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ABSTRACT

The Atlantic-Mediterranean marine transition is a fascinating biogeographic region, but
still very poorly studied from the point of view of seaweed phylogeography. Dictyota
fasciola and D. mediterranea (Dictyotales, Phaecophyceae) are two currently recognized
sister species that share a large part of their distribution along the Mediterranean
Sea and the Atlantic Ocean, representing a unique study model to understand the
diversification processes experienced by macroalgae during and after Messinian at
this marine region. In this study, we sampled 102 individuals of D. fasciola and
D. mediterranea from 32 localities along their distribution range and sequenced the
mitochondrial cox1 and the chloroplast rbcL-rbcS DNA regions for all the samples.
Our data do not support the occurrence of two sister species but a morphologically
variable and highly genetic diverse species or a complex of species. Most of the observed
genetic diversity corresponds to the Mediterranean populations, whereas the Atlantic
ones are much more homogeneous. The early-diverged lineages inferred from both
mtDNA and cpDNA phylogenetic reconstructions were constituted by samples from
the Mediterranean Sea. Together, these results suggest that the Mediterranean Sea
acted as a refugium for the D. fasciola—D. mediterranea lineage during the geologic and
climatic changes occurred on the region since the Miocene, subsequently dispersing to
the Atlantic Ocean.

Subjects Biodiversity, Biogeography, Conservation Biology, Evolutionary Studies, Marine Biology
Keywords Algae, Biogeography, CoxI, Genetic diversity, Haplotype, Messinian salinity crisis,
Pleistocene glaciations, rbcL-rbcS intergenic spacer, Refugia, Seaweeds

INTRODUCTION

In the last decades, the increase of DNA sequencing data has been a key step to achieve
a better understanding of biodiversity, constituting the basis of modern fields like
integrative taxonomy and molecular systematics (Dayrat, 2005; Will, Mishler & Wheeler,
2005; Hajibabaei et al., 2007; Maddison, Schulz & Maddison, 2007; Schlick-Steiner et al.,
2010). This source of information is particularly important for improving our knowledge
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of organisms such as macroalgae, frequently showing poor diagnostic phenotypical
characters (Verbruggen, 2014). In this way, many studies based on DNA have contributed
to recognizing phenotypically cryptic seaweed species (Leliaert et al., 2014 and references
therein) or to redefining classifications of some lineages, establishing evolutionarily
natural groups (Brodie ¢» Lewis, 2007 and references therein). The advances in these fields
also served as a basis to phylogeography, a discipline where seaweeds have experienced
increasing relevance during recent years (Hu, Duan ¢» Lopez-Bautista, 2016).

Comparative phylogeography on diverse marine organisms has demonstrated to be
a useful tool to unravel evolutionary and ecological patterns across marine provinces
and biodiversity hotspots (Bowen et al., 2016). However, the relevance of seaweed studies
on some geographical regions such as the Atlantic-Mediterranean transition is still very
poor compared to other organisms like animals or land plants (Patarnello, Volckaert ¢
Castilho, 2007; Hu, Duan ¢ Lopez-Bautista, 2016). For instance, most data concerning the
diversification processes on this region during the key Miocene-Pliocene boundary come
from marine animals (e.g., crustacean Rasforgueff et al., 2014; echinoderms, Taboada ¢
Pérez-Portela, 2016; or vertebrates, (Valsecchi et al., 2005. According to the most accepted
hypothesis, no true marine organisms could have survived in the brackish-water or
hypersaline lakes that remained in the Mediterranean Basin during the Messinian Salinity
Crisis (MSC; 7.25-5.33 Ma) (Taviani, 2002). Consequently, the Mediterranean Sea would
have been recolonized by species occurring in the Atlantic Ocean following the flooding
after the MSC (Hsii et al., 1977). In contrast, other studies suggest some true marine
enclaves persisted in the deeper areas of the Mediterranean and served as refugia for some
“Messinian” species (e.g., Boudouresque, 2004; Sotelo, Mordn & Posada, 2009; Reuschel,
Cuesta ¢ Schubart, 2010).

