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Abstract

House mice communicate through ultrasonic vocalizations (USVs), which are above the

range of human hearing (>20 kHz), and several automated methods have been developed

for USV detection and classification. Here we evaluate their advantages and disadvantages

in a full, systematic comparison, while also presenting a new approach. This study aims to

1) determine the most efficient USV detection tool among the existing methods, and 2)

develop a classification model that is more generalizable than existing methods. In both

cases, we aim to minimize the user intervention required for processing new data. We com-

pared the performance of four detection methods in an out-of-the-box approach, pretrained

DeepSqueak detector, MUPET, USVSEG, and the Automatic Mouse Ultrasound Detector

(A-MUD). We also compared these methods to human visual or ‘manual’ classification

(ground truth) after assessing its reliability. A-MUD and USVSEG outperformed the other

methods in terms of true positive rates using default and adjusted settings, respectively, and

A-MUD outperformed USVSEG when false detection rates were also considered. For auto-

mating the classification of USVs, we developed BootSnap for supervised classification,

which combines bootstrapping on Gammatone Spectrograms and Convolutional Neural

Networks algorithms with Snapshot ensemble learning. It successfully classified calls into

12 types, including a new class of false positives that is useful for detection refinement.

BootSnap outperformed the pretrained and retrained state-of-the-art tool, and thus it is

more generalizable. BootSnap is freely available for scientific use.

Author summary

House mice and many other species use ultrasonic vocalizations to communicate in vari-

ous contexts including social and sexual interactions. These vocalizations are increasingly

investigated in research on animal communication and as a phenotype for studying the

genetic basis of autism and speech disorders. Because manual methods for analyzing
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vocalizations are extremely time consuming, automatic tools for detection and classifica-

tion are needed. We evaluated the performance of the available tools for analyzing ultra-

sonic vocalizations, and we compared detection tools for the first time to manual methods

(“ground truth”) using recordings from wild-derived and laboratory mice. For the first

time, class-wise inter-observer reliability of manual labels used for ground truth are ana-

lyzed and reported. Moreover, we developed a new classification method based on ensem-

ble deep learning that provides more generalizability than the current state-of-the-art tool

(both pretrained and retrained). Our new classification method is free for scientific use.

Introduction

The ultrasonic vocalizations (USVs) of house mice (Mus musculus) and rats (Rattus norvegi-
cus) are surprisingly complex, and they are increasingly being investigated to better under-

stand animal communication [1–3] and as a model for studying the genetic basis of autism

and speech disorders [4,5]. Rodents emit USVs in discrete units called syllables or calls (these

terms are metaphors and do not imply that rodents use words, or that their vocalizations func-

tion to attract other mice). USV syllables are separated by gaps of silence and they have been

classified into several different categories by researchers visually inspecting spectrograms [1–

3,6–10] i.e., the squared modulus of the short-time Fourier transforms (STFT) [11], or, less

often, by statistical clustering analyses [12–17]. USVs are classified according to their shape

and other spectro-temporal features, including the length of each syllable, their frequency, and

degree of complexity. Classification provides the basis for subsequent analyses of USVs, such

as repertoire size (e.g., Nicolakis et al. [7], Marconi et al. [6]) and sequences or syntax (e.g.,

Heckman et al. [3],Chabout et al. [18]).

Several classifications of USVs have been proposed, which vary from three to 12 different

classes, and there is no consensus on how they should be classified. Researchers agree that

there is a qualitative distinction between simple versus complex types of USVs (with the latter

having frequency-jumps or harmonics), but not with other proposed classes, as their differ-

ences are fuzzy. Many proposed classes are quantitative variations within these two major cate-

gories (e.g., simple USVs show quantitative differences in length and shape, and complex

syllables can have one or more frequency-jumps). A recent study concluded that USVs do not

cluster into distinctive types, and instead form a continuum [19]. However, since USVs are

mainly classified by human researchers, the crucial question is how do rodents perceive and

respond to variations in USVs. Continuous differences in these calls might still be perceived as

categorically discrete by rodents, just as we perceive continuous speech as discrete words and

variations in wavelengths of light as different colors. Few studies have addressed questions

about perception so far, and the evidence suggests that mice differentiate some though not

other USV classes (see Outlook below). Moreover, house mice emit different types of USVs

depending upon the social contexts and potential receivers [10,18,20–24], and they alter their

syllable type usage over the time during courtship and mating [25–27]. Thus, identifying varia-

tions in USVs in different contexts is central to studying the functions of these vocalizations

(Nicolakis et al. [7], Marconi et al. [6]).

The main technical challenge for USV processing and analyses includes developing better

methods for detecting and classifying these vocalizations, since most analyses are still con-

ducted manually by visual inspection of spectrograms, which is extremely time-consuming.

The first step in this signal processing task is USV detection, which is a challenging problem

due to the low signal-to-noise ratio (SNR) in most recording conditions. Manually detecting
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(https://zenodo.org/record/5771669#.

YiohQ9XML3g)). The sound files of laboratory

mice, uploaded by Chabout et al. (2015), are

already available online ((https://duke.box.com/

shared/static/6j08fzyto8nuxxstk6bcpi9n52bk5bu4.

wav) and (https://duke.box.com/shared/static/

y5o7zw8jx9ugb2qocozyaup7xlby1sr8.wav)).

Codes needed to reproduce our results are

available online (https://github.com/

ReyhanehAbbasi/BootSnap).
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each USV can take an enormous amount of time, particularly with large datasets. Semi-auto-

matic methods are useful, but they are still time-consuming (e.g., semi-automatic detection

using Avisoft SASLab Pro and manual checks requires 1–1.5 hours to detect merely 150–300

USVs [28], and some datasets contain tens of thousands of USVs [6]). The time required to

classify USVs takes even longer than detection, and classification is a necessary step to evaluate

qualitative differences in vocalizations and to conduct analyses of USV sequences (syntax)

(e.g., von Merten et al. [8]). Several software tools have recently become available for automat-

ing USV detection, including MUPET [13], MSA [14], DeepSqueak (DSQ) [16], USVSEG

[29], Automatic Mouse Ultrasound Detector (A-MUD) [30], Ultravox (Noldus; Wageningen,

NL) (commercial), and SONOTRACK (commercial). These tools enhance the efficiency of

processing USV data, but they can generate errors for several reasons. Failing to detect actual

USVs (the probability is given by the false-negative rate or FNR) can result in missing actual

differences in the vocalizations, and erroneous detections (false detection rate or FDR) can

lead to failure to detect actual differences and generate false differences. The challenge for any

USV detection algorithm is maximizing the true positive rate (TPR) while minimizing the

FNR and FDR. Moreover, automatic methods can have systematic biases depending on how

they are developed. For example, automated methods developed using only one mouse strain,

one sex, or only in one state or context can increase both types of error when applied to other

mice or conditions (see S1 Table for the mice and recording conditions used for developing

different USV detection tools if applied in other settings). Thus, automated methods can

greatly enhance the efficiency of processing USV data, but it is critical that they can be general-

ized. Results should be treated with caution until the error rates in the detection and classifica-

tion method are evaluated for particular datasets, or their generalizability is demonstrated.

To our knowledge, five studies have compared the performance of USV detection algo-

rithms: (1) Binder et al. [28] compared MSA and Avisoft for detecting USVs emitted from dif-

ferent strains of mice (C57BL/6, Fmr1-FVB.129, NS-Pten-FVB, and 129). They concluded that

Avisoft outperformed MSA for C57BL/6 and NS-Pten-FVB strains, but these two methods

performed similarly for strain 129. Thus, there are strain-specific differences between these

two detection tools. (2) Another study [31] compared the quantity of USVs detected by Avisoft

to those detected by Ultravox (2.0) and reported significant differences in USV detection and

weaker than expected overall correlations between the systems under congruent detection

parameters. (3) Van Segbroeck et al. [13] compared MUPET and MSA for detecting USVs

emitted by B6D2F1 males from MouseTube [3] and found that these methods generated simi-

lar call counts and spectro-temporal measures of individual syllables. (4) Coffey et al. [16]

compared MUPET, Ultravox, and DSQ for detecting USVs by analyzing the TPR and preci-

sion (the ratio of detected true USVs to false positives). For this purpose, they manipulated a

recording from MouseTube in two ways to gradually degrade its quality. In the first experi-

ment, increasing levels of Gaussian white noise were added to recordings, and DSQ outper-

formed MUPET and Ultravox in terms of TPR and precision in all Gaussian noise levels. In

the second experiment, real noise was added to recordings, and DSQ again outperformed

MUPET in terms of precision and Ultravox in terms of precision and TPR. (5) Zala et al. [30]

compared the performance of Avisoft and A-MUD (version 1.0) in identifying USVs of wild-

derivedMus musculus musculus. They concluded that the latter method is superior in terms of

TPR and FDR. Zala et al. [32] have since provided an updated version of A-MUD, which over-

comes previous difficulties in identifying faint and short USVs.

Our first aim was to systematically compare the performance of four commonly used USV

detection tools, MUPET, DSQ, A-MUD, and USVSEG, and to determine which is the most

efficient and requires the least user intervention. We addressed three main questions:
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1. How does the performance of different USV detection methods compare to each other?

Previous studies indicate that A-MUD outperforms Avisoft, which outperforms MSA;

MSA is comparable to MUPET and DSQ outperforms MUPET and Ultravox. To our

knowledge, no study has systematically compared the performance of A-MUD and DSQ,

or evaluated more than two of these methods together, though Coffey et al. [16] recently,

compared DSQ, MUPET, and Ultravox.

2. How does the performance of USV detection methods compare to ground truth (i.e., man-

ual detection by trained researchers)? Evaluation of detection methods rarely includes such

a positive control, which is a crucial comparison to obtain absolute versus relative estimates

of performance (e.g., see [30]). Binder et al. [28], Binder et al. [31], and Van Segbroeck et al.

[13] compared Avisoft and MSA, Ultravox and Avisoft, and MUPET and MSA based on

the number of USVs detected by each of the two methods, but no comparisons were made

with ground truth. Coffey et al. [16] used only ca. 100 manually detected USVs as ground

truth for comparing DSQ, MUPET, and Ultravox.

3. How well do USV detection tools perform when using novel datasets that differ from the

original training set (often called, generalization performance, out-of-sample error, or out-

of-the-box performance)? To our knowledge, only one study [28] has tested whether USV

detection methods generalize to other mouse strains (comparing only Avisoft and MSA),

and only one study has compared MSA and MUPET for different recording conditions

(males vocalizing in response to female urine, an anesthetized female, and awake female)

[13]. Van Segbroeck et al. [13] and Coffey et al. [16] only used recordings from a hybrid

strain (B6D2F1), and Zala et al. [30] used wild-derivedMus musculus. Consequently, it is

unclear how well current detection methods perform whenever applied to new recordings

that differ from the data used to develop and evaluate the tool. The problem of generaliza-

tion is well known in the machine learning community and there are several approaches to

improve “transfer learning” [33].

