, one
patient who obtained PR was still on treatment with ICI (24 months).
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Table 2. Response to treatment with the immune checkpoint inhibitor.

Best Response * Total n = 33 (%)

Partial response (PR) 10 (30.3)

Stable disease (SD) 4 (12.1)

Progressive disease (PD) 19 (57.6)

Objective Response (Rate) (CR + PR) 10 (30.3)

Disease Control (Rate) (CR + PR + SD) 14 (42.4)
* Assessed by RECISTv1.1.

The objective response rate was 30.3% (10 of 33 patients), and the disease control rate
(DCR) was 42.4% (14 of 33 patients). Of the 33 patients, 13 (39.4%) achieved a durable
clinical benefit (ICI-R), and the remaining 20 (60.6%) patients showed no durable benefit
(ICI-Non-R).

We next compared ICI-R and ICI-Non-R for clinicopathological characteristics. Pa-
tients with a durable clinical benefit were significantly more likely to be former/current
smokers compared to ICI-Non-R (p= 0.029). The predictive biomarker PD-L1 expression
by IHC was also compared between the two groups, and no significant difference was
observed (p = 0.09).

3.3. RNA-Seq and Immune-Related Gene Expression Analyses

We investigated the immune-related gene expression landscape using the OIRRA,
obtaining successful transcriptomic data from 33 cases of advanced NSCLC. To identify
the transcriptomic factors associated with the response to immunotherapy, patients were
divided in two groups based on their clinical response to ICI: Responder (n = 13) and Non-
Responder (n = 20) groups (Table 3). The gene expression level analysis by the univariate
ANOVA test revealed six genes differentially expressed between the two groups: four genes
(CD1C, HLA-DPA1, MMP2, and TLR7) downregulated (p < 0.05) and two genes (IFNB1
and MKI67) upregulated (p < 0.05) in ICI-Responders compared to ICI-Non-Responders, as
reported in Table 4. Figure 1 shows the heatmap of the genes differentially expressed in the
two groups. The six genes belonged to different functional groups: antigen presentation
(HLA-DPA1 and CD1C), innate immune response (TLR7), type II interferon signaling
(IFNB1), tumor marker (MMP2), and proliferation marker (MKI67).

Table 3. Responder and Non-Responder patients according to their clinical responses to ICI.

Clinical Response to ICI * Total n = 33 (%)

ICI-Responder (ICI-R) ** 13 (39.4)

ICI-Non-Responder (ICI-Non-R) *** 20 (60.6)
* Assessed by RECISTv1.1; ** ICI-Responder: CR/PR/SD > 6 months; *** ICI-Non-Responder: PD/SD ≤6 months.

Table 4. Differentially expressed genes between ICI-Responders and ICI-Non-Responders.

Genes Fold Change (linear) (ICI-R vs. ICI-Non-R) ANOVA p-Value Gene Function

HLA-DPA1 −2.73 0.000239 Antigen presentation

TLR7 −12.39 0.000262 Innate immune response

MMP2 −4.13 0.017494 Tumor marker

CD1C −20.25 0.027213 Antigen presentation

IFNB1 13.39 0.037871 Type II interferon signaling

MKI67 2.04 0.038822 Proliferation

Abbreviations: HLA-DPA1, major histocompatibility complex class II DP alpha 1; TLR7, Toll-like receptor 7; MMP2, matrix metallopeptidase
2; CD1C, CD1c molecule; IFNB1, interferon-beta 1; and MKI67, marker of proliferation Ki-67.
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Figure 1. Heatmap of the genes differentially expressed between ICI-Responders and ICI-Non-Responders.

We evaluated the gene expression levels of the six genes of the signature identified
by the ANOVA analysis and their association with the clinicopathological characteristics
of the patients. A high expression level of HLA-DPA1 was significantly associated with
adenocarcinoma histology (p = 0.03), whereas the expression level of IFNB1 was signifi-
cantly lower in male patients (p = 0.05). A low expression level of TLR7 was significantly
associated with smokers (p = 0.005). No further statistically significant correlations were
observed.

