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Abstract

Objective

High rates of albuminuria are observed among HIV-infected individuals on stable antiretrovi-

ral therapy (ART). Though pro-inflammatory and pro-fibrotic responses are described as

components of albuminuria in the general population, it is unclear how these responses are

associated to albuminuria in ART-treated chronic HIV. We investigated the relationship of

monocyte subsets and urine inflammatory and fibrotic biomarkers to albuminuria in ART-

treated HIV-infected participants.

Design and Methods

Cross-sectional analyses were performed on Hawaii Aging with HIV-cardiovascular disease

study cohort participants who were required at entry to be�40 years old and on ART�3

months. Monocyte subpopulations were determined in banked peripheral blood mononu-

clear cells (PBMC) using multi-parametric flow-cytometry. Entry random urine samples

were assessed for albumin-to-creatinine ratios (UACR). Urine samples were measured for

inflammatory and fibrotic biomarkers using Luminex technology.

Results

Among 96 HIV-infected subjects with measured UACR (87%male, 59% Caucasian, and

89% undetectable HIV RNA with median CD4 of 495.5 cells/μL), 18 patients (19%) had

albuminuria. Non-classical (CD14low/+CD16++) monocytes were significantly elevated in

subjects with albuminuria (p = 0.034) and were correlated to UACR (r = 0.238, p = 0.019).

Elevated non-classical monocyte counts were significant predictors of worsening albumin-

uria, independent of traditional- and ART-associated risk factors (β = 0.539, p = 0.007).

Urine TGF-β1 and collagen-IV were significantly higher in albuminuric compared to non-
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albuminuric participants (TGF-β1; p = 0.039 and collagen-IV; p = 0.042). Urine TGF-β1 was

significantly correlated with non-classical monocyte counts (r = 0.464, p = 0.017).

Conclusion

Alterations in monocyte subpopulations and urine pro-fibrotic factors may play a role in kid-

ney dysfunction during chronic HIV infection and warrants further study.

Introduction
Albuminuria is a strong and independent risk factor for renal and cardiovascular disease
among the general and HIV-infected populations [1–7]. There is a higher prevalence of albu-
minuria observed among HIV-infected individuals (4–20%) as compared to those who are
uninfected (2%), but mechanisms driving this remain poorly understood [5, 6, 8, 9]. Prior to
the introduction of antiretroviral therapy (ART), albuminuria and other renal complications
that occurred in individuals infected with HIV were commonly caused by HIV-associated
nephropathy [10, 11]. With the widespread use of ART, etiologies of albuminuria have shifted
to comorbid diseases such as hypertension and diabetes mellitus, as well as side effects of ART
including Tenofovir [12–17]. Persistent pro-inflammatory and pro-fibrotic responses and
immune dysfunction driven by chronic HIV infection during suppressive ART may also con-
tribute to the prevalence of albuminuria in HIV-infected individuals [18–24].

Recently, monocytes have been implicated to play a role in the development of non-AIDS
comorbidities during chronic HIV infection [25–30]. Through the advancement of flow-
cytometry, various monocyte subpopulations have been phenotyped and are traditionally char-
acterized into classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical
(CD14+/lowCD16++) subsets [31, 32]. We recently reported a novel CD14+/lowCD16- subpopu-
lation termed transitional monocytes and described this subset to be associated with increased
carotid intima media thickness in HIV-infected individuals [33]. Monocytes contribute to both
the production of pro-inflammatory and pro-fibrotic cytokines, and may be major mediators
of HIV-associated inflammation and fibrosis [34–38].

Utilizing clinical data and banked blood and urine specimens from a natural history study
of individuals with chronic HIV on ART, we investigated the relationship of blood monocyte
subsets and urine inflammatory and fibrotic biomarkers to albuminuria in ART-treated HIV-
infected participants. We sought to assess the role of monocyte-associated inflammation and
fibrosis in the pathogenesis of albuminuria during chronic HIV infection.

Methods

Study participants
This retrospective study was conducted utilizing entry data and specimens from the Hawaii Aging
with HIV Cohort-Cardiovascular Disease (HAHC-CVD) study, a 5-year natural history study
investigating the role of chronic HIV infection in the development of CVD among HIV-infected
participants on suppressive ART. Inclusion criteria into the cohort required documented HIV-
positive status, age�40 years, and use of combination ART�3 months. Extensive HIV immuno-
logic and cardio-metabolic assessments were available from this cohort and further details have
been previously described [39]. IRB approval was obtained from the University of Hawaii Human
Studies Program (CHS #16476), and all participants provided written informed consent prior to
enrollment into the HAHC-CVD study. Furthermore, at the time of entry into the cohort, all
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participants gave written informed consent to banking of specimens and use of clinical data and
specimens for future studies related to HIV and its complications. All banked specimens and data
collected from participants were anonymized and de-identified prior to analysis.