Therefore, we compared the “out-of-the-box” performance of these USV detection tools

with each other, and with ground truth, and we assessed their performance with novel datasets.

For these comparisons, we used recordings of laboratory mice (Mus laboratorius) and wild-

derived house mice (Mus musculus musculus), and using recordings under different social

contexts and recording conditions. The data were obtained from sources not involved in the

developmental phase for our tools (see Data and Methods). To evaluate the absolute perfor-

mance of these models, we applied a new dataset of manually detected USVs as ground truth

with a total of 3955 USVs. We minimized adjusting the detection parameters or re-training

these tools because such additional user interventions would add more variables and make it

impossible to compare their efficiency. One could include re-training before using or testing a

detection tool with a novel dataset, but then the data would have to be re-labeled, which defeats

the purpose of using an automated tool. To evaluate performance, we compared TPR (i.e.,

how often USVs are correctly detected) and FDR (how often background noises are mistakenly

detected as USVs). Signal detection theory explains the inevitable trade-off between FPs and

FNs [34], and therefore, the most effective tool will provide an optimal balance of these types

of errors.

We also aimed to develop an improved method for detecting FPs, as a second refinement

or data cleaning step to remove noise before classifying USVs or making other analyses.

Whenever analyzing recordings of mice, there are always background noises i.e., non-USV

sounds generated from recording instruments or movements of the mouse and bedding espe-

cially during social interactions. FNs are problematic as they result in a loss of data for
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subsequent analyses; however, false positives from detection are more problematic for statisti-

cal analyses and training a classification tool. One can set the parameters of detection such that

it errs on the negative rather than the positive set, as FPs can be deleted in the refinement step.

To remove FPs, MUPET and DSQ include a preliminary detection refinement step using

either an unsupervised approach, which groups data based on similarity measures rather than

manually labeled USVs (both approaches), or a supervised approach, which requires manually

labeled USVs for training a classifier (DSQ and [35]). Our preliminary evaluation found that

DSQ outperformed MUPET in the detection refinement step (using the K-means clustering

[36]), however, its performance differs depending on the data. Thus, we designed a method

better suited to deal with the problems mentioned above and we compared our method with

DSQ for detecting FPs, as this is a critical step for accurate USV classification.

Our second aims were to evaluate the state-of-the-art method for automated USVs classifi-

cation, and to develop a better method, i.e., an out-of-the-box, high-performance, and super-

vised method that requires minimal human intervention. Automatic classification of USV

syllable types can be achieved through unsupervised [12–14,16,17] and supervised [16] classifi-

ers. The advantage of unsupervised classification (often called ‘clustering’) is that it is consid-

ered to be more objective, as it does not require a predefined number of classes or manually

labeled observations. Hence, the number of classes is based on the information contained in

the dataset rather than the researchers’ assessment. These clusters do not always match the

classification of USVs by researchers and it is unclear how they are perceived by mice (see Out-

look below). In contrast, supervised classification (classification sensu stricto) methods require

that researchers first classify or assigning labels to USVs for training a classifier (machine

learning), which has higher accuracy compared to clustering [37,38]. One needs to use super-

vised classification for comparing the results between datasets and manual labels. To our

knowledge, only a few studies have used supervised methods for classifying mouse USVs (see

S1 Text).

Since the generalizability of USV classifiers has never been investigated (unlike methods for

classifying bird vocalizations [39]), it is not known how well the current methods can classify

USVs for novel datasets. Again, to evaluate a classification method, a systematic evaluation of a

new dataset not used for training or testing is needed. We identified four key factors that can

reduce the performance and generalizability of USV classifiers:

1. Noise is a potential problem for classification, as for detection, but this issue has not

received sufficient consideration. Some methods used only recordings that had low back-

ground noise (high SNR data) for developing and testing their models (e.g., [40], [16], and

[41]). This approach seems logical but it results in reduced performance when using more

typical recordings of mice having a low-SNR [42]. This problem is exacerbated if the model

is developed using predefined features extracted from spectrograms (e.g., see [40]), as the

extraction of these features from low-SNR signals already introduces high variance.

2. Imprecise USV detection generates subsequent classification errors. As the main output

after detection is usually the time and frequency range of USVs, the classification will only

include the region of the spectrogram limited to the detected minimum and maximum

USV frequency [16,40]. Our investigations, however, revealed that faint portions of USVs

are often not included inside this window, leading to significant errors in feature estimation

and classification.

3. Neural networks are being increasingly used for USV classification [16,41,43]. Machine

learning is an iterative method and it can fail to find the most effective weights for classifica-

tion, however, because the algorithm takes a path that reduces the error and this can lead to
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focusing on specific weights, which may not be very useful. Becoming trapped in a local

minimum is a common problem, and it can reduce the generalizability of a classifier [44].

This problem can be overcome by using ensemble machine learning methods [45], a proce-

dure that uses multiple algorithms, and the final output is obtained from combining the

outputs of these models. This approach makes it possible to obtain a model with better per-

formance than any of its component models and it allows for more flexible structures,

though developing ensembles require additional training time.

4. Limited training and evaluation inflate model performance. The performance of any model

is overly-optimistic whenever the same type of data (e.g., same mouse strain or recording

context) is used for both model development and evaluation [40,41,43]. Using such a lim-

ited training set conceals the model’s shortcomings in dealing with different strains or

recording conditions, but surprisingly, previous studies have never considered this issue.

Thus, to develop new and improved methods for USV classification, we had the following

aims:

1. Apply a CNN Snapshot Ensemble classifier based on the stochastic gradient descent algo-

rithm, which is accurate even with noisy (low-SNR) data.

2. Use the full time-frequency images based on the entire frequency range and reduce the

dimensionality (and thereby the computational load and the possibility of overfitting) using

Gammatone filters applied to the spectrograms.

3. Compare our new method with pretrained (as an out-of-the-box model) and retrained

DeepSqueak (DSQ), which is currently the state-of-the-art classification tool, and evaluate

these methods using USVs recorded under different conditions and from different mice

strains than the conditions and strains used in the training step.

Data and methods

USV data

Subjects. The data used in this study was first divided into two meta-sets: we have used

one development set (DEV) to develop, train and test the developed detection and classifica-

tion methods. To test the generalizability of the methods we use an additional evaluation (EV)

set. For a direct test, as well as estimating the meta-parameters of the classifier, using stratified

8-fold cross-validation, the DEV dataset was further divided into three subsets including

DEV_train, DEV_validation, and DEV_test (Table 1). We report the performance of the pro-

posed classifier in Sections “Selecting the architecture of the classifier”, “Evaluating BootSnap

for classifying USVs”, and “Inference classification” over the DEV_validation and DEV_test

datasets. The DEV dataset (Zala et al. [30]) combined two pre-existing datasets: the first dataset

was from 11 wild-derived male and 3 female mice (Mus musculus musculus) recorded for 10

min in the presence of an unfamiliar female stimulus [24]. In the second data set, 30 wild-

derived male mice (M.musculus musculus) were recorded for 10 min in the presence of an

unfamiliar female on 2 consecutive days, first unprimed and then sexually primed. These were

F1 and F2 descendants from wild-caughtM.musculus musculus, respectively (which for brev-

ity, we refer to as ‘wild mice’), whereas laboratory mice are domesticated hybrids of threeMus
subspecies, and mainlyMus musculus domesticus.

The EV dataset consists of two datasets, and a part was obtained from wild mice (‘EV_wild’)

(as in DEV), but under different conditions [6]. The vocalizations were obtained from 22 sexu-

ally experienced adult wild-derived (F3) maleM.musculus musculus [6]. Male vocalizations
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were recorded without and also during the presentation of a female urine stimulus over three

recording weeks, one time per week and each time for 15 minutes. To evaluate classifier per-

formance, we used three arbitrarily chosen recordings out of these 66 recordings, and manu-

ally classified them for this study. The other part of the EV data is taken from the MouseTube

dataset used for developing DSQ (‘EV_lab’) (B6D2F1 mice recorded by Chabout et al. [18])

and two arbitrarily selected recordings were sampled out of these 168 recordings. Although we

only used a few recordings to evaluate the methods, these recordings contained a large number

of USVs (Table 1). In order to prevent any potential bias in the performance of our method,

we selected 4 datasets that differed in their recording methods and other characteristics, such

as recording contexts (males with fresh or frozen female urine, males or females with a stimu-

lus female separated by a divider), subjects’ previous experience (males without or with socio-

sexual experience), microphone used (condenser ultrasound microphone Avisoft-Bioacoustics

CM16/CMPA and USG Electret Ultrasound Microphone Avisoft Bioacoustics / Knowles FG)

and genetic background of mice (wild-derived mice of F1-F3 generation and B6D2F1/J labora-

tory mice). See S2 Text for more detailed information on all datasets.

Detection. For USV detection, we applied A-MUD (version 3.2) using its published

default parameters for both the DEV and the EV datasets. Because FPs and syllables are

detected during the detection process, we call the detected segments ‘elements’ rather than ‘syl-

lables’. The parameters that affect A-MUD performance are o1_on, o1_off and if oo is enabled,

oo_on and oo_off, which are amplitude thresholds in decibel. For this study, we use two

A-MUD outputs: the element time slot and the estimated track of the instantaneous frequency

over time (frequency track; FT), called ‘segment info’ (Fig 1). We also compared A-MUD to

the three other detection tools, MUPET, DSQ, and USVSEG. To ensure a comparison, where

Table 1. Number of instances for each class in the different datasets.

Data set Number of members in each class

DEV_train c c2 c3 c4 c5 h d up u f us s ui FP

308 241 69 0 0 124 299 4343 298 1277 74 291 543 4849

DEV_validation 53 42 12 0 0 21 52 753 52 221 13 51 94 840

DEV_test 50 39 11 0 0 20 48 695 48 205 12 47 87 776

EV_wild c c2 split Rise ui FP

20 224 334 1025 110 234

EV_lab 61 404 739 819 200 389

https://doi.org/10.1371/journal.pcbi.1010049.t001

Fig 1. Block diagram showing the procedure for USV detection and input preparation for the classifier. n is the

Gammatone (GT) filter order. STFT, A-MUD, ARMA, and GS are the abbreviation for short-time Fourier transform,

automatic mouse ultrasound detector, autoregressive moving average, and Gammatone spectrograms, respectively. TF

in ‘TF windowing’ is the abbreviation for time-frequency. In this step, we restrict the spectrogram to the time of

interest, where the segment is detected, and to the frequency of interest, i.e., 20 kHz to 120 kHz.

https://doi.org/10.1371/journal.pcbi.1010049.g001
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A-MUD is certainly not privileged, the parameters of A-MUD were fixed while those of the

other approaches were optimized, through trial-and-error, i.e., we used the best parameters,

which provide the highest true positive rates for each detection tool, and not the default set-

tings. The parameters used for evaluating the different tools are presented in S2 Table.