Climatic changes during Plio-Pleistocene also had a great impact on the Atlantic-
Mediterranean marine transition and the organisms inhabiting this region (Patarnello,
Volckaert & Castilho, 2007). Several investigations have reported that latitudinal and
sea-level shifts associated with Pleistocene glacial-interglacial cycles fuelled important
range changes and vicariance events on Atlantic-Mediterranean marine protists (e.g., Lowe
et al., 2012), animals (e.g., Xavier et al., 2011) and seagrasses (e.g., Arnaud-Haond et al.,
2007; Alberto et al., 2008). To our knowledge, the only phylogeographic study involving a
native seaweed from the Mediterranean Sea focuses on the red coralline algae Lithophyllum
byssoides (Lamarck) Foslie (Pezzolesi et al., 2017). Based on the genetic differences found
among Atlantic and Mediterranean specimens, the authors suggested that MSC and Plio-
Pleistocene climatic changes shaped genetic structure of this species. However, the sampling
of the study—restricted to the central Mediterranean populations (Ligurian, Tyrrhenian
and Adriatic Seas) plus two Atlantic specimens from the Iberian Peninsula—limited the
inference of further phylogeographic patterns.

Dictyota fasciola (Roth) J.V.Lamouroux is a relatively common species of eulittoral
pools and the shallow subtidal zones in the NE Atlantic and the Mediterranean Sea.
Dictyota mediterranea (Schiffner) G.Furnari is a rarer species, endemic to the coasts of the
Mediterranean Sea where it occupies a similar habitat to that of the preceding species.
As occurs in the majority of Dictyota species, these two taxa are notoriously difficult to
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identify based on morphological, anatomical, or reproductive characters. In this way,

D. mediterranea was formerly reduced to a synonym of D. fasciola by Feldmann (1937) on
the basis of similarities in colour, width of the axes, and shape of the apices. However,
subsequent authors recognise D. mediterranea as a different species (Coppejans, 1983;
Ribera et al., 1992; Pena Martin, Gémez Garreta ¢ Crespo, 2004; Cormaci et al., 2012; Guiry
& Guiry, 2019). Indeed, D. mediterranea shows a terete thallus at the base and the apex—but
complanate in the middle part—and a multilayered medulla; whereas axes of D. fasciola
are all complanate, and a multilayered medulla is restricted to the basal parts of the thallus
(Pena Martin, Gémez Garreta ¢ Crespo, 2004; Cormaci et al., 2012). Previous molecular
phylogenetic studies indicated that these species are closely related (Tronholm et al., 2010),
but results of the same study pointed out a noticeable genetic differentiation among them.
The divergence between D. fasciola and D. mediterranea was estimated to occur c. 6.5 Ma
(10 Ma—4 Ma; 95% highest density probability) according to a time calibrated multigene
phylogeny of the genus Dictyota (Tronholm et al., 2012), partially overlapping with the
start of the MSC (Krijgsman et al., 1999). Based on these former data, Tronholm et al.
(2010) speculated that D. fasciola—D. mediterranea lineage would have an Atlantic origin,
subsequently colonizing the Mediterranean basin—either before or after the divergence of
both species—after the MSC. As the only example of two sister Dictyota species occurring
along the Mediterranean Sea and the Atlantic Ocean, these two taxa represent a unique
study model to understand the phylogeographic processes experienced by macroalgae
during and after Messinian at this marine region.

In this study, we use a broad sampling along the distribution range of these Dictyota
species to investigate their diversification process. Based on the sequences obtained
from two variable mitochondrial (cox1) and chloroplast (rbcL-rbcS) DNA regions, we
address three main goals. First, we aim to validate the taxonomic differentiation among
D. fasciola and D. mediterranea observed in previous phylogenetic studies of the genus.
Second, we will test whether our phylogeographic data fit well to the former “Atlantic to
Mediterranean” colonization hypothesis proposed to explain the evolutionary history of
this lineage. Finally, we discuss the contribution of our results to the knowledge about the
Atlantic-Mediterranean transition during the Messinian and the Plio-Pleistocene periods.