Random urine collections were obtained from participants upon entry into the
HAHC-CVD study and urine albumin-to-creatinine ratios (UACR) were calculated. UACR
was determined by immunotubidimetric assay using a Roche/Hitachi Modular P analyzer by a
commercial College of American Pathologist (CAP)-certified laboratory (Diagnostic Labora-
tory Services Inc.). Albuminuria was defined as a UACR�30mg/g and was used to separate
participants into 2 groups, with or without albuminuria.

Peripheral blood mononuclear cell isolation and flow cytometry assay
Peripheral blood mononuclear cell (PBMC) isolation and flow cytometry assay was done as pre-
viously reported [30]. In brief, whole blood was drawn into EDTA tubes and cells were processed
for PBMC isolation within one hour of collection and cryopreserved. Banked cryopreserved
PBMCs were thawed and washed with warmed AIM-V liquid media (Invitrogen). Cells were
then surface-stained with CD3, CD14, CD16, CD56, CD19, CD20, HLA-DR antibodies, and
with Live/Dead fixable yellow dead cell stain (YARD). Data was acquired on a custom 4-laser BD
LSRFortessa Cell Analyzer and all compensation and gating analyses were performed in FlowJo
analytical software (gating strategy previously shown in figure 1 in reference [30]). Percentages of
classical, intermediate, non-classical, and transitional monocyte subsets were determined based
on CD14 and CD16 staining and absolute numbers of each subset were calculated fromWBC
and monocyte percent obtained from available clinical CBC performed on each participant.

Detection of urine inflammatory and fibrotic biomarkers by Luminex
Random urine samples from participants collected at HAHC-CVD study entry were aliquoted
and cryopreserved. Banked cryopreserved urine samples from randomly selected subjects dem-
onstrating a range of UACR<30mg/g, in which all 78 participants were put into ascending
order according to their measured UACR and every 4th participant was chosen to be included
in the urine biomarker assessment (for a total of 19), were tested along with all participants
with a UACR�30mg/g (n = 18) for urinary inflammatory and fibrotic biomarkers. Cryopre-
served urine aliquots were thawed and prepared following manufacturer’s guidelines for each
kit. Each sample was measured in duplicate. Urine MCP-1 and IL-18 were measured using the
Bio-Plex Pro™ RBMHuman Kidney Toxicity Panel 1 (Bio-Rad). Urine TGF-β1, TGF-β2, and
TGF-β3 were measured using the Bio-Plex Pro™ TGF-β Assay (Bio-RAD). Urine IP-10, Colla-
gen IV, and TIMP-1 were measured using the Milliplex1 MAP Human Kidney Injury Mag-
netic Bead Panel 1 (EMDMillipore). Urine Cystatin C was measured using the Milliplex1

MAP Human Kidney Injury Magnetic Bead Panel 2 (EMDMillipore). Data was acquired on a
Luminex 200™ analyzer (Luminex) and data analysis was done using Bio-Plex Manager™ soft-
ware (Bio-Rad). Net median fluorescent intensity (MFI) was calculated (MFI value minus
background value) and average net MFI of duplicate samples was determined.

Statistical analysis
Comparisons of clinical and laboratory characteristics between groups were calculated using
Mann-Whitney U and Chi-squared tests for continuous and categorical variables, respectively.
UACR, absolute counts of cellular immune parameters, and net MFI averages of urine bio-
markers were all log-transformed prior to correlation and linear regression analyses to attain
normal distribution. Pearson product-moment correlation and multivariable linear regression
were utilized to assess associations. In assessing the relationship between cellular immune
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parameters and UACR, cellular compartments with a Pearson product-moment correlation
significant at p<0.05 were further examined in a separate multivariable linear regression
model with UACR as the dependent variable, adjusting for age, hypertension, HOMA-IR, total
cholesterol/HDL cholesterol ratio, and current use of Tenofovir and/or Ritonavir. A two-sided
probability of p-value<0.05 was considered statistically significant. Statistical analyses were
performed using the SPSS statistical program (SPSS Statistics 22, Armonk, NY).