Since the detection tools that we compared in this study were developed and evaluated

using USVs of wild mice (A-MUD) and laboratory mice (DSQ, USVSEG, and MUPET), we

also use USVs from both types of mice for our evaluation (two recordings for wild mice from

the DEV and EV_wild + two recordings for the laboratory mice from EV_lab). The DEV_1 (1

sound file from DEV data), EV_wild_1 (sound file 1 from EV_wild data), EV_lab_1 (sound

file 1 from EV_lab data), and EV_lab_2 (sound file 2 from EV_lab data) signals consist of 947,

771, 1013, and 1224 USVs, respectively.

Manual annotation of detections. After automatically detecting all elements, the DEV

dataset was manually classified into 12 classes (Fig 2), depending on the USVs’ spectro-tempo-

ral features [5–7,9,32,46] (S3 Table). These classes are based on frequency changes [32] (> 5

Fig 2. Gammatone Spectrograms (GSs) of five members of 12 studied classes. These GSs have the minimum

Manhattan distance to other members of 12 USV classes in the development dataset.

https://doi.org/10.1371/journal.pcbi.1010049.g002
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kHz increase ‘up’,> 5 kHz decrease ‘d’), on the number of components (corresponding to

breaks in the frequency track; ‘c2’ with 2 and ‘c3’ with 3 components), on changes of frequency

direction (� 2 changes ‘c’) or shape (u-shape, ‘u’, u-inverted shape, ‘ui’), on frequency modula-

tion (< 5kHz, ‘f’), on time (5–10 ms, ‘s’, < 5ms, ‘us’), and harmonic elements, ‘h’. It is worth

noting that there are 2 more USV classes, USVs with 4 ‘c4’ and 5 ‘c5’ components. Due to their

infrequency, however, they are excluded from the training task (DEV dataset), but they are

used for the evaluation step (EV dataset).

When using low-SNR recordings, or recordings with faint or short USVs, certain back-

ground noises are sometimes mistakenly detected as USVs. These errors are false positives

(FPs), whereas USVs that are missed are false negatives (FNs). As mentioned above, minimiz-

ing one of these types of errors increases the other one, due to inevitable tradeoffs in signal

detection [47]. FPs are preferable over FNs, as they can be excluded in a follow-up step, and

thus we included FP as a target class. The DEV dataset contained 16958 elements including

6465 FPs in total (Table 1).

When comparing our model with DSQ, the EV data (EV_lab and EV_wild) were manually

labeled into 6 classes: ‘c2’, ‘split’ (pool of ‘c3’, ‘c4’, ‘c5’, and ‘h’), ‘c’, ‘ui’, ‘FP’, and ‘Rise’ (pool of

‘up’, ‘d’, ‘f’, ‘s’, ‘us’, and ‘u’). We created the classes ‘split’ and ‘Rise’ because DSQ reported

them together with ‘c2’, ‘c’, ‘ui’, and ‘FP’ as the output classes. The EV dataset consisted of

4500 elements including FP, of which 1947 and 2615 instances belonged to wild mice and lab-

oratory mice, respectively.

Input images for the classifier. Handcrafted, predetermined features (such as slope,

modulation frequency, number of jumps, etc.) are affected by noise, so the development of a

classifier based on these features increases the error of the classification, as discussed in the

Introduction. Therefore, we developed an image-based supervised classification built on the

STFT of detected elements, followed by a set of filters and a zero-padding method (Fig 1).

After applying the time segmentation obtained from A-MUD, a STFT (NFFT = 750) with a

0.8-overlapped Hamming window is applied to the signals, as shown in Fig 1. The desired

information in the frequency interval of 20 kHz to 120 kHz and in the time interval of detected

elements is extracted (“TF windowing”, Fig 1).

A spectrogram (the squared modulus of the STFT) is often used for the analysis of USVs

and machine learning approaches [16,41]. But the problem is that spectrograms lead to high

computational demands and, because of redundancy, they pose high risks of model overfitting.

Following Van Segbroeck et al. [13], a Gammatone (GT) filter bank [48] was therefore used to

reduce the size of the STFT array along the frequency axis from 251 × 401 to 64 × 401 while

simultaneously maintaining the key spectro-temporal features. It can be interpreted as a pool-

ing operator using a re-weighting step, which is motivated by a comparison with filterbanks

adopted to human auditory perception [49]. Therefore, we adapted the frequency distribution

to make our method applicable to the auditory range of mice.

GT filter bank computations are provided in a MATLAB script by [50]. These computa-

tions were converted into the Python language for the present study. For each filter, a central

frequency and bandwidth are required. The bandwidth and center frequency equations

obtained in MUPET are also employed here (see S2 Text). In MUPET, the midpoint frequency

parameter (Eq 2 in S2 Text) used to calculate the central frequencies was chosen as 75 kHz.

The midpoint frequency can be interpreted as the frequency region where most information is

processed [13]. Because the authors acknowledged that this value may not apply to all mice, we

estimated the optimum value by calculating the median frequency (i.e., 63.5 kHz) from the

FTs of all detected syllables, omitting FPs (S1 Fig). Then, in a pilot test, we updated this value

to 68 kHz to minimize the information loss from USVs. The central frequency was calculated

based only on the DEV data. A more detailed explanation of how to determine these two
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parameters is given in the S2 Text (the Gammatone filterbank section). To further eliminate

the background noise from the images, following MUPET, we calculated the maximum value

between the Gammatone-filtered STFT pixels and the floor noise (10−3). The logarithm of the

output was smoothed using an auto-regression moving-average (ARMA) filter [51] with order

1 (S2 Text). Finally, a median filter [52] was applied to remove stationary noise. The product

of the pre-processing is a smoothed, denoised spectrogram with reduced size of 64�401, called

Gammatone spectrograms (GSs). Fig 2 shows the GSs of five samples of each 12 studied clas-

ses. These samples have the minimum Manhattan distance to other members of each class.

CNN classifier. For our study, we used convolutional neural networks (CNNs), a particu-

lar form of the deep neural network [53] first introduced by [54] and further developed by

[55]. A brief description of how this model works, how we implemented it, and how the DSQ

classifier is retrained is provided in the S2 Text.

We have evaluated our classifier for different values of its hyperparameters and architecture

to achieve the best performance. These parameters were the number of convolution layers (i.e.,

3, 4, and 5), the number of filters in each convolution layer (16, 32, 64, and 96), the kernel size

in the first convolution layer (i.e., (3, 3), (5, 5), and (3, 18)), the drop out percentages (i.e., 0.5,

0.6, and 0.7), the size of dense layers (i.e., 32, 64, and 128), and the learning rate (cosine anneal-

ing learning rate scheduler [44], fixed learning rate = 10−3, and decreasing learning rate =

(10−3 to 5 � 10−6)).

In this study, we used categorical cross-entropy (CCE) [53,56]. For the reduction of the

overfitting [57] L2 regularization [58] is added to CCE. To optimize the loss function, we used

the stochastic gradient descent with Nesterov momentum [59] and we initialized the weights

of the convolution and FC layers using the He-initialization [60]. To reduce overfitting and to

promote the generalizability of the model [61], we performed the augmentation of the training

dataset using random shifts of width and height by 10%. We chose the following architecture

for the classifier based on the comparison of the model performance on DEV_validation data

(S4 Table).

The architecture of our network is shown in Fig 3. In this depiction, e.g., Conv2D (32,

3�18) denotes a 2-dimensional convolution layer with a kernel size of 3�18 and 32 filters. The

FC (128) is a fully connected layer with 128 neurons. After two FC layers, a dropout layer with

the probability of 0.5 is used. This step reduces the risk of overfitting [62].

Imbalanced data distribution. As shown in Table 1, the DEV_train dataset is signifi-

cantly unbalanced, with 69 occurrences of the ‘c3’ and 4849 of the ‘FP’ class, a typical situation

in real applications of machine learning. To investigate how this uneven distribution affects

Fig 3. Classifier architecture. Module 1 consists of the following layers: Batch normalization + ELU + Maxpooling

2�2. Module 2 consists of the following layers: Batch normalization + ELU. Conv2D (32, 3�18) is a 2-dimensional

convolution layer with a kernel size of 3�18 and the number of filters is 32. FC (128) is a fully connected layer with 128

neurons.

https://doi.org/10.1371/journal.pcbi.1010049.g003
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the performance of the classifier, in addition to the original DEV_train data, we fit the model

with resampled DEV_train using three different approaches.

1. In the first approach, the original input data are bootstrapped 10 times to increase the gen-

eralizability and reliability of the classifier [63,64]. Here, we used bootstrap to increase

(decrease) the randomness (variance) during the model development. In each bootstrap

iteration, samples are drawn from the original dataset with repetition, so some samples may

appear more than once or some not at all. Then, we fitted a model for each bootstrapped

dataset. The final model performance was evaluated by the average over the 10 models.

Bootstrapping reduced the ratio of data imbalance from 76 to 4.

2. In the second scenario, all classes, except the classes ‘c3’ and ‘us’, which only have a maxi-

mum data number of 69 and 74, are randomly under-sampled to 124 samples.

3. In the last scenario, all classes, except ‘FP’ and ‘up’, are over- and under-sampled to the

number of samples of the majority class, i.e., 4849. We used the Synthetic Minority Over-

sampling Technique Edited Nearest Neighbor (SMOTEENN) [65] and the number of

neighbors was selected as 3.

To tackle the imbalanced distribution, during the model training we also weighed the loss

function inversely proportionally to the number of class members [66] for the original, boot-

strapped, and under-sampled data using the following equation:

WCCE ¼ �
PC

i¼1
cwi yi log log ðpiÞ; where cwi ¼

N
c � ni

ð1Þ

N and ni are the total number of samples and class members. CCE [53,56] in Eq 4 in the S2

Text was updated to WCCE.

Model ensemble. The weights optimized on a particular dataset are not guaranteed to be

optimal (or even useful) for another dataset. At the same time, different machine-learning

algorithms can lead to different results even for the same dataset. In ensemble methods [45]

the final output is taken from combining the outputs of different models and thus reducing

the variance of the classifier output. Rather than training a model from scratch for different

sets of hyperparameters, we produced 5 trained models during the training of a single model

using Snapshot Ensemble with cosine annealing learning rate scheduler [44]. The use of the

Snapshot Ensemble does not add complexity to the classifier, whereas it does help to take

advantage of ensemble learning without needing to train additional models. The ensembles

were trained consecutively, so the final weights of one model are the initial weights of the next.