MATERIALS & METHODS

Sampling and sequencing

We sampled 102 individuals of D. fasciola (67 specimens) and D. mediterranea (35
specimens) from 32 sampling sites along their main distribution range (see Tronholm

et al., 2010) in the Mediterranean Sea and the Atlantic Ocean (Table 1; Fig. 1). Specimens
were identified first in the field and later in the laboratory. Representative samples from
all localities were preserved on herbarium sheets and deposited in the BCN-Phyc (Centre
de Documentaci6 de Biodiversitat Vegetal, Universitat de Barcelona, Spain) and GENT
(Ghent University, Belgium) herbaria. Geographic coordinates for each sampling site are
shown in Table S1. The CTAB method (Doyle ¢» Doyle, 1987) with modifications (Soltis et
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Table 1 Summary of sampling locations, geographic circumscription, number of individuals (N) and haplotype information of D. fasciola and
D. mediterranea specimens used in this study.

Taxonomic Geographic Sampling Code N mtDNA cpDNA
assignation region site haplotype haplotype
Dictyota fasciola WM Spain: Alicante, Cabo de Huertas F-Alac 2 Ml C1/C5
Spain: Almeria, La Isleta F-Isle 4 Mo6(1) ,M18(3) C12(3)/C13(1)
Spain: Catalonia, Llanga F-Llan 5 MI1(2), M4(1), M5(1), M7(2) C1(1), C3(1), C4(2), C8(1)
Spain: Castelld, Serra d’Irta F-Cast 6 M1(3),M7(3) C1(3)/C5(3)
France: Cote Vermeille, Cerbere F-Cerb 5 Mi12 C1
France: Cote Vermeille, Banyuls-sur-mer F-Bany 5 M1(2),M12(1),M15(2) Cl
France: Nice F-Nice 5 M1(1),M12(4) C1
Italy: Sardegna, Isola Rosa F-SalR 2 M14 C1(1)/C11(1)
Italy: Sardegna, Porto Ferro F-SaPF 4 M12(1),M17(2),M20(1) C1(1)/C11(3)
EM Greece: Central Macedonia F-CeMa 2 MI1(1)M16(1) C1(1)/C15(1)
Greece: Karpathos, Agios Nikolaos F-Karp 2 M1(1),M19(1) C7(1)/C10(1)
Greece: Rhodes, Ladiko Bay F-RhoL 2 M19 C5(1)/C10(1)
Greece: Rhodes, Fourni F-RhoF 1 M9 Cc7
Italy: Sicily, Aci Castello F-Sici 1 Ml11 C1
ATL Portugal: Porto Covo F-Port 3 M1 Cl1
Portugal: Madeira, Ponta do Sao Lourengo F-MaPo 1 M2 C1
Portugal: Madeira, Reis Magos F-MaRe 1 M1 C1
Spain: Cadiz, Tarifa F-Tari 5 M1 Cl
Spain: Canary Is., Lanzarote, Famara F-LaFa 1 M1 Cl
Spain: Canary Is., Lanzarote, Puerto del Carmen F-LaPC 1 M1 Cl1
Spain: Canary Is., La Graciosa F-Grac 1 M1 Cl
Spain: Canary Is., Gran Canaria, Medio Almud F-GCMA 1 M1 Cl
Spain, Canary Is., Gran Canaria, Maspalomas F-GCPM 1 M1 Cl
Spain: Canary Is., Tenerife, Punta Hidalgo F-TePH 3 M1 C1(2)/C2(1)
Spain: Canary Is., Tenerife, Buenavista F-TeBu 1 M1 Cl
Spain: Canary Is., El Hierro F-ElHi 2 M1(1),M3(1) Cl
Dictyota mediterranea WM Spain: Alacant, Cabo de Huertas M-Alac 4 M7(2),M10(2) C5
Spain: Mallorca, Alcadia M-Mall 1 M7 C5
Spain: Almeria, La Isleta M-Isle 2 M10 C5
Spain: Catalonia, Llan¢a M-Llan 9 M16 C14(3),C15(6)
France: Cote Vermeille, Banyuls-sur-mer M-Bany 8 M21(6),M22(1),M12(1) C1(1),C16(6),C17(1)
Ttaly: Sicily, Capo di Milazzo M-SiCM 1 M7 C5
EM Italy: Sicily, Giardini Naxos M-SiGN 1 Mi13 C18
Ttaly: Sicily, Aci Castello M-SiCi 2 M7 C5
Greece: Rhodes, Ladiko Bay M-RhoL 3 M1(1), M7(2) C5
Greece: Rhodes, Agios Thomas M-RhoA 2 M9 C5(1),C6(1)
Greece: Karpathos, Kastellia Bay M-KarK 1 M3 c9
Greece: Karpathos, Christou Pigadi M-KarC 1 M8 C5
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Figure 1 Geographic distribution of the samples analyzed in this study (sample code according to Ta-
ble 1). The color of the square indicates the geographic circumscription to three main biogeographic ma-
rine regions (i.e., Atlantic Ocean, in green; Western Mediterranean Sea, in red; and Eastern Mediterranean
Sea, in violet).