Results

Characteristics of participants
On baseline evaluation, 96 HIV-infected participants on stable ART with UACR and monocyte
subset analyses were available. Of these participants, 18 (19%) had albuminuria with the majority
[16 participants (89%)] assessed to have moderately increased albuminuria (UACR 30-300mg/g)
with only 2 (11%) having severe albuminuria (UACR>300mg/g). Demographics and clinical
parameters are summarized in Table 1. Rates of viral suppression and CD4 T cell counts were
comparable between the HIV-infected groups with or without albuminuria. HIV-infected partic-
ipants with albuminuria were older, had higher rates of hypertension and use of angiotensin-con-
verting enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARB), had higher blood
glucose levels at 120 minutes during oral glucose tolerance test (OGTT), and had higher insulin
resistance measured by homeostatic model assessment-insulin resistance (HOMA-IR); but did
not differ in rates of type 2 diabetes mellitus or use of Tenofovir or Ritonavir.

Elevated non-classical (CD14+/lowCD16++) monocytes are associated
with albuminuria in treated HIV-infected participants
T cell and monocyte subset percentages and counts were compared between participants with
and without albuminuria. Non-classical monocyte counts were significantly elevated in HIV-
infected participants with albuminuria as compared to HIV-infected participants without albu-
minuria (Table 2). No significant differences were seen in the T cell subsets counts or in the
other monocyte subsets counts. Of the cellular parameters assessed, UACR significantly corre-
lated with non-classical monocyte counts (r = 0.238, p<0.05), but not with CD4 T cells
(r = 0.070), CD8 T cells (r = 0.150), activated CD8 T cells (r = -0.039), or with classical
(r = 0.112), intermediate (r = 0.067), or transitional monocytes (r = 0.127).

We assessed the predictive value of non-classical monocytes in a multivariable linear regres-
sion model, adjusting for traditional risk factors of age, hypertension, HOMA-IR, total choles-
terol/HDL cholesterol ratio, and ART-associated risk factors of current use of Tenofovir and/
or Ritonavir (Table 3). Univariable linear regression analyses of risk factors predicting UACR
are as follows: Age, B = 0.017, p = 0.035, C.I. = 0.001–0.033; Hypertension, B = 0.463, p<0.001,
C.I. = 0.235–0.691; HOMA-IR, B = 0.077, p = 0.010, C.I. = 0.019–0.136; Total cholesterol/HDL
cholesterol ratio, B = 0.067, p = 0.046, C.I. = 0.001–0.132; Current use of Tenofovir, B = 0.215,
p = 0.131, C.I. = -0.066–0.496; Current use of Ritonavir, B = -0.027, p = 0.827, C.I. = -0.274–
0.220. We conclude that elevation of non-classical (CD14low/+CD16++) monocytes significantly
predict worsening albuminuria in HIV-infected participants on stable ART, independent of
traditional- and ART-associated risk factors.

Elevated non-classical (CD14+/lowCD16++) monocytes are associated
with elevated urine TGF-β1 in ART-treated HIV-infected participants
Urinary inflammatory and fibrotic biomarkers were assessed in all 18 participants with albu-
minuria and in 19 randomly selected participants out of the total of 78 participants without
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Table 1. Comparison of demographic and clinical parameters of HIV-infected participants on ART with and without albuminuria(a).

Demographic and Clinical Parameters

Parameter Patients with albuminuria Patients without albuminuria p-value

n = 96 n = 18 n = 78

Age, years 57 [49, 62.5] 50 [45, 55] 0.013*

Male, n (%) 16 (88.9%) 67 (86.0%) 1.000

Race, n (%)

Caucasian 12 (66.7%) 45 (57.7%) 0.665

Other races 6 (33.3%) 33 (42.3%) 0.665

History of smoking, n (%) 12 (66.7%) 49 (63.6%) 1.000

Body mass index, kg/m2 25.9 [21.8, 28.1] 25.7 [23.8, 27.9] 0.789

Systolic blood pressure, mmHg 124.5 [119.8, 141.3] 120.0 [111.3, 129.0] 0.043*

Diastolic blood pressure, mmHg 80.5 [75.0, 84.3] 74.0 [68.0, 80.0] 0.012*

History of hypertension, n (%) 12 (66.7%) 24 (30.8%) 0.010*

Current use of ACE inhibitors and/or ARB (b), n (%) 9 (50%) 12 (15%) 0.004**

Fasting glucose, mg/dL 91.5 [80.5, 96.75] 87.0 [81.0, 94.0] 0.366

Fasting insulin, μIU/mL 9.4 [4.7, 13.5] 5.9 [3.65, 10.1] 0.060

OGTT (c) blood glucose @ 120 min, mg/dL 113.0 [96.0, 138.0] 97.5 [73.3, 115.5] 0.031*