In this approach, the CNN weights are saved at the minimum learning rate of each cycle (S2

Fig), which occurs after every 40 epochs. To determine the best combination of these 5 models,

we have cross-validated 4 approaches: 1) using the predictions of the 5th model, 2) using the

average prediction from the last 3 models, 3) combining the predictions of the last 3 models by

Extreme Gradient Boosting Machines (XGBMs) [67], and 4) combining the predictions of all

5 models using XGBMs. In explaining the third and fourth methods, instead of taking the aver-

age of the predictions (used for the second method), the predictions of the last three and five

models of the DEV_validation data together with their ground truth are used for training the

XGBMs. In this case, the final output of the classifier is the output of XGBMs.

Thus, to develop our classifier, these four ensemble methods were applied for each resam-

pling approach namely under-sampling, over-sampling, and bootstrapping, and for the origi-

nal data.

Inter-observer reliability (IOR). Our ground truth (or ’gold standard’) was based on

manual classification by researchers, and we used two independent observers to classify USVs
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and then to evaluate our ground truth, we evaluated the reliability of our ground using class-

wise inter-observer reliability (IOR). The first 100 USVs of 10 sound files were manually classi-

fied into 15 USV types by two of the authors, and both have much experience (Marconi et al.

[6],Nicolakis et al. [7],Zala et al. [32]). We used five arbitrarily selected sound files from the

DEV dataset and all five sound files used for the EV dataset (EV_wild and EV_lab). Both

observers were blind to their respective labels and the original labels used for the development

or evaluation of our classifier. The USV labels were extracted and exported into Excel files. The

exported parameters included the start time, end time, and USV type of each vocalization.

Then, the labels from both observers were aligned according to the start time of each segment.

Thus, vocalizations with the same starting time were compared between the two observers.

Segments that were labeled as false positives by the observers but detected by A-MUD as can-

didate USVs, were included; and segments that were labeled as unclassified (“uc”) were

excluded from the analyses. Segments classified as the same type by both observers were scored

as ’agreement’. Segments that were either detected by only one observer or were classified into

a different class were scored as ’disagreement’. Then, we calculated the percentage of correctly

classified USVs by both observers, reported as IOR. We calculated the IOR for DEV and EV

data for all segments (including FPs), and when including and excluding USVs detected by

only one observer and not the other (i.e., labeled as ‘missed’ USVs). In addition to the original

data, we calculated the IOR and F1-score when excluding ‘s’ and ‘us’ classes, to evaluate how

these two classes affected the IOR, and when pooling the original data into 12, 11, 6, 5, 3, and 2

classes, respectively, to compare the IOR and F1-score with the performance of our classifier.

Results

Comparing detection algorithms

Fig 4 shows the performance (TPR and FDR) of the four detection tools, MUPET, (pretrained)

DSQ, USVSEG, and A-MUD (S1–S4 Data). A-MUD was tested using its default parameters,

whereas the others were implemented using the combination of parameters that provided the

Fig 4. Best performance of four USV detection methods for four recordings. (A) The True Positive Rate shows the ratio of the number of USVs correctly

detected to the total number of manually detected USVs � 100. (B) The False Detection Rate shows the ratio of the number of unwanted sounds (noise)

incorrectly detected as USVs to the total number of detected elements � 100. Error bars represent the estimated variance calculated from the bootstrap

resampling method. MUPET was implemented with the noise-reduction parameter set at 2, minimum syllable duration of 5 ms, and a minimum frequency of

30 kHz [13]. DSQ used its detection with the short rat call_network_v2 network with a high “recall” parameter [16]. USVSEG applied its detection with the

threshold parameter set at 2.5, the minimum gap between syllables at 5 ms, and the minimum length of USVs at 4 ms [29]. A-MUD was run using its default

parameters [30]. The legend shows the four recordings that were compared for each method (i.e., laboratory mice vs wild mice for both DEV (i.e., DEV_1 and

EV_wild_1) and EV datasets (i.e., EV_lab_1 and EV_lab_2) and the mean of these four recordings. DEV_1 and EV_lab_1 are examples of low-SNR recordings

and EV_lab_2 is an example of high-SNR recording.

https://doi.org/10.1371/journal.pcbi.1010049.g004

PLOS COMPUTATIONAL BIOLOGY Capturing the songs of mice with an improved detection and classification method

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010049 May 12, 2022 12 / 32

https://doi.org/10.1371/journal.pcbi.1010049.g004
https://doi.org/10.1371/journal.pcbi.1010049


best results for the chosen dataset. We also compared the performance of these methods using

other parameters (S3 Fig).

A-MUD (with the default parameters) and USVSEG (with the tuned parameters) correctly

detected the largest number of USVs (TPRs were all>97%) whereas MUPET had the lowest

mean TPR (90%) (Fig 4). A-MUD and USVSEG also provided the best performance when

evaluating the detection of USVs from low-SNR recordings (DEV_1 and EV_lab_1, which

include USVs from wild-derived and laboratory mice, respectively). We evaluated the perfor-

mance of USVSEG using recordings of laboratory and wild mice and found that it has a higher

TPR for laboratory mice using any of its settings (S3 Fig). This result is likely because this

method is primarily parameterized and evaluated based on recordings of laboratory mice. In

contrast, A-MUD (with the default parameters) has a high TPR for both types of data, despite

that it was parameterized and evaluated using recordings of wild mice only. The presence of

faint USVs (in EV_wild_1) had little effect on the TPR for most methods, except for MUPET.

The TPR for this method was reduced from 93% to 86% when recordings contained faint

USVs. By comparing FDRs, we found that DSQ had the lowest error rates, though it has fewer

mean TPR than A-MUD (93.6% vs 98.6%). This shows that users need to be aware of the limi-

tations of using these tools (like DSQ) without re-training and fine-tuning.

Visual inspection of the results indicates that the highest variance of TPR (~ 1.2%) and FDR

(~1%) when comparing all the tools occurred in the data EV_lab_1. The TPR of USVSEG

reached A-MUD (98.6%), whereas it underperformed A-MUD in terms of FDR (25.7% vs.

13.7%). Also, by examining the output of USVSEG, we found that most of its FPs are frag-

mented faint USVs, so they do not resemble FPs and, thus, must be manually removed from

this group and assigned to the USVs.

Our results also show that A-MUD and USVSEG underestimated the duration of USVs in

wild mice and overestimated them in laboratory mice (S3 Text). The slopes (and intercepts)

between USV duration estimated by the two tools and observations are not statistically differ-

ent (permutation test, p-values > .05). These results can explain some of the errors in the clas-

sification of USVs because overstimulation (underestimation) may cause the inclusion of

noise (removal of useful information) in the USV segmentations. Further investigation of this

error is beyond the scope of this paper.

Selecting the architecture of the classifier

To develop our classifier, the detected elements were first manually classified into 12 types of

USVs (ground truth). In addition to the original data, three types of resampling approaches

were examined (under-sampling, over-sampling, and bootstrapping) to overcome the uneven

distribution between USV classes. For each type of resampling, four model ensemble methods

were applied to the outputs, which include the predictions of the last Snapshot ensemble (‘sn’),

the average prediction of the last 3 Snapshot ensemble models (‘sn_avg_3’), and a combination

of the predictions of the last 3 (‘sn_xgb3’) and 5 Snapshot ensemble models (‘sn_xgb5’) by

XGBMs. To investigate the effect of snapshot ensemble and bootstrapping approaches on

model performance, we considered the classifier trained using a learning rate of 10−3 (called

‘single model’ in Fig 5) and original data as the baseline. Fig 5 shows the performance of the

models with different combinations of resampling and ensemble methods compared to the

baseline model.

The comparison of F1-score obtained from baseline model (68.9±2.3%) and model trained

using Snapshot ensemble (based on original data) (70.6±1.4%) shows the superiority of Snap-

shot ensemble. In addition, bootstrapping data (without using Snapshot ensemble) increased

the F1-score by about 6% compared to the baseline model. The bootstrap and under-sampling
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methods always had the highest and lowest average F1-score, respectively, regardless of the

ensemble method. Using the last model obtained from the Snapshot ensemble gave the highest

average F1-score (76.6%) with bootstrapping. ‘sn_xgb5’ outperformed the other ensemble

methods for the original data and two other resampling methods (under-sampling and over-

sampling). The last model of the Snapshot ensemble also provided the lowest variation in boot-

strapped data (STD = 1.4%). The differences between the ensemble methods are not large if

used together with bootstrapping.

Neither the under-sampling (F1-scores = 69%) nor the over-sampling (F1-scores = 73.5%)

methods improved the performance of the model compared to the best model from the origi-

nal data (F1-score = 74.5%). While this result is not surprising for the under-sampled case, the

performance of the oversampling case shows that the variance is here not a problem for small

classes. The poor performance of the model fed by under-sampled data can be attributed to

the random discard of samples and thus the deletion of useful information. The over-sampling

method may have failed to improve the model performance because the images produced by

the SMOTEENN are very similar to the original data (S4 Fig) leading to model overfitting. As

a result, the combination of bootstrapped data and the last Snapshot model (hereafter called

BootSnap) provided the best classifier.

Next, we examined the class-wise performance of the best model for each combination of

resampling and ensembling method, including original + ‘sn_xgb5’, under-sampled +

‘sn_xgb5’, over-sampled + ‘sn_xgb5’, bootstrapped + ‘sn’ (BootSnap), and baseline model. As

shown in Fig 6, BootSnap improved the F1-scores of classes ‘c2’, ‘up’, ‘ui’, ‘c3’, and ‘us’ by

Fig 5. Performance of classifiers based on four resampling methods for four types of ensemble models. The single

model performance is only displayed in two types of resampling (including ‘none’ and ‘bootstrapping’), to better

understand the effect of the ‘bootstrapping’ approach on the baseline model (which is based on original data and fixed

learning rate). Using snapshot ensemble-based method, for each type of resampling (including ’none’, ‘under-

sampling’, ‘over-sampling’, and ‘bootstrapping’), four ensemble models have been applied to the outputs last Snapshot

ensemble (‘sn’), the average prediction of the last 3 Snapshot ensemble models (‘sn_avg_3’), and combining the

predictions of the last 3 (‘sn_xgb3’) and 5 Snapshot ensemble models (‘sn_xgb5’) by XGBMs. The mean ± STD of

macro F1-score of test datasets over 8-fold cross-validation are shown.

https://doi.org/10.1371/journal.pcbi.1010049.g005
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around 5% and classes ‘d’, ‘h’, ‘u’, ‘c’, and ‘s’ by around 10% or more. It also improved the

F1-score of classes ‘c’ and ‘c3’ by around 5% and class ‘us’ by around 10%, compared to other

combinations of resampling and ensemble methods. The number of classes ‘c3’ and ‘us’ in the

original data is lower than in other classes, and bootstrapping seems to effectively increase the

number of class members used during the model development. For classes, ‘c2’, ‘d’, ‘f’, and ‘u’,

BootSnap increased the average macro F1-score by around 2%-3%. The classes ‘FP’, ‘h’, ‘ui’,

and ‘up’ in the original + ‘sn_xgb5’ and BootSnapmodels have approximately equal average

macro F1-score. Using the XGB output ensembling for bootstrapped data and SMOTEENN

increased model complexity and did not improve the performance of the classifier.