Full-size Gl DOI: 10.7717/peer;j.6916/fig-1

al., 19915 Cullings, 1992) was used to extract total genomic DNA from silica-dried material
derived from fresh tissue. The mitochondrial cox1 and the chloroplast rbcL-rbcS regions
were amplified and sequenced for all the samples. Amplification procedure was performed
as described in Aragay et al. (2017). Direct sequencing of the amplified DNA segments was
performed with Big Dye Terminator Cycle Sequencing v 3.1 (PE Biosystems, Foster City,
California, USA) at the Unitat de Genomica, Centres Cientifics i Tecnologics, Universitat
de Barcelona (CCiTUB) on an ABI PRISM 3700 DNA analyser (PE Biosystems). The
sequencing primers used were the same as the amplification ones. Sequences were edited
and assembled using Chromas Lite v 2.01 (Technelysium PTy, Tewantin, Queensland,
Australia) and Bioedit v 7.0.9 (Ibis Biosciences, Carlsbad, CA, USA). The alignment was
conducted in Clustal W (Thompson, Higgins ¢ Gibson, 1994) and finally adjusted by hand.
GenBank accession numbers are provided in Table S1.

Phylogenetic analyses of D. fasciola and D. mediterranea

A first molecular phylogenetic reconstruction within the D. fasciola—D. mediterranea
group was performed by Bayesian inference (BI) with MrBayes v 3.2 (Ronquist et al.,
2012), independently for both chloroplast and mitochondrial markers. Dictyota guineénsis
(Kitzing) P.Crouan & H.Crouan was chosen as outgroup according to unpublished
phylogenetic analyses at the genus level (Olivier de Clerck, Ghent University, pers.
comm.). Despite Dictyota presents maternal inheritance for chloroplast and mitochondrial
organelles (Motomura, Nagasato ¢ Kimura, 2010), we analysed separately both datasets
since their DNA loci may undergo independent evolution, potentially generating incorrect
phylogenetic inferences based on concatenated datasets (Degnan ¢ Rosenberg, 2009).
Partitioning strategies and models of molecular evolution were selected with Partitionfinder
v 2.1.1 (Lanfear et al., 2016). A partitioning scheme with 3 partitions organized by codon
position was chosen for the mitochondrial genic region cox1 (SYM+G, HKY and HKY+G
models for the cox1 first, second and third positions, respectively), while one single
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partition (HKY+G model) was applied for the chloroplast rbcL-rbcS intergenic spacer.
Two independent Markov chain Monte Carlo (MCMC) analyses with four Metropolis-
coupled chains each were run for 10 million generations, sampling every 1,000 generations.
The first 25% of the trees were discarded as “burn-in”, after confirming that the average
standard deviation of the split frequencies was <0.01, and the potential scale reduction
factor approached 1.0 for all parameters. The remaining trees were pooled to construct
50% majority-rule consensus trees that approximate the posterior distribution of the
phylogenetic reconstructions, and to obtain Bayesian posterior probabilities.

A Maximum Likelihood (ML) approach was also performed using RAXML-HPC v.8
(Stamatakis, 2014), partitioning the datasets as in the Bayesian analysis. Given that RAXML
allows for only a single model of rate heterogeneity in partitioned analyses and following
the recommendations by Stamatakis (2006), we employed the GTRCAT nucleotide
substitution model for all partitions, with the default settings for the optimisation of
individual per site substitution rates. The best-scoring ML tree with clade support values
was obtained from 10 independent runs, with 1,000 rapid bootstrap replicates each run.
Both phylogenetic analyses were performed within the CIPRES Science Gateway (Miller,
Pfeiffer & Schwartz, 2010), and the resulting summary trees were visualised in FigTree
v.1.4.2 (https://github.com/rambaut/figtree).