Furthermore, we investigated the association of the gene expression analysis with
ORR, DCR, and DCB. Both ORR and DCR were lower in patients with a high RNA ex-
pression of TLR7 (p = 0.004 and p < 0.0001, respectively). Of the 16 patients with a high
gene expression level of TLR7, 93.7% (15/16) were Non-Responders, with only 6.25% of the
patients obtaining a durable clinical benefit (DCB, 6.25% vs. 93.75%, p < 0.0001). Seventy-
one percent of the patients with a low gene expression level of TLR7 were re-sponder
patients (DCB 70.6% vs. 29.4; p < 0.0001) (Figure 2).
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Figure 2. Box plot for TLR7 gene expression according to ICI-Responders and ICI-Non-Responders.

We further analyzed the association between TLR7 gene expression and PDL-1 IHC
expression and response to ICI. Of the 15 ICI-Non-Responders with high TLR7 expression,
27% (4/15) were PD-L1 positive (p = 0.7). Of the 12 ICI-Responders with a low TLR7 expres-
sion, 50% (6/12) and 50% (6/12) showed PD-L1 expressions <1% and ≥1%, respectively
(p = 0.3).

3.4. Survival Analyses and Correlation with Immune-Related Gene Expression

At a median follow-up of 11.7 months (range 1–66), the median PFS was 3.3 months
(95% CI 1.9–6.6), while the median OS was 11.7 months (95% CI 6.4–21.8). At the univariate
analysis, PS = 1 to 2 before ICI treatment, no smoking history, and PD-L1 IHC expression
<1% were significantly associated with shorter PFS (p = 0.014, p = 0.013, and p = 0.022,
respectively) (Table 5 and Figure S1), whereas PS = 1 to 2 and squamous histology (p = 0.007
and p = 0.006, respectively) were significantly associated with a worse OS (Table 6).

Table 5. Univariate and multivariate Cox analyses for progression-free survival (PFS).

PFS

Univariate Analysis Multivariate Analysis

Variables HR 95% IC p* HR 95% IC p*

Age ** 0.98 0.94–1.05 0.4 - - -

Sex, male vs. female 0.7 0.36–1.64 0.5 - - -

Smoking, never vs. ever *** 3.4 1.29–9.00 0.013 3.05 0.88–10.5 0.077

Histology, squamous vs. adeno 1.6 0.73–3.68 0.22 - - -

PS, 1–2 vs. 0 2.98 1.24–7.17 0.014 5.4 1.8–16.1 0.002

PD-L1, <1% vs. ≥1% 2.5 1.14–5.56 0.02 4.1 1.58–10.9 0.004

TLR7, high vs. low 3.9 1.77–8.75 0.001 2.97 1.15–7.61 0.023

CD1C, high vs. low 1.7 0.83–3.53 0.14 - - -

HLA-DPA1, high vs. low 1.03 0.5–2.13 0.93 - - -
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Table 5. Cont.

PFS

Univariate Analysis Multivariate Analysis

IFNB1, low vs. high 1.5 0.73–3.1 0.26 - - -

MMP2, high vs. low 1.77 0.87–3.6 0.11 - - -

MKI67, low vs. high 1.65 0.8–3.4 0.17 - - -

Abbreviations: PFS, Progression-free Survival; HR, Hazard Ratio; CI, Confidence Interval; PD-L1, programmed cell death 1 ligand 1;
PS, performance status; HLA-DPA1, major histocompatibility complex class II DP alpha 1; TLR7, Toll-like receptor 7; MMP2, matrix
metallopeptidase 2; CD1C, CD1c molecule; IFNB1, interferon-beta 1; and MKI67, marker of proliferation Ki-67. p*-value ≤ 0.05 in bold; **
assessed as a continuous variable; and *** current/former smokers.

Table 6. Univariate and multivariate Cox analyses for overall survival (OS).