Somewhat surprisingly, the average macro F1-score of the classes ‘h’ and ‘ui’ did not

increase by bootstrapping, so it seems that the number of these data points is sufficient for our

method. It appears that bootstrapping did not help only for the class ‘s’, but the abundance of

class members of ‘up’ and ‘FP’ in the original data defused the effect of bootstrapping. The

average macro F1-score of BootSnap in the class ‘s’ is about 2% less than in the model fed by

the original data.

BootSnap also reduced the variation in the macro F1-scores for almost all USV classes, and

the largest reduction in variation was for classes ‘u’, ‘c3’, and ‘us’. However, the classes ‘us’ and

‘c3’ had the highest macro F1-score STD in all resampling methods; a result that might be due

to the very low number of samples in these two classes (99 and 93 members respectively).

Evaluating BootSnap for classifying USVs

To evaluate the performance of BootSnap for different types of USVs, we generated a row-wise

normalized confusion matrix (or error matrix) [68] (Fig 7). To prepare this matrix, we used

Fig 6. Performance of baseline model and the best model for each combination of resampling and ensemble

methods. The performance of the baseline model (trained using a learning rate of 10−3 and without the use of

resampling and ensemble methods) and the best model resulting from each ensemble method for different USV classes

are shown. The mean ± STD of the class-wise macro F1-scores is based on the 8-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1010049.g006
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the manual annotations and predicted labels from BootSnap of the DEV_test dataset (of

8-fold).

This matrix shows that non-USVs (‘FP’) were classified with the highest recall (94%), which

indicates that our model can successfully detect most falsely identified signals, and exclude

them from further processing. It also shows that 40% to 92% of different types of USVs were

accurately classified. The lowest recall was the ’us’ class, and more than 40% of ‘us’ were mis-

takenly labeled as class ‘s’ and 14% of the total members were assigned to the class ‘FP’. The

classification of ‘s’ syllables (76%) was much more accurate than ‘us’, and the highest FNR

value of this class (‘s’) belongs to the class ‘us’. The misclassification of these two classes can be

attributed to the use of the USVs length as the only feature used for manual classification,

which is not reliable (’us’ also shows much lower inter-observer repeatability in manual classi-

fication than other classes; S5 Fig). Class ‘c3’ had the second-lowest recall (63%), and most of

its FNs were found with the classes ‘h’ (17%), ‘c2’ (9%), and ‘c’ (5%). These errors were due to

the occurrence of harmonic patterns or faint jumps in the class ‘c3’. The class ‘c’ had the third-

lowest recall (67%), despite having a high number of members. The problem is that ’c’ syllables

were often mis-assigned due to their similarity in the spectrograms to ‘ui’, ‘u’, and ‘up’ types,

which resulted in the highest FN rates in these three classes. Examination of the misclassified

members of the class ‘h’ indicates that they were often assigned to the class ‘f’. The highest por-

tion of FNR (17%) of the class ‘c3’ is found with the class ‘h’. The FNR of the class ‘h’ is 5%

Fig 7. Confusion matrix of a 12-class classification using BootSnap. The main diagonal represents the recall of each

USV class. The other values in each row are FNRs, which indicate the percentage of each class of USVs incorrectly

labeled or classified.

https://doi.org/10.1371/journal.pcbi.1010049.g007
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with class ‘c3’. In other words, the members of the class ‘c3’ are much more likely to be mis-

taken as the class ‘h’ than vice versa. It is because harmonic patterns are frequently seen with

the second element (out of three elements) in the class ‘c3’, whereas the opposite rarely

occurred in our recordings.

As shown in Fig 2, members of the class ‘d’ resemble the members of class ‘f’, which resulted

in the class ‘d’ having the most FNs with the class ‘f’. While there is no distinguished pattern of

FNs distribution in other classes, it is important to note that FNs of the classes ‘c2’ and ‘c3’

mostly occur among themselves. Thus, the performance of the classifier is improved after pool-

ing the ‘c2’ and ‘c3’ classes, as we show next.

Inference classification

Since it is unclear whether and how mice classify USVs, we report the performance of the best

classifier (BootSnap) based on the different number of classes proposed in previous studies

(Table 2). It is important to note that, unlike previous studies, we considered ‘FP’ as a target

class. Since BootSnap was trained using 12 classes, we pooled different types of calls in various

combinations, especially for the most similar types of syllables, to compare its performance

with existing literature treating other numbers of classes. This comparison provides some

insights into the classification of types of USVs by researchers.

The number of USV classes studied here ranged between 2 and 12 different types. As

expected, classifying all 12 classes provided the lowest F1-score (76.6 ± 1.4%). In the next step,

the classes ‘us’ and ‘s’, which differ only in their duration, were pooled to form a new class,

labeled ‘short’. By combining these two classes, we expectedly found a significant increase in

the F1-score (81.1 ± 1.6%). In addition, by combining these two classes, a significant number

of ‘us’ and ‘s’ types, which were mistakenly assigned as each other (Fig 7), were correctly classi-

fied as ‘short’. In the next step, the classes ‘up’, ‘d’, ‘f’, ‘s’, ‘us’, and ‘u’ were pooled to form the

class called ‘Rise’, and the classes ‘c3’ and ‘h’ were included in the class ‘split’. Aside from the

class ‘u’, a common feature between classes pooled into ‘Rise’ was having no changes in their

frequency direction. These classes were mostly false positives in the 12-member classification,

and thus, after pooling, the F1-score significantly increased to 86.7±1.9%, compared to the

11-class classification.

Then, according to Wang et al. [69], the number of classes was reduced to five. We pooled

the classes ‘ui’, ‘c’, and ‘Rise’. These classes have no jumps in their spectrograms and thus the

pooled new class was labeled ‘no-jump’. Also, the classes ‘h’ and ‘c3’, which were pooled in the

previous step into the class ‘split’, were separated again, but unlike the previous steps, the

F1-score decreased (ca. 0.2%). This result might have been due to the separation of classes ‘h’

and ‘c3’ causing a large number of members of the latter class to be classified in the former

Table 2. BootSnap performance in classifying the DEV_test dataset in various combinations of classes.

Basis of classifications # of classes Different combinations of syllable types Adapted from F1-score (%)

original 12 FP up d f s Us u ui c c2 c3 h [32]� 76.7±1.4

Pool ‘s’ and ‘us’ 11 FP up d f Short u ui c c2 c3 h [5,46] 81.1±1.6

- 6 FP Rise ui c c2 split [16] 86.7±1.9

Simple/complex 5 FP no-jump c2 c3 h [69] 86.5±2.2

F- jumps 3 FP no-jump jumps and

harmonics

[10] 95.4±0.6

FP/USV 2 FP USV - 97.1±0.4

�There are more references for 12 classes classification including [46], [5], [7], [6], and [9].

https://doi.org/10.1371/journal.pcbi.1010049.t002
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class (Fig 7). In the next step, all the members of the classes ‘c2’, ‘c3’, and ‘h’ were pooled into

the class ‘jumps and harmonics’ and compared with the classes ‘FP’ and ‘no-jump’. As men-

tioned before, all the FNs of the classes ‘c2’ and ‘c3’ were from each other (Fig 7), and as a

result, pooling them in one class yielded an F1-score of about 95.4 ± 0.6%. Finally, we classified

syllables and ‘FP’ into two separate classes, and this simple binary classification, which was

mostly used in the USV detection step, was able to differentiate USVs from FPs with an

F1-score of 97.1 ± 0.4%. These results again show how the performance of BootSnap depends

upon the type of USV, and that pooling certain classes results in better accuracy. Pooling the

USV classes in various combinations provides future researchers with a basis to compare their

classifiers producing a different number of target classes with BootSnap.

Comparing BootSnap and DSQ: transferability to new datasets

We compared the performance of BootSnap to DSQ, which we consider to provide the state-

of-the-art classification tool, and we used the EV_wild and EV_lab signals (Table 3 and S5 and

S6 Data). As discussed in the Data section, the EV_wild data were obtained from wild-derived

house mice (as in DEV), but under different conditions [6] and EV_lab data were from the

MouseTube dataset (which is used for developing the original DSQ). To fairly evaluate the per-

formance of the DSQ classifier, we have evaluated both the out-of-the-box (pretrained) and

retrained models. In the out-of-the-box model, we have used classifier weights obtained from

the original DSQ paper. In the retrained model, we used the classifier weights obtained from

training the DSQ classifier using DEV data (S2 Text). Note that for BootSnap we have used the

weights that were learned with the original training data (DEV_train). So, we did not retrain

DSQ and BootSnap based on EV data, because this would then be a new learning approach

and not an evaluation of the generalizability of the two approaches. BootSnap predictions were

pooled into 6 classes, which included ‘Rise’, ‘split’, ‘ui’, ‘c2’, and ‘c’ (DSQ reported them as the

output classes), and ‘FP’. DSQ distinguishes FPs from USVs using a post hoc denoising net-

work [16] before the classification step. For comparison, we considered ‘FP’ as one of DSQ’s

final outputs. Since BootSnap was developed based on 8 folds, we used the mode of 8 predic-

tions to compare it with the DSQ output. It is also important to note that A-MUD was used to

detect USVs in both algorithms to provide a fair basis for comparing the classification step in

DSQ and BootSnap (this improved the average detection rate of DSQ by 5%).

As expected, all three methods–BootSnap and pretrained and retrained DSQ–performed

better for the types of mice that were used to train them (wild mice for BootSnap, laboratory

mice for the pretrained DSQ, and wild mice for the retrained DSQ, respectively; Table 3). DSQ

had F1-scores of 41% (pretrained) and 66% (retrained) for wild mice and 49% (pretrained)

Table 3. Comparison of pretrained DSQ (out of box model), retrained DSQ, and BootSnap performances. The performance metric is calculated based on supervised

classification of USVs in EV_wild and EV_lab recordings. The values of macro F1-score (which is the average of F1-score over all classes) and class-wise F1-score

(F1-score computed for each class) together with their resampling-based variance estimation are presented.