Genetic variability of D. fasciola and D. mediterranea
For analyses taking into account phylogeographic structuring of populations, the samples
were assigned to three main biogeographic marine regions (i.e., Atlantic Ocean, West
Mediterranean and East Mediterranean; (Coll et al., 2010). Haplotype minimum-spanning
networks (Bandelt, Forster ¢ Rohl, 1999) were reconstructed using PopArt (Leigh ¢ Bryant,
2015), independently for each marker under study, using default settings (i.e., parameter
& = 0) to consider multifurcations and/or reticulations in a phylogenetic network approach.
Haplotype (Hp) and nucleotide (p) diversities were calculated separately for each marker
using DnaSP v 5.0 (Rozas ¢ Rozas, 1995). Haplotype richness (R(n)) was computed with
RAREFAC (Petit, El Mousadik ¢ Pons, 1998) a software that uses a rarefaction approach to
standardize the haplotype richness to a fixed sample size to facilitate comparisons across
groups of samples. In this case, the rarefaction value (n = 18) was set according to the
sample size of the smallest group of populations (i.e., East Mediterraean group).

RESULTS

Phylogenetic analyses of D. fasciola and D. mediterranea

Both the mitochondrial cox1 and the chloroplast rbcL-rbcS sequences showed a noticeable
level of polymorphism among the 102 samples of D. fasciola and D. mediterranea analysed
in this study. Specifically, 60 and 46 variable sites were observed for the mtDNA (584
bp) and the cpDNA (510 bp) markers, respectively. The phylogenetic reconstructions
obtained from these DNA regions (Fig. 2; Figs. 52-S3) inferred the existence of several
highly supported monophyletic lineages (PP > 0.95) within the complex of D. fasciola
and D. mediterranea. The analysed specimens were not clustered in two clades according
to their taxonomic assignation, but subdivided in multiple nested lineages which did not
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correspond to a clear-cut differentiation between both species. While some of these lineages
were exclusively constituted by specimens of one of the species, a few comprised samples of
both D. fasciola and D. mediterranea intermixed. In particular, early diverging clades of the
trees were mainly constituted by D. mediterranea specimens (with a few D. fasciola samples
intermingled) while more derived clades were basically composed of D. fasciola specimens
(with one or two D. mediterranea samples admixed). Comparing the trees obtained from

mtDNA (Fig. 2A) and cpDNA (Fig. 2B), their topology showed overall congruence, except
for a few (i.e., four out of 102) samples which appeared in non-equivalent clades. From a

geographic point of view, the Atlantic specimens of D. fasciola were all clustered in highly
derived clades of both the trees inferred from mtDNA and cpDNA markers. However, these
derived clades also contained several samples from the Mediterranean Sea, including a few
representatives of D. mediterranea. The trees inferred from both phylogenetic approaches

(Bayesian and ML) resulted on congruent evolutionary reconstructions.

Genetic variability of D. fasciola and D. mediterranea

The number of haplotypes found in our study was 22 for cox1 region and 18 for rbcL-rbcS
region. The minimum spanning networks of both markers revealed a similarly complex
evolutionary structure (Fig. 3), with some groups of closely related haplotypes (connected
by one-two mutation steps) loosely distanced to other groups of haplotypes (>3 mutation
steps). The geographic distribution of the haplotypes among the different regions did not
show a clear pattern. Only the two (cpDNA) or three (mtDNA) haplotypes present on
the Atlantic region were all closely related among them, whereas those from the Western
and Eastern Mediterranean appeared distributed all over the network. As occurred on
the phylogenetic trees, the haplotype networks did not show a simple taxonomic pattern
congruent with a clear differentiation involving two species (Fig. S1).

The result of genetic variability analyses is summarized in Table 2. Haplotype diversity
(Hd) values was slightly higher for cox1 than for rbcL-rbcS, while nucleotide diversity
() was very similar among the chloroplast and the mitochondrial regions. From a
phylogeographic point of view, the samples from the Mediterranean Sea contained higher
genetic variability—in terms of number of haplotypes, haplotype diversity and nucleotide
diversity—than those from the Atlantic Ocean (Table 2). Haplotype richness calculated
after rarefaction R(;4) was also several times higher in each of the Mediterranean groups
than in the Atlantic one. Regarding the genetic variability within the Mediterranean
groups, the Western samples showed more haplotypes (15 and 12 for mtDNA and cpDNA,
respectively) than the Eastern ones (eight haplotypes for both mtDNA and cpDNA).
However, the rest of genetic diversity indexes resulted in similar values among both regions
of the Mediterranean Sea. In all cases, the results derived from both the mitochondrial and
the chloroplast markers yielded congruent patterns of genetic variability.