OS

Univariate Analysis Multivariate Analysis

Variables HR 95% IC p* HR 95% IC p*

Age ** 1.01 0.97–1.05 0.49 - - -

Sex, male vs. female 1.58 0.69–3.61 0.27 - - -

Smoking, never vs. ever *** 1.34 0.5–3.58 0.54 - - -

Histology, squamous vs. adeno 3.36 1.42–7.97 0.006 3.6 1.31–9.84 0.01

Performance status, 1–2 vs. 0 3.34 1.39–8 0.007 2.28 0.83–6.29 0.10

PD-L1, <1% vs. ≥1% 1.34 0.61–2.91 0.45 - - -

TLR7, high vs. low 2.20 1.05–4.68 0.036 2.2 1.00–5.08 0.049

CD1C, low vs. high 1.17 0.5–2.46 0.66 - - -

HLA-DPA1, low vs. high 1.36 0.65–2.87 0.4 - - -

IFNB1, low vs. high 1.38 0.66–2.88 0.38 - - -

MMP2, high vs. low 1.12 0.54–2.35 0.74 - - -

MKI67, high vs. low 1.01 0.48–2.13 0.96 - - -

Abbreviations: OS, Overall Survival; HR, Hazard Ratio; CI, Confidence Interval; PD-L1, programmed cell death 1 ligand 1; PS, performance
status; HLA-DPA1, major histocompatibility complex class II DP alpha 1; TLR7, Toll-like receptor 7; MMP2, matrix metallopeptidase
2; CD1C, CD1c molecule; IFNB1, interferon-beta 1; and MKI67, marker of proliferation Ki-67. p*-value ≤ 0.05 in bold; ** assessed as
continuous variable, and *** current/former smokers.

To unravel the immune-related factors that are predictive of a sensitivity or resistance
to immunotherapy, a survival analysis in association with the gene expression level was
performed.

Among the six genes of the signature investigated, the RNA level expression of TLR7
was significantly associated with both PFS and OS. Patients with a high expression level of
TLR7 (higher than the median value) displayed a worse PFS compared to those patients
with a low one (lower than the median value) (median PFS 1.5 vs. 9.5 months, log-rank
p < 0.001 (Figure 3a); hazard ratio HR = 3.94, 95% CI, 1.77–8.75, p = 0.001) (Table 5).

A high TLR7 RNA expression was significantly associated with a shorter OS (median
OS 3.2 vs. 26.7 months, log-rank p = 0.03 (Figure 3b); HR = 2.2, 95% CI 1.05–4.68, p = 0.036)
(Table 6). No statistically significant differences in PFS or OS were observed with high or
low gene expression levels for CD1C, HLA-DPA1, MMP2, IFNB1, and MKI67.

A multivariate Cox’s regression model for PFS and OS was performed using the
variables that were found significant at the univariate analysis. In the multivariate analysis,
a PS = 1 to 2 and PD-L1 <1% remained significantly associated with a worse PFS (HR= 5.4,
95% CI 1.8–16.1, p = 0.002 and HR= 4.1, 95% CI 1.58–10.9, p = 0.004, respectively), whereas
squamous histology remained significantly associated with a shorter OS (HR = 3.6, 95% CI,
1.3–9.8, p = 0.013). The TLR7 RNA expression independently predicted both the PFS and
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OS, with high gene expression levels significantly associated with a worse PFS (HR = 2.97,
95% CI, 1.16–7.6, p = 0.023) and worse OS (HR = 2.2, 95% CI, 1–5.08, p = 0.049).
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3.5. Bayesian Network Analysis

The Bayesian enrichment computational analysis of the six-gene expression signatures
(HLA-DPA1, TLR7, MMP2, CD1C, IFNB1, and MKI67) showed a more complex network
that involved 10 other genes (IFNA1, TLR4, CD40, TLR2, IL12A, IL12B, TLR9, CD1E, IFNG,
and HLA-DPB1) correlated with different functional groups also related to the immune
response. Five main pathways were identified (False Discovery Rate; FDR < 0.0001),
such as regulation of the adaptative immune response and T-cell-mediated immunity,
lymphocyte activation, regulation of the apoptotic process, and receptor signaling pathway
via JAK-STAT, which involves five of the six genes (all except MKI67) among the gene
expression signature identified (Figure 4). The network analysis highlighted the correlation
between TLR7 and other TLR family members (TLR2, TLR4, and TLR9) and, also, with
other immune modulatory molecules.
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4. Discussion