Scheme macro F1-score (%) Class-wise F1-score (%)

c c2 split FP Rise ui

pretrained_DSQ

retrained_DSQ

BootSnap

EV_wild
41±1

66±2

67±1.6

0±0

30±8

35±6

44±3

50±3

58±3

56±3

83±1

58±3

50±3

98±1

93±1

82±1

92±1

92±0

12±3

41±5

66±4

pretrained_DSQ

retrained_DSQ

BootSnap

EV_lab
49±1

40±1

64±1

24±3

8±2

38±4

43±3

48±2

93±1

74±1

53±2

84±1

66±2

54±2

77±1

69±2

71±1

61±2

16±4

6±2

28±3

https://doi.org/10.1371/journal.pcbi.1010049.t003
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and 40% (retrained) for laboratory mice. BootSnap had an F1-score of 67% and 64% for wild

and laboratory mice, respectively. Nevertheless, BootSnap outperformed pretrained and

retrained DSQ for both types of mice overall. In terms of class-wise performance, BootSnap
performed better than pretrained DSQ in nearly all the classes (‘c’, ‘c2’, ‘split’, ‘FP’, and ‘ui’,

with higher F1-scores of 32%, 14%, 2%, 43%, and 54% for the EV_wild and higher F1-scores of

14%, 50%, 10%, 11%, and 12% for the EV_lab). The pretrained DSQ outperformed BootSnap
for the EV_lab for one class, ‘rise’. Retrained DSQ outperformed BootSnap in the classes ‘split’

and ‘FP’ in the EV_wild and the class ‘Rise’ in EV_lab. Regarding resampling-based variance

estimation, the classes with a higher F1-score have less variance, which indicates that the result

of that class (e.g., class ‘split’ in EV_lab) is more consistent.

Once again, an important point for developing and assessing the performance of a classifier

is its generalizability, i.e., how well the model works when classifying data not used for the

model development. In reviewing the above results, we observed that both DSQ and BootSnap
had a relatively poor performance in the classification of the classes ‘ui’ and ‘c’. Further exami-

nations showed that the decline in their performance in these classes was due to the significant

distance between new data and their training data. This distance is best seen in the three-

dimensional t-distributed stochastic neighbor embedding (t-SNE) [70] representation (using

the initial dimension of 40, the perplexity of 50, and the number of iterations of 2000) on vec-

torized GSs from both the DEV and EV datasets shown in Fig 8. The F1-scores of ‘ui’ and ‘c’

classes were very low for both BootSnap and DSQ for laboratory and wild mice, still, BootSnap
outperformed DSQ. In the class ‘Rise’, there was large overlap between the USVs of wild and

laboratory mice, which is in contrast with the classes ‘ui’ and ‘c’ (Fig 8C). Thus, the perfor-

mance of both models for this class was much better than for other classes.

As a side remark, not directly linked to the topic of this paper, let us note that considering

the data representation in Fig 8, the data from wild mice (DEV and EV_wild) and laboratory

mice (EV_lab) could be effectively clustered using the samples from the ‘c’ and ‘ui’ classes.

Inter-observer reliability

When calculating the inter-observer reliability (IOR), excluding ‘missed’ segments, for the

DEV dataset (n = 631 segments from 5 soundfiles) (S7 Data), we found ca. 80% agreement

between two independent observers and ca. 84% agreement for the EV dataset (n = 578 seg-

ments from 5 soundfiles) (S8 Data), when including all classes (Tables 4 and S5). The removal

of the ‘missed’ segments from all class combinations has a larger effect on IOR in the DEV

Fig 8. Scatterplots of USVs from three classes comparing different types of data and mice. 3-dimensional t-distributed stochastic neighbor embedding (t-

SNE) representation of the classes (A) ‘c’, (B) ‘ui’, and (C) ‘Rise’ are shown. Colors indicate the dataset to which USVs belong.

https://doi.org/10.1371/journal.pcbi.1010049.g008
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data than in the EV data. This is probably because most of the USVs in the DEV dataset have

low-SNR or they have a lower amplitude compared to USVs in the EV dataset since the EV

dataset includes the EV_lab files which usually have a high-SNR. So, in the EV data, the proba-

bility of error in the detection tool and observer is lower due to the presence of louder USVs.

Excluding the ‘us’ and ‘s’ USVs increased the IOR to 84% for the DEV data (9% of the seg-

ments excluded) and to 86% for the EV data (3.6% of the segments excluded), respectively. A

detailed comparison of the manual classification by the two observers (S5 Fig) showed that the

USV types ‘us’, ‘s’, ‘up’, ‘u’, ‘h’, ‘c’, ‘c3’, ‘c2’, and ‘ui’ in the DEV dataset and ‘us’, ‘s’, ‘up’, ‘h’,

‘c4’, ‘c5’, and ‘ui’ in the EV dataset accounted for the highest disagreement between observers.

The disagreement for the type ‘us’ was likely due to detection error since ‘us’ USVs have<5

ms duration and be easy to be overlooked by another observer in noisy recordings. If there is a

disagreement in the length of USVs (due to faint USVs or background noise) between observ-

ers, an “us” might be classified as ‘s’ and ‘s’ USV might be classified as ‘d’ or ‘us’. We observed

a low number of ‘s’ and ‘us’ types when analyzing the EV dataset, especially within the record-

ings from laboratory mice (9% of ‘us’ and ‘s’ in the DEV dataset compared to 3.6% in the EV

dataset). Additionally, there can be disagreement between the USV types ‘up’ and ‘ui’. This

error is likely to occur due to the threshold of 5 kHz to measure the frequency modulation and

used to distinguish between ‘up’ and ‘ui’. USVs with upward frequency modulation of>5 kHz

(‘up’) often ends with a slight downward frequency modulation, which can be close to 5 kHz.

USVs often have a lower amplitude at the start or the end of the vocalization, and sometimes it

can be difficult to measure the exact frequency modulation in a spectrogram. In summary, the

main misclassifications are between 1) ‘us’ and ‘s’, 2) ‘c3’ and ‘h’, 3) ‘c3’, ‘c2’, and ‘c’, 4) ‘c’, ‘ui’,

‘u’, and ‘up’, and 5) ‘d’ and ‘f’. Usually, the fuzzy transition between the types is the main prob-

lem in manual classification. Thus, although USV syllables are discrete, they are not all very

discrete, especially when the USVs are classified into a large number of classes (e.g., more than

5 according to Table 2). These findings confirm that the main difficulties of BootSnap and the

manual classification are similar.

In our datasets, errors in manual classification were mainly due to (i) high background

noise, (ii) duration or frequency thresholds used to define USV types, (iii) low or high ampli-

tude of USVs (iv), and “noisy” vocalizations with many frequency-jumps emitted by laboratory

mice. The disagreement in the manual classification of certain syllable types highlights the

importance of finding a biologically relevant number of different USV classes, which can be

reliably differentiated with low error rates by different observers.

Similar to the BootSnap F1-score, the IOR (Table 4) and F1-score (Table 5) of IOR data

improved as we pooled the classes into fewer groups. For example, the IOR improved from 6

to 5 classes classification in the DEV (from 84% to 89%) and EV (from 90% to 93%) datasets.

The improved IOR to 89% (DEV) and 94% (EV) after pooling all USVs with or without fre-

quency jumps suggests that this might be a potential classification method, as this is more

Table 4. Interobserver reliability and resampling-based variance estimation for the subsets of DEV and EV datasets. IOR values (in percentage) are given for different

combinations of classes. Two IOR values are presented for each data and each combination of classes: IOR including ‘missed’ segments and IOR excluding ‘missed’

segments.

Interobserver reliability in various combinations of classes (%)

Data Original Excluding ‘s’ and ‘us’ 12 classes 11 classes 6 classes 5 classes 3 classes 2 classes

DEV 79.5±1.6 83.6±1.6 79.5±1.6 80.6±1.6 83.8±1.1 89.2±1.1 89.2±0.8 92.4±0.8

85.6±1.4 87.4±1.4 85.6±1.4 86.8±1.2 90.2±1.2 96±1.2 96±0.9 99.5±0.4

EV 84±1.6 85.6±1.6 88.7±1.4 88.9±1.3 90.1±1.3 93.2±1.1 94.6±1.1 97.9±0.7

85.7±1.4 86.4±1.4 90.5±1.4 90.6±1.2 92±1.2 95±1.2 96.5±0.8 99.8±0.5

https://doi.org/10.1371/journal.pcbi.1010049.t004
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reliable between observers compared to a classification using�12 USV types. Additionally,

manual classification showed an agreement of 92% (DEV) and 98% (EV) when distinguishing

between USVs and ‘FP’ segments. The IOR increased to 99.5% (DEV) and 99.8% (EV) when

excluding ‘missed’ segments.

Table 5 shows that in nearly all combinations of classes, the F1-score of DEV_test data (cal-

culated between ground truth and BootSnap output) is similar to the F1-score of EV_IOR and

higher than DEV_IOR datasets. The F1-score of EV_IOR and DEV_IOR datasets are calcu-

lated between two observers’ labels. It can be concluded that the value of the F1-score generally

increases with the pooling of the classes, and BootSnap classifies USVs with approximately

equal accuracy as humans.

Comparing BootSnap and DSQ: sensitivity to new classes

One of the main performance factors of a classifier is how well it deals with classes for which it

was not trained. The DEV data does not contain samples from two classes, ‘c4’ and ‘c5’. There-

fore, to address this issue, we analyzed the performance of pretrained and retrained DSQ and

BootSnap focusing on these two classes, which were present in EV_wild data.

The results show that BootSnap assigned 68% and 32% of the members of these two classes

to the classes ‘c2’ and ‘c3’, respectively. It is noteworthy that both ‘c2’ and ‘c3’ classes represent

jump-included USVs, which is also a prominent feature of the classes ‘c4’ and ‘c5’. Pretrained

DSQ (retrained DSQ) assigned 3% (0%), 13% (6%), 46% (93%), 3% (0%), and 35% (1%) of the

members of the classes ‘c4’ and ‘c5’ to the classes ‘c’, ‘c2’, ‘c3’, ‘rise’, and ‘ui’, respectively.

Although the class ‘ui’ is relatively similar to the ‘c4’ and ‘c5’ classes based on visual inspection

(S6 Fig), the difference is that there is no jump in the class ‘ui’ to which pretrained DSQ incor-

rectly assigned a significant number of classes ‘c4’ and ‘c5’. Thus, we conclude that BootSnap
uses a measure of similarity more fitted to USVs than pretrained DSQ, assigning new class

samples to the most similar classes in the training data. The retrained DSQ, like BootSnap,

assigned mostly all members of the classes ‘c4’ and ‘c5’ to jump-included classes (‘c2’ and ‘c3’).