Metabolic syndrome (d), n (%) 5 (27.8%) 15 (19.2%) 0.629

Type 2 diabetes mellitus, n (%) 3 (16.7%) 7 (9.0%) 0.593

HOMA-IR (e) 2.6 [1.2, 3.4] 1.2 [0.8, 2.2] 0.017*

eGFR CKD-EPI (f), mL/min/1.73 m2 72.8 [63.8, 101.1] 86.6 [76.2, 99.3] 0.071

UACR (g), mg/g 63.35 [44.40, 156.15] 4.95 [3.38, 8.92] <0.001**

Blood Urea Nitrogen, mg/dL 13.5 [11.0, 18.0] 13.0 [10.0, 16.3] 0.327

Serum creatinine, mg/dL 1.1 [0.9, 1.3] 1.0 [0.9, 1.1] 0.168

Serum cystatin C, mg/L 0.80 [0.72, 0.90] 0.74 [0.67, 0.82] 0.137

Total cholesterol, mg/dL 180.0 [139.8, 267.0] 174.5 [150.8, 192.3] 0.383

LDL cholesterol, mg/dL 119.0 [75.3, 180.5] 104.5 [83.8, 124.3] 0.315

HDL cholesterol, mg/dL 36.0 [31.0, 55.3] 41.0 [32.5, 49.0] 0.683

Triglycerides, mg/dL 116.5 [92.8, 171.8] 109.5 [75.8, 161.5] 0.406

Total cholesterol/HDL ratio 4.14 [3.48, 6.58] 4.09 [3.46, 5.29] 0.546

HIV RNA < 50 copies/mL, n (%) 16 (88.9%) 68 (87.2%) 1.000

Current use of Tenofovir, n (%) 16 (88.9%) 58 (74.3%) 0.312

Current use of Ritonavir, n (%) 7 (38.9%) 29 (37.2%) 1.000

a. Median values shown with [median Q1, median Q3] or frequency, n with (%).

*p <0.05

**p <0.01

b. Angiotensin-Converting Enzyme Inhibitor and Angiotensin II Receptor Blocker

c. Oral Glucose Tolerance Test

d. Metabolic syndrome was defined as having 3 or more of the following: Abnormal obesity, high triglycerides, low HDL cholesterol, high blood pressure,

or high fasting glucose.

e. Homeostatic Model Assessment of Insulin Resistance was calculated by: HOMA-IR = [(fasting glucose/18) × fasting insulin]/22.5

f. Estimated Glomerular Filtration Rate was calculated using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) formula: eGFR (if serum

creatinine � 0.9 mg/dL) = 141 x (Serum Creatinine (mg/dL)/0.9)-0.411 x 0.993Age; eGFR (if serum creatinine > 0.9 mg/dL) = 141 x (Serum Creatinine (mg/

dL)/0.9)-1.209 x 0.993Age

g. Urine Albumin/Creatinine Ratio was calculated by: UACR (mg/g) = Urine Albumin (mg/dL)/Urine Creatinine (g/dL) � Albumin excretion in mg/day

doi:10.1371/journal.pone.0153758.t001
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albuminuria. Between the 19 participants selected for urine biomarker analyses and the 59 par-
ticipants that were not selected, there were no statistical differences observed in demographic,
clinical, or immunological parameters measured including age, history of hypertension,
HOMA-IR, and UACR. HIV-infected participants with albuminuria had significantly higher

Table 2. Comparison of immunological parameters of HIV-infected participants on ART with and without albuminuria(a).