In the present study, we evaluated the mRNA expression data to identify significant
transcriptomic features associated with the immune response to ICI in patients affected by
metastatic NSCLC. A gene expression analysis by RNA-Seq revealed a six-gene expression
signature differentially expressed between Responder and Non-Responder patients to
immunotherapy. The six genes of the signature belonged to different functional immune-
related groups: antigen presentation (HLA-DPA1 and CD1C), innate immune response
(TLR7), type II interferon signaling (IFNB1), tumor marker (MMP2), and proliferation
marker (MKI67). The Bayesian enrichment computational analysis revealed a more complex
network that involved 10 other genes (IFNA1, TLR4, CD40, TLR2, IL12A, IL12B, TLR9,
CD1E, IFNG, and HLA-DPB1) correlated with different functional groups. Five pathways
mainly involved in immune regulatory functions were identified.

Among the six genes, the expression levels of TLR7 were able to discriminate Re-
sponder and Non-Responder patients to ICI. We found high expression levels of TLR7
significantly associated with a lack of response to immunotherapy. Patients with high gene
expression levels of TLR7 experienced a worse outcome in terms of both PFS and OS.

The Bayesian network analysis showed the correlation of TLR7 with several immune
modulatory molecules and other TLR family members, such as TLR2, TLR4, and TLR
9. The cancer systems biology analysis approach strengthened our data identifying an
immune molecular network and confirmed the correlation of the gene expression signature
with relevant immune regulatory functions.

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that recog-
nize a variety of molecules from invading pathogens, so-called “pathogen-associated molec-
ular patterns” (PAMPs), and activate innate immunity and inflammatory responses [16].
TLRs play a critical role in both innate and adaptive immunity but are also expressed on a
wide variety of tumors regulating tumor growth and functions [17].

The role of TLRs in cancer is complex and controversial. An increased expression
or activation of these receptors may result in pro- or antitumorigenic effects, depending
on the molecular context. Increasing evidence suggests that the activation of TLRs in
immune cells or tumor cells promotes an antitumor immune response or induces tumor
immune evasion [18,19]. TLR signaling affects the differentiation and function of different
T-cell subsets and can directly reverse the suppressive function of tumor-derived CD4+,
CD8+, and γδ Treg cells [20]. By contrast, the activation of tumor cell TLRs can promote
tumor cell proliferation and resistance to apoptosis and enhance tumor cell invasion and
metastasis by regulating metalloproteinases and integrins. Furthermore, the activation
of TLR signaling in tumor cells induces the synthesis of the proinflammatory factors and
immunosuppressive molecules, which promote the resistance of tumor cells to cytotoxic
lymphocyte attacks, leading to immune evasion [21]. TLRs can regulate hypoxia-derived
metabolites such as cAMP and IDO, which are potent immune suppressors, as TLR7
stimulation significantly increases the IDO expression. More specifically, TLR7 is an
endosomal receptor for single-stranded RNA expressed on dendritic cell macrophage B
lymphocytes and NK cells. The stimulation of these cells with TLR7 ligands induces their
maturation and activation and the secretion of proinflammatory cytokines, mainly through
activation of the NF-KB pathways. Contrary to the therapeutic benefits of TLR7 agonists on
the immune cells, two studies have shown that TLR7 can be highly expressed on primary
tumor cells from NSCLC patients, and its stimulation on tumor cells promotes tumor
progression and resistance to chemotherapy treatment in NSCLC patients who highly
express TLR7. The protumorigenic effect could be mediated either by the direct stimulation
of TLR7-expressing tumor cells or by the increased recruitment of immunosuppressive
cells in the TME, such as myeloid-derived suppressor cells (MDSCs) and a reduction of
CD8 T cells [22,23].