Discussion and conclusions

The most important and novel contributions of our analyses include the following. First, we

evaluated the performance and generalizability of four detection methods with each other, and

we also assessed their absolute performance using ground truth. Only a few detection tools

have been compared in previous studies, and they did not use a ground truth, or if so, they had

a very small sample size. For example, the data for our ground truth consisted of 40 times

more samples than the pretrained DSQ detector (i.e., 4000 vs 100), and therefore, our results

should be much more robust. We used recordings from both wild house mice (M.musculus
musculus) and laboratory mice, whereas most USV detection tools are designed (or machines

are trained) using data from one or a few strains of laboratory mice. We found that A-MUD

provided better overall performance compared to other detection methods, and without the

Table 5. F1-score of the DEV_test and subsets of DEV (DEV_IOR) and EV datasets (EV_IOR) for IOR calculation. F1-score values (in percentage) are given for dif-

ferent combinations of classes. The numbers provided for DEV_test is the same as the numbers in Table 4. They are presented here again for easier comparison. Since we

do not have ‘missed’ segments in the DEV_test data, these segments are removed when calculating the F1 score of DEV_IOR and EV_IOR datasets.

Setting F1-score in various combinations of classes (%)

12 11 6 5 3 2

DEV_test 76.7±1.7 81.1±1.6 86.7±1.9 86.5±2.2 95.4±0.6 97.1±0.4

DEV_IOR 73.4±4.5 77.6±4.7 81.8±5.2 80.3±5.6 91±2 99.2±0.4

EV_IOR 82.8±3.5 83.9±2.7 89.7±1.9 84.2±3.6 97±0.6 99.6±0.4

https://doi.org/10.1371/journal.pcbi.1010049.t005
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need for any manual parameter tuning or custom training of the networks. Second, we devel-

oped BootSnap, a new method for USV detection refinement (removing false positives or data

cleaning) and classification, and we compared its performance and ability to generalize to

novel datasets with DSQ classifier. We found that our new classification method outperformed

DSQ–both the pretrained and retrained model–in nearly all aspects, including USVs of both

the wild and laboratory mice. Below we address our main results in greater detail.

Comparing USV detection tools

Our first aim was to compare USV detection methods and evaluate their relative and absolute

performance. We used wild mice, as well as laboratory mice, and we also compared recordings

that had background noise (DEV_1 and EV_lab_1 signals) and faint (EV_wild_1) elements.

We found that A-MUD and USVSEG detected the largest number of actual USVs (TPRs were

all> 97% with A-MUD’s default parameters and with the adaptive optimal parameters of

USVSEG). DSQ and MUPET had the lowest mean TPRs (94% and 90%, respectively), and the

pretrained (out-of-the-box) DSQ detector had the lowest FDR. Although DSQ has a lower

FDR than other methods, it failed to detect ca. 6% of USVs on average, and to reduce FNR,

one would need to train the detection network with labeled data, which would require manu-

ally resizing the window of each segment and its label (noise / USV). Although this can be

done graphically in DSQ, it ultimately requires much manual intervention (user input).

USVSEG had a somewhat higher TPR for laboratory mice using any of its settings (99%)

than wild mice (96%), and this is likely because USVSEG was primarily developed based on

recordings of laboratory mice. A-MUD was parameterized using recordings of wild mice,

though it still had high TPRs for both types of data, indicating that it is more generalizable

than USVSEG. Unlike A-MUD, which was implemented using its default parameters, USV-

SEG has different performances for different parameter inputs. For example, in USVSEG, the

use of the threshold parameter of 2.5, the minimum gap between syllables of 30 ms, and the

minimum length of USVs of 4 ms leads to a significant increase in TPR for wild mouse data

(above 90%) and a decrease in TPR for laboratory mice data (approximately 62%). While

using a gap of 5 ms leads to improved TPR in both data sets. Another point is that the develop-

ers of USVSEG have suggested the user change the threshold parameter between 3.5 and 5.5.

But we obtained the best performance of USVSEG for the wild mice data when the threshold

was set to 2.5. We compared the performance of USVSEG and A-MUD for estimating the

duration of USVs. Both methods underestimated the duration of USVs in wild mice and over-

estimated them in laboratory mice.

We compared how USVSEG and A-MUD detect USVs to better understand how these

methods differ. USVSEG detects USVs using the following steps:

1. it calculates spectrograms using the multitaper method, which smooths the spectrogram

and reduces background noises;

2. it flattens the spectrogram using cepstral filtering, which is performed by replacing the first

three cepstral coefficients to zero and subtracting the median of the spectrogram (flattening

eliminates impulse and constant background noises); and

3. it estimates the level of background noise to make a threshold for the resulting

spectrogram.

In contrast, A-MUD (version 3.2) detects USVs using the following steps:

1. it applies an exponential mean to the spectrograms to reduce the noise contribution;
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2. it estimates the envelope of the spectrograms using 6–8 cepstral DCT coefficients;

3. it computes the segmentation parameters, which are the amplitudes (m1-m3) and frequen-

cies (f1-f3) of the three highest peaks in the spectrum for each time position; and

4. it searches for a segment based on 4 threshold values.

The reason that A-MUD (version 3.2) and USVSEG outperformed MUPET is presumably

that A-MUD uses flattening rather than spectral subtraction for denoising. On the other hand,

it seems that USVSEG in some cases leads to the failure of detection of ultrashort USVs, the

false detection of two USVs as a single USV, the false segmentation of one USV as two or more

USVs.

To summarize, A-MUD provides better overall performance compared to other methods

for detecting USVs in audio recordings and without the need for any parameter tuning or cus-

tom training of the networks. For these reasons, we utilized A-MUD for our subsequent USV

detection.

Comparing USV classification methods

Our second aim was to develop a new method for USV detection refinement and classification

and compare its performance and generalizability with DSQ. To develop the classifier and to

overcome the uneven distribution of classes, we examined three types of resampling

approaches, under-sampling, over-sampling, and bootstrapping. For each type of resampling,

four model ensemble methods were applied to the outputs: the predictions of the last Snapshot

ensemble; the average prediction of the last 3 Snapshot ensemble models; and a combination

of the predictions of the last 3 and 5 Snapshot ensemble models by XGBMs. We found that the

differences between the ensemble methods are not large if used together with bootstrapping.

This result can be interpreted in such a way that the ensemble of the models derived from

bootstrapped data is already compensating for the uneven distribution statistically. We used

bootstrapped data and the last model of snapshot ensembles as the best classifier (’BootSnap’).

The classifier had the highest errors with classifying ultrashort (‘us’) USVs mainly due to their

similarity with ‘s’ USVs. These USVs do not differ qualitatively, they are not actually different

syllable types, as they differ only in length. Another classification error was due to confusing ‘c’

and ‘c3’ syllables. The low recall in classifying ‘c3’ syllable types was likely due to their small

number used for training, and also because some members have a harmonic element, much

like ‘h’ types. The similarity in the spectrograms of ’c’ to other classes as ’ui’, ’u’, and ’up’ classes

lead to errors in the classification of this class. On the other hand, the model classifies classes

‘up’, ‘FP’, and ‘c2’ with a recall higher than 90% and classes ‘ui’, ‘u’ and ’f’ with a recall of more

than 85%. These classes have a relatively larger number of members compared to other classes

(‘us’ and ‘c3’) and their spectrograms are relatively different from each other. The overall

F1-score of the model increased from 76.7% to 81.1% by pooling ‘s’ and ‘us’ classes, which

resulted in a more robust classification.

We compared the performance of BootSnap to the pretrained (out-of-the-box) and

retrained DSQ classifier, which is currently the state-of-the-art classification tool. DSQ is a

user-friendly and straightforward tool for analyzing mouse vocalizations and the user can

train it for their data without the need for programming. In this analysis, however, we exam-

ined its generalizability and its out-of-the-box usability for novel data, as most users currently

use this tool. It uses a 6-member syllable classification that includes ‘Rise’, ‘split’, ‘ui’, ‘c2’, ‘FP’,

and ‘c’ types (i.e., a simpler classification approach based on 6 classes, Table 3). USVs from

wild mice as well as laboratory mice were used to evaluate the generalizability of these two clas-

sifiers. As expected, in the BootSnap classifier (and in the retrained DSQ classifier, as well), the
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closer the data is to the training domain, the better the overall performance. It has 87±1.9%

F1-score for 6-class classification of USVs on DEV_test data (Table 2), but about 65% F1-score

for EV datasets. We found that our new classification method outperformed both pretrained

and retrained DSQ classifiers in nearly all aspects, including USVs of both the wild and labora-

tory mice (macro-F1 score of 66% vs 47% and 49%). Again, it is important to emphasize that

the performance of retrained DSQ was worse than pretrained DSQ for EV_lab. The main rea-

son for its reduced performance is likely due to the absence of laboratory mice in the DEV

data, which would indicate that DSQ is less generalizable than BootSnap. This difference in

performance is mainly because the DSQ classifier was developed using an architecture similar

to our baseline model fed by high-SNR data, compromising its performance with new low-

SNR recordings. In contrast, we used low-SNR data to develop our classifier and aimed to

enhance its ability to generalize. We also used the Ensemble learning method, which is based

on the Snapshot Ensemble and Bootstrapped input data for training the classifier. In Ensemble

learning, base models are combined to prevent the final model from either overfitting or

underfitting, making the model more stable and generalizable. So, the novelty of BootSnap
comes from a clever combination of bootstrapping approach, snapshot ensemble, and Gam-

matone spectrograms.

BootSnap and the retrained DSQ classifier showed better performance than the pretrained

(out-of-the-box) DSQ classifier in assigning new class samples to the most similar classes in

training data. For example, our results show that the BootSnap retrained DSQ classifier

assigned all instances with more than 3 jumps (similar to those not found in the training data)

to similar classes with less than 3 jumps. However, the pretrained DSQ classifier allocated 30%

of these new samples to the class without any jumps. The success of BootSnap as well as the

retrained DSQ classifiers in assigning new class samples is due to the similarity of the data

used for their development and EV_wild data. Our method also detects noise in new data

much more accurately (F1-score of 93±1% vs. about 50±3% for EV_wild and 77±1% vs. 66

±2% for EV_lab), and thus it is more useful for low-SNR data, which is a common challenge

for USVs studies–especially studies aiming to record animals under social contexts. Also, Boot-
Snap requires less user intervention to classify USVs, as for USVs classification using DSQ the

user must first modify the frequency interval of USVs and then apply the classifier on them.

But in BootSnap, after performing the detection by A-MUD, the whole interval of 20 kHz-120

kHz is used for classification. Another advantage in using BootSnap is that it is based on open-

source software (Python) and, thus, it is free of charge, whereas DSQ is based on proprietary

software (MATLAB), and requires the purchase of required licenses.