Immunological Parameters

Parameter Patients with albuminuria Patients without albuminuria p-value

n = 96 n = 18 n = 78

Nadir CD4+ T cells, cells/μL 92.0 [33.0, 198.25] 170.0 [39.5, 249.5] 0.277

CD4+ T cells, cells/μL 496.50 [374.5, 554.5] 495.50 [329.75, 635.75] 0.767

CD4+ T cells, % 24.0 [21.0, 35.0] 30.0 [22.0, 37.0] 0.247

CD8+ T cells, cells/μL 885.5 [533.0, 1160.0] 693.0 [552.0, 946.5] 0.177

CD8+ T cells, % 49.0 [44.5, 54.3] 43.0 [34.5, 50.0] 0.070

Activated CD8+ T cells (CD38+), cells/μL 73.2 [53.7, 127.7] 77.8 [46.6, 123.8] 0.962

Activated CD8+ T cells (CD38+), % 11.2 [7.7, 14.0] 11.0 [7.9, 16.8] 0.584

Total monocytes, cells/L 4.5x108 [3.7x108, 6.1x108] 3.9x108 [3.2x108, 5.0x108] 0.070

Total monocytes, % 8.0 [7.0, 10.0] 8.0 [7.0, 9.0] 0.875

Classical (CD14++CD16-) monocytes, cells/L 3.4x108 [2.6x108, 4.8x108] 3.0x108 [2.2x108, 4.0x108] 0.110

Classical (CD14++CD16-) monocytes, % 75.4 [68.0, 80.6] 75.9 [70.3, 81.2] 0.645

Intermediate (CD14++CD16+) monocytes, cells/L 8.2x106 [2.3x106, 1.5x107] 5.0x106 [2.3x106, 1.2x107] 0.344

Intermediate (CD14++CD16+) monocytes, % 1.3 [0.5, 3.9] 1.2 [0.5, 2.8] 0.820

Non-classical (CD14+/lowCD16++) monocytes, cells/L 2.7x107 [2.0x107, 5.5x107] 2.0x107 [1.3x107, 3.0x107] 0.033*

Non-classical (CD14+/lowCD16++) monocytes, % 7.0 [4.0, 8.9] 5.0 [3.7, 8.4] 0.226

Transitional (CD14+CD16-) monocytes, cells/L 6.8x107 [5.2x107, 1.1x108] 5.8x107 [4.5x107, 8.2x107] 0.116

Transitional (CD14+CD16-) monocytes, % 15.3 [10.6, 19.6] 15.1 [10.6, 20.2] 0.777

a. Median values shown with [median Q1, median Q3]

*p <0.05

doi:10.1371/journal.pone.0153758.t002

Table 3. Multivariable linear regression analysis(a) of non-classical (CD14+/lowCD16++) monocyte counts as a predictor of albuminuria in HIV-
infected participants on ART while adjusting for risk factors (n = 96).

Unstandardized
Coefficients

Standardized β-value p-value 95% C.I. for B-value

B-value Std. Error Lower Upper

Non-classical Monocytes 0.539 0.197 0.259 0.007** 0.148 0.930

Age 0.017 0.008 0.212 0.038* 0.001 0.034

Hypertension 0.260 0.123 0.213 0.037* 0.017 0.504

HOMA-IR 0.026 0.028 0.234 0.017* 0.012 0.125

Total Cholesterol/HDL ratio 0.027 0.030 0.084 0.366 -0.032 0.087

Current use of Tenofovir 0.357 0.132 0.259 0.008** 0.094 0.621

Current use of Ritonavir 0.024 0.113 0.020 0.834 -0.201 0.248

a. The dependent variable for the performed multivariable linear regression model was urine albumin/creatinine ratio (UACR) and was log-transformed

prior to analysis. The non-classical monocyte subset count was log-transformed prior to analysis and was inputted as a predictor variable for albuminuria

to assess its significance in a multivariable model.

*p <0.05

**p <0.01

doi:10.1371/journal.pone.0153758.t003
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urinary levels of fibrotic markers TGF-β1 and collagen IV (Table 4). There were no significant
differences observed in measured urine inflammatory biomarkers between groups.

We assessed the correlation between the measured urine inflammatory and fibrotic biomark-
ers with non-classical monocytes. Urine TGF-β1 was significantly correlated with non-classical
monocytes (r = 0.464, p<0.05), while IP-10 (r = 0.008), MCP-1 (r = -0.141), IL-18 (r = -0.037),
Cystatin C (r = -0.129), TGF-β2 (r = 0.063), TGF-β3 (r = -0.189), collagen IV (r = 0.032), and
TIMP-1 (r = 0.029) did not show significant correlations. No correlations were seen between
other monocyte subsets or T cell subpopulations and urine inflammatory or fibrotic biomarkers.
We also assessed the correlations among the urine inflammatory and fibrotic biomarkers. TGF-
β1 strongly correlated with TGF-β2 (r = 0.752) and TIMP-1 (r = 0.424). Furthermore, TGF-β2
correlated with TGF-β3 (r = 0.389), collagen IV (r = 0.617), and TIMP-1 (r = 0.730). Of the urine
pro-inflammatory biomarkers, only urine MCP-1 correlated with TGF-β2 (r = 0.520), TGF-β3
(r = 0.362), collagen IV (r = 0.558), and TIMP-1 (r = 0.592).