In the current study, we showed that, in advanced NSCLCs treated with ICI, the gene
expression level of TLR7 strongly associates with a poor clinical efficacy. To the best of
our knowledge, our study is the first to demonstrate a relationship between TLR7 and



Genes 2021, 12, 992 12 of 14

the immune response to ICI, with a strong correlation between TLR7 RNA expression
and a poor clinical outcome. As previous studies have reported, our results confirmed
the potential protumorigenic effects of TLR7 in opposition to the antitumor role that
this receptor can interplay. TLR7 in this context could promote an immune suppressive
microenvironment through the stimulation of proinflammatory factors and regulation
of immunosuppressive molecules, which protect cancer cell from the T-cell-mediated
antitumor immune response. Unfortunately, in our study, a TILS assessment, which might
have reinforced our findings, was not feasible.

Tumor immune evasion may be facilitated by inhibitory cytokines, inflammatory
factors, and immunosuppressive molecules. Inflammation mediates tumor-induced toler-
ance. Immune tolerance in cancer mediates tumor escape from the immune system. The
activation of TLRs in tumor cells induce the synthesis of proinflammatory factors and
immunosuppressive molecules. We hypothesized that TLR7 could promote an immune
suppressive microenvironment that enhances the resistance of tumor cells and promotes
immune evasion.

The signaling pathways that trigger a tumor cell escape from immune surveillance are
not completely understood. In our study, the PD-L1 level assessed by IHC was identified
as an independent predictor for PFS. However, there was no correlation between the RNA
expression of TLR7 and PD-L1 IHC expression. Furthermore, 50% of ICI-Responders
with low TLR7 RNA expression and 27% percent of ICI-Non-Responders with high TLR7
expression were PD-L1-positive (>1%).

Our findings suggest that both in the presence or absence of the expression of PD-L1,
despite the inhibition of PD-1/PD-L1 signaling mediated by ICI, the high levels of TLR7
may facilitate the evasion of immune surveillance, maintaining a suppressive microenvi-
ronment and promoting resistance to ICI treatment.

As TLRs can act as a double-edged sword with both protumorigenic and antitumor
effects, understanding the functional regulations in tumor cells and tumor-infiltrating
immune cells mediated by TLRs will be important for the success of TLR-based cancer
immunotherapies and will force us to rethink the role and therapeutic potential of TLR
signaling, considering that most current TLR-involved treatments have been disappointing
in clinical trials.

This study had several limitations. Due to its retrospective design and the small size
of the population investigated, a potential selection bias could not be excluded. Our study
was based on mRNA gene expression, which could be affected by inter- and-intra-tumoral
heterogeneity and did not consider the protein level expression. Furthermore, our research
was limited to a specific immune-related set of genes investigated by the multiplex panel
compared to a wide transcriptomic analysis.

Further studies with a prospective design on a larger population are necessary to
validate our results and to better understand the relationship between TLRs and the TME
for the development of better anticancer therapies. Multiple features are involved in the
response to ICI; thus, novel and multiple biomarkers are needed to potentially capture the
complexity of the TME. A TMB assessment could also be investigated in relation to specific
molecular pathways and gene expressions as a multidimensional approach for patient
stratification with immunotherapy to better select patients who would most likely benefit
from treatment. Correlations between genetics and transcriptomic data with outcomes of
clinical interest also increase the biological knowledge of cancer.

Understanding the complex interactions between the host immune system and cancer
molecular biology could lead to a comprehensive tool that can be useful to drive treatments
and clinical patient managements. Immune checkpoint inhibitors could be only the tip of
the iceberg in the discovery and development of targeted therapies exploiting the immune
system to fight cancer. As novel biomarkers are being identified, many other immune
targets such as TLR7 could be used to develop new drugs beyond ICI that modulate the
immune system, with drug combinations potentially eliciting a better immune response
than single drugs.
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5. Conclusions

In conclusion, in this study, we performed a gene expression analysis to identify the
significant genes associated with the sensitivity or resistance to ICI. The gene expression
level of TLR7 was identified as an independent predictor for poor clinical benefits from ICI.
Further studies that confirm our research and evaluate combined biomarkers are needed. A
multidimensional approach enabling a comprehensive molecular characterization of cancer
TME could be the key for an efficient selection of “individualized” treatment strategies
and patient management in order to realize precision medicine for NSCLC in the era of
immunotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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