While completing the final draft of our present manuscript, a new tool, called ’VocalMat’

[71], was published that detects and classifies USVs into 11 categories. The VocalMat classifier

is trained on the USVs of mouse pups (5 to 15 days old) of both sexes of several inbred strains,

including C57BL6/J, NZO/HlLtJ (New Zealand Obese), 129S1/SvImJ, NOD/ShiLtJ (Non-

obese Diabetic NOD), and PWK/PhJ (descendants from a single pair ofMus musculus muscu-
lus). It was developed using USVs in the frequency range of 45 kHz to 140 kHz. After contrast

enhancement and applying several filters, the authors calculated the spectrogram (with the size

of 227�227) of 12954 detected elements. Its classifier is the AlexNet model [72], which was pre-

trained on the ImageNet dataset. Like other studies, this classifier was not compared with

other USV tools and the results on its generalizability were not provided. We evaluated the

performance of VocalMat on its test data and found that the average class-wise accuracy is

79%, whereas BootSnap yielded an average class-wise accuracy of 83% for classifying DEV_test

elements into 11 classes. The differences in the performances of these tools could be due to dif-

ferences in the test data used for evaluation.
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Evaluating ground truth: inter-observer reliability (IOR)

To our knowledge, this is the first time that the class-wise inter-observer reliability (IOR) of

the ground truth, used to assess machine performance, has been evaluated. According to the

IOR results, the agreement between two observers in the DEV and EV dataset was 80±1.6%

and 89±1.4%, respectively. The mentioned values are related to the classification of segments

into 12 classes. The USV classification was based both on A-MUD detections and on segments

that were missed by A-MUD but manually detected by one or both observers. A closer look at

the results reveals that mislabeling members of the classes ‘us’ as ‘s’, ‘ui’ as ‘up’, and ‘c’ as ‘ui’

and to a lesser degree as ‘up’, and vice versa, is very likely. The reason for these errors in man-

ual classification is their sensitivity to the arbitrary threshold (based on duration or modula-

tion frequency) used in their definitions. In addition, the mislabeling can also occur in class

‘h’, as this class may include faint harmonic elements. Hence, part of the classification error of

automated classification can be attributed to the error in the manual labeling of segments.

However, any of these classes can be pooled to improve classification (from 80±1.6% using a

12-class classification to 84± 1.1% using 6-classes or to 92±0.8% using 2-class classification, see

DEV dataset in Table 4), and such pooling also improved the F1-score of BootSnap (F1-score

changed from 77% of 12-class classification to 87% of 6-class and 97% of 2-class classification,

Table 2). Thus, pooling some types of USVs together improves the accuracy of BootSnap,

which is expected since some types are very similar to each other. Consequently, BootSnap can

be expected to perform better when classifying fewer types of syllables and that BootSnap can

classify USVs with an accuracy similar to the results obtained from human inter-observer reli-

ability. It is no surprise that the particular USVs that BootSnap does not classify well are the

same ones that humans fail to show consistency. This result suggests that these types of USVs

could just be human inventions, though it is certainly still possible that mice might treat them

differently.

Outlook on USV classification

Our USV classification method is supervised, as with other models, and if users want to retrain

the algorithm using their own recordings of mice, then manually labeled data must be pro-

vided. And despite the outperformance of BootSnap over DSQ, BootSnap still has difficulties

with classifying new data containing complex USVs (with no jumps), u-inverted, and 1-jump

USVs. Considering that our best model is based on the bootstrap technique, the computation

time increases as the number of bootstrap iterations increases. By default, 10 repetitions are

used for BootSnap, which means that BootSnap calculations will be 10 times slower than simi-

lar models. Because manual labeling of data is a difficult and time-consuming task, it is impor-

tant to be able to apply a model trained on a single data source to other data as well. So, to

further improve the generalizability of a classifier, in addition to implementing the bootstrap

technique, we will increase the number of samples in the future by using more recordings. We

expect that this approach will increase the predictive power of our classifier.

In summary, our ultimate goal was to develop an automated algorithm that provides an

out-of-the-box method whose performance is as good or better than a human observer (man-

ual classification). The human F1-score in EV data was higher than the F1-score of the out-of-

the-box BootSnapmodel (89.7±1.9% vs 67%, respectively). Although BootSnap does not yet

achieve our original aim, this first version provides an advance, as it outperforms other meth-

ods, including the state-of-the-art model (DSQ; 47% pretrained and 49% retrained). This

leaves room for future research.

We emphasize that USVs have been classified by human researchers based on visual inspec-

tion of spectrograms or statistical clustering models, and very little is known about whether or
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how mice can discriminate most of the various types of USVs that have been proposed. Mice

can distinguish frequencies that differ by only 3% [73], and they can be trained to discriminate

between simple versus complex USVs, and among certain variations in shape and frequency

[74]. They can be trained to discriminate among USVs depending upon their spectro-temporal

similarity, and they discriminate complex calls and up-shapes, but not u-shaped calls [75].

Mice fail to discriminate between synthetic sounds with different shapes, i.e., ‘up’- vs. down-

shapes [76]; however, the shapes of these synthesized sounds were very different from mouse

USVs, and may have lacked characteristics that mice use for discrimination. More studies are

needed to describe USVs produced in different contexts, and also determine whether mice can

discriminate among different types of USVs. Such perception studies should include record-

ings with normal ranges of variation of syllable types within and between each category (i.e.,

mice should be better able to discriminate between- versus within-syllable type variation).

Until such studies are conducted, the various types of USVs that have been proposed would be

more accurately labeled as USV variants or putative call types.
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MUPET stand for min-frequency and max-frequency. Min-l in USVSEG, MUPET, and

A-MUD stands for min-length.
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S3 Table. Definition of classes used in the labeling. Note that the number of members differs

before and after down-sampling. Fe is the end frequency, Fs is the start frequency, Fmax is the

maximum frequency, and Fmin is the minimum frequency. The number of members of each

class corresponds to the DEV dataset.
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S4 Table. Performance of the classifier on DEV_validation data using various hyperpara-

meters.
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S5 Table. The number of samples of each class of the observer 1 in DEV and EV subsets for

IOR calculation. In the DEV sub-dataset (n = 5 soundfiles), there are very few samples, i.e., 2

from the classes ‘c’ and ‘c4’, 4 from the class ‘c3’, 5 from the class ‘u’ and 9 from the class ‘h’,

thus the results of these classes are not very reliable. We found similar results in the EV sub-

dataset (n = 5 sound files) where there are very few samples from the classes ‘us’, ‘d’, ‘c’, and

‘c5’.
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ters) and A-MUD with the observed USV duration.
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S1 Fig. (A) Distribution of USVs Frequency Track (FT) values, extracted by A-MUD. The

FT values are related to all detected syllables, omitting false positives. (B) The frequency

response of 32 Gammatone filters (we have used 64 filters, but for simplicity 32 filters are plot-

ted here) at the frequency range of 20 kHz to 120 kHz. (C) Two examples of the USVs spectro-

gram before (top row) and after applying the Gammatone filter and post-processing step

(bottom row). This image shows that by applying the preprocessing steps on the spectrogram,

the important information of the USVs is not lost, even though the size of the images is

reduced from 251 × 401 to 64 × 401.

(TIF)

S2 Fig. Schedule scheme used for the learning rate. Using this scheme of the learning rate,

the final weights of the model at every 40 epochs are the initial weights of the model in the next

epoch. In this approach, the CNN weights are saved at the minimum learning rate of each

cycle, i.e., at every 40 epochs.

(TIF)

S3 Fig. (A) true positive rate (TPR) and (B) false detection rate (FDR) of detection tools. In

the main text, we compared the performance of 4 USV detection tools (USVSEG, A-MUD,

DSQ, and MUPET) in a setting (i.e., input parameters) of which the selected parameters lead

to their best average performance for the four-given data (DEV_1, EV_wild_1, EV_lab_1, and

EV_lab_2). Here, we compared the performance of these methods using all the combinations

used for their parameters (S2 Table). If we want to compare the best performance of each

detection tool with the best performance of others, A-MUD and with a slight difference, USV-

SEG are in the first and second places, followed by DSQ and MUPET.

(TIF)

S4 Fig. Samples produced by Synthetic Minority Oversampling Technique Edited Nearest

Neighbor (SMOTEENN). In the model design section, we used various approaches to deal

with the problem of the imbalanced datasets, including using original, down-sampled, boot-

strapped, and over-sampled data. The following figure presents the over-sampled data by

SMOTEENN presented. The first column from the left is the original instance and the next

columns are the resampled samples. The first, second, third, and last rows are from the classes

‘c’, ‘c3’, ‘c2’, and ‘h’, respectively. The images produced by the SMOTEENN are very similar to

the original data, so, compared to the original data, this method did not help to improve the

classifier performance.

(TIF)

S5 Fig. Agreement between two observers for two subsets of (A) model development

(DEV) and (B) evaluation (EV) data. ‘missed’ segments are elements that are manually

detected by only one observer. Both figures show high disagreement between the observers

for both data in the ‘us’ and ‘h’ classes. In more detail, the amount of reliability in the DEV

data in ‘c3’ and ‘u’ classes is very low. Differently, in the EV data, the reliability is less than

other classes in ‘c4’ and ‘c5’ classes.

(TIF)

S6 Fig. Samples of USVs from the classes ‘c4’ and ‘c5’, USVs with 4 and 5 jumps, respec-

tively. As mentioned in the results section (in the main text), the performance of a model is

important when dealing with a new class. Because there was no sample of the ‘c4’ and ‘c5’ clas-

ses in the DEV data, we compared the output of the BootSnap and DSQ methods when the

two classes were in the EV data. The following figure shows examples of members of these two

classes in EV_wild data. BootSnap assigned 68% and 32% of the total members of these two
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classes to the 2 and 3-jump included USVs, respectively. DSQ assigned the members of the

classes ‘c4’ and ‘c5’ mostly to the 2 and 3-jump included USVs and ‘ui’. Although the class ‘ui’

might be relatively similar to the ‘c4’ and ‘c5’ classes based on visual inspection, there is no

jump in this class.

(TIF)

S1 Data. Data of 4 studied detection methods (USVSEG, MUPET, A-MUD, and DSQ) on

DEV_1 recording.

(XLSX)

S2 Data. Data of 4 studied detection methods (USVSEG, MUPET, A-MUD, and DSQ) on

EV_wild_1 recording.

(XLSX)

S3 Data. Data of 4 studied detection methods (USVSEG, MUPET, A-MUD, and DSQ) on

EV_lab_1 recording.

(XLSX)

S4 Data. Data of 4 studied detection methods (USVSEG, MUPET, A-MUD, and DSQ) on

EV_lab_2 recording.

(XLSX)

S5 Data. Data of EV_wild segments classification by BootSnap and pretrained and

retrained DSQ compared to manual labels.

(XLSX)

S6 Data. Data of EV_lab segments classification by BootSnap and pretrained and retrained

DSQ compared to manual labels.

(XLSX)

S7 Data. Data of interobserver reliability for the subsets of DEV datasets.

(XLSX)

S8 Data. Data of interobserver reliability for the subsets of EV datasets.

(XLSX)
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