DISCUSSION

Systematic and taxonomic implications
Bayesian inference and ML trees show the occurrence of several statistically supported
groups within D. fasciola—D. mediterranea complex, which do not seem to correspond to
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Table 2 Genetic variability values for each molecular marker in the geographical groups of populations defined in the study.

#P N cox1 rbcL-rbcS
Hp Hd Ras) T Hp Hd Ras) T
Western Mediterranean 11 63 15 0.897 8.05 0.0175 12 0.804 6.27 0.0175
Eastern Mediterranean 9 18 8 0.882 7.00 0.0128 0.797 7.00 0.0131
Atlantic 12 21 3 0.186 1.71 0.0003 0.095 0.86 0.0002
Total 32 102 22 0.862 9.12 0.0142 18 0.753 7.14 0.0150
Notes.

#P, number of sampling sites; N, number of individuals; Hp, number of haplotypes; Hd, haplotype diversity; R(18), allelic richness after rarefaction; 77, nucleotide diversity.

a clear-cut differentiation between the two species. Our data indicate that this group of

Dictyota harbours more genetic diversity and complexity than previously envisaged. Earlier

phylogenetic studies by Tronholm et al. (2010) and Tronholm et al. (2012) analysed several

specimens of both species, which were placed in two independent clades in agreement

with the taxonomic assignation of the samples. In our study, the expanded sampling along

the distribution range of D. fasciola and D. mediterranea, together with the use of more

variable markers, reveal additional lineages structured in a nested topology, which rejects

a simple scenario with two monophyletic species.

Additionally, as explained above, several lineages in our phylogenetic reconstructions

(Fig. 2) are constituted by samples of both species intermixed. These results may suggest that

D. fasciola and D. mediterranea should not be segregated into the current two taxonomic
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units, but they could constitute a larger complex of cryptic species. Alternatively, the
observed diversity could correspond to a single morphologically variable species, as already
proposed by Feldmann (1937). There are well-documented examples of Dictyota species
showing considerable morphological plasticity (e.g., Dictyota ciliolata Sonder ex Kiitzing,
Tronholm et al. (2013); Dictyota dichotoma (Hudson) J.V.Lamouroux, Tronholm et al.
(2008) so this could also be the case in the D. fasciola-D. mediterranea complex. The
concordance among the trees derived from loci located in separate compartments of the
genome (i.e., cpDNA and mtDNA; Fig. 2) suggests that this phylogenetic pattern—which
disagrees with taxonomic delimitation—is not the product of incomplete lineage sorting
processes (Leliaert et al., 2014).

The only possibility to accept the two currently recognized species would imply
considering D. mediterranea as a paraphyletic taxon. Anacladogenetic speciation
processes—often rendering ancestral paraphyletic taxa—have already been proposed
to explain similar phylogenetic patterns (e.g., Horandl, 2006; Crawford, 2010; Kuchta,
Brown & Highton, 2018; Smith, Ooi & Clark, 2018). In this scenario, some taxonomy-
genetic conflict should be taken into account: a few individuals of both species are nested
with individuals of the other species (Fig. 2). Most of these cases occurs in sampling
sites where the two species cohabit (e.g., Banyuls-sur-mer, in France; or Ladiko Bay,
in Rhodes), so misplacements could potentially be caused by identification problems.
However, a careful taxonomic determination was performed on each collected individual.
Considering as well the close evolutionary relationship within the members of this group,
we speculate that hybridization/introgression events between the different lineages are
more likely explanations for these cases of taxonomy-genetic discordance. Future studies
encompassing more comprehensive sampling, nuclear variable markers and thorough
morphological analyses should be undertaken to disentangle the taxonomy of this Dictyota
complex.