Discussion
Our study is the first report showing that albuminuria in HIV-infected individuals on stable
ART is associated with increased levels of non-classical (CD14low/+CD16++) monocytes, inde-
pendent of traditional and ART-associated risk factors. Treated HIV-infected individuals with
albuminuria excrete higher levels of urine TGF-β1 and collagen IV as compared to those with-
out albuminuria, and increased non-classical monocytes are associated with increased urine
TGF-β1. Furthermore, urinary levels of TGF-β1 are strongly associated with other urine
fibrotic markers. It is important to note that although only 89% of the participants were virally
suppressed, when participants with viral loads were excluded, all significant observations stated
remained significant.

HIV-infected individuals on stable ART show higher rates of albuminuria, as compared to
the general population. Chronic low-grade inflammation may contribute to the development

Table 4. Comparison of measured urine biomarkers of HIV-infected participants on ART with and without albuminuria(a).

Urine Biomarkers

Biomarker(a) Patients with albuminuria Patients without albuminuria p-value

n = 37 n = 18 n = 19

MCP-1(b) 80.0 [22.3, 178.9] 132.0 [7.3, 214.8] 0.663

IP-10(c) 5.3 [0.4, 17.3] 3.0 [0, 14.8] 0.274

IL-18(d) 4.8 [0.9, 17.4] 8.5 [0, 19.0] 0.604

Cystatin C 88.0 [19.9, 240.4] 68.0 [6.8, 125.3] 0.181

TGF-β1
(e) 14.4 [5.8, 33.8] 3.5 [0, 11.5] 0.039*

TGF-β2 12.8 [5.1, 20.5] 7.5 [5.0, 21.3] 0.503

TGF-β3 8.1 [6.9, 22.1] 7.3 [3.3, 17.3] 0.152

Collagen IV 1160.9 [565.9, 1470.1] 702.0 [344.5, 888.5] 0.042*

TIMP-1(f) 678.8 [235.3, 1420.2] 516.5 [171.5, 751.3] 0.178

a. Medians of net median fluorescence intensity (MFI) averages are shown with [median Q1, median Q3].

*p <0.05

b. Monocyte Chemotactic Protein-1 (CCL2)

c. IFN-γ-Inducible Protein 10 (CXCL10)

d. Interleukin-18

e. Tumor Growth Factor-β

f. Tissue Inhibitor of Metalloproteinase-1

doi:10.1371/journal.pone.0153758.t004
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of albuminuria and renal dysfunction, which both pro-inflammatory and pro-fibrotic
responses are important components [18, 20, 40–46]. However, mechanisms of albuminuria
that occurs during ART-treated chronic HIV infection have been primarily focused on the
pro-inflammatory arm. Results of our present study suggest a dynamic interplay between pro-
inflammatory and pro-fibrotic responses.

CD16+ monocyte compartment, which include non-classical (CD14low/+CD16++) and inter-
mediate (CD14++CD16+) subsets, are generally characterized as a pro-inflammatory cellular
compartment, being potent producers of TNF-α, IL-6, IL-1β and IL-12 [47–51]. Several studies
have shown that the recruitment of CD16+ monocytes in human inflammatory disease states
may mediate further pro-inflammatory responses. Individuals with rheumatoid arthritis have
been shown to have significantly higher CD16+ monocytes as compared to healthy controls
[52, 53]. Elevation of this monocyte compartment is associated with worsening disease state,
higher erythrocyte sedimentation rates, and increased C-reactive protein and rheumatoid fac-
tor levels. In respect to kidneys, non-classical monocytes have been shown to accumulate in the
glomerular vessels and play a role in the development of lupus-associated glomerulonephritis
[34, 54]. Non-classical monocytes were observed to preferentially produce TNF and CCL3 in
serum from individuals with lupus.

Elevated levels of peripheral non-classical monocytes have also been described in HIV-
infected individuals as compared to HIV-uninfected controls [26, 55, 56]. In addition, we have
previously reported increased percentages of total monocytes producing pro-inflammatory
cytokines IL-1β and IL-8 in ART-treated HIV-infected individuals as compared to HIV-unin-
fected individuals at basal levels and after stimulation with oxidized low-density lipoproteins
and lipopolysaccharides [