Phylogeography and diversification within D. fasciola—D. mediterranea
complex

The hypothesis formulated by Tronholm et al. (2010) to explain the diversification of

D. fasciola and D. mediterranea complex do not fit well with the phylogeographic and
genetic differentiation results obtained in our study. The scenario proposed by these
authors considered that this group of seaweeds would have an Atlantic origin, colonizing the
Mediterranean Sea posteriorly to the MSC. However, the genetic diversity values (Table 2)
and the haplotype networks (Fig. 3) unambiguously show that the Mediterranean Sea
contains much higher genetic diversity than the Atlantic Ocean. Similarly, the phylogenetic
trees indicate that the early diverging lineages are always constituted by the Mediterranean
specimens, whereas Atlantic samples are all clustered in a single younger lineage, indicating
the derived character of the Atlantic distribution (Fig. 2). Even admitting that our sampling
in the Atlantic Ocean is considerably incomplete, the extremely low genetic variability
(Table 2) found among sampling sites distanced by several hundred kilometres results
striking. These combined phylogeographic evidences suggest that the Mediterranean Sea
could be the source area of diversification of the D. fasciola—D. mediterranea complex.
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According to the time-calibrated phylogeny of the genus by Tronholm et al. (2012), this
divergence process could have predated the MSC. By that time, the Mediterranean Sea
showed a great geographical complexity, with some sub-basins mainly isolated among them
(Piller, Harzhauser ¢ Mandic, 2007). Surviving the MSC in these isolated Mediterranean
refugia may have been accompanied by a reduction of population sizes, thereby enhancing
divergence in allopatry of the isolated populations (Horandl & Stuessy, 2010; Calvo et al.,
2015). This scenario could explain the notably genetic differentiation observed within the
D. fasciola—D. mediterranea complex in the Mediterranean Sea, as well as the low variability
present in the Atlantic Ocean, which would have been putatively colonized after the
reopening of the Gibraltar Strait connection. Although our phylogenetic reconstructions
are not time-calibrated, our results clearly show that the colonization of the Atlantic Ocean
occurred late in the diversification history of the complex.

However, as in the case of other Mediterranean organisms (e.g., vertebrates Domingues
et al., 2005; echinoderms, Taboada ¢ Pérez-Portela, 2016; or cnidarian, Pilczynska et al.,
2017) we cannot discard the hypothesis that the ancestors of the D. fasciola-D.mediterranea
complex survived the MSC in the Atlantic Ocean. In this scenario, the arrival of this group of
seaweeds to the Mediterranean basin would have happened after the Zanclean re-flooding
with Atlantic waters. Assuming the genetic drift occurring at the wave front of an expanding
population (Excoffier ¢ Ray, 2008), this phenomenon should have led to higher genetic
diversity in Atlantic populations compared to the Mediterranean ones (i.e., exactly the
opposite of what was observed in our results). To fit this hypothesis to the low genetic
diversity and the derived phylogenetic position of the Atlantic samples found in our study,
we should assume the subsequent extinction of most of the relict oceanic diversity after
the colonization of the Mediterranean. Several studies have stated that Pleistocene glacial
cycles erased Atlantic populations of marine organisms, while the isolated Mediterranean
Sea offered a more stable persistence for some of them (e.g., Alberto et al., 2008; Lowe et al.,
2012). The habitat fragmentation occurring in the Mediterranean during colder marine
regression periods could have further enhanced genetic differentiation processes in this
region (e.g., Arnaud-Haond et al., 2007; Rastorgueff et al., 2014). Therefore, a postglacial
colonization of the Atlantic from Mediterranean sources would be an alternative or
complementary explanation for phylogeographical patterns observed on D. fasciola—D.
mediterranea complex.

CONCLUSIONS

Our results indicate that D. fasciola and D. mediterranea are not monophyletic species.
Conversely, we inferred a complex phylogenetic history challenging previous taxonomic
and evolutionary hypotheses on this group of macroalgae. This study also highlights the
key role played by the Mediterranean Sea as a refugium for these seaweeds during the major
climatic changes occurred since the Miocene in this region of the planet. The limited number
of sampling sites included in our study and the fact that some analysed populations consisted
of few individuals prevent establishing more detailed phylogeographic hypotheses. Hence,
more research focusing on this Dictyota complex—as well as on other algal groups—is
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needed to unravel the precise evolutionary and biogeographic response of seaweeds to the
geological and climatic events that the Mediterranean experienced during and after the
Messinian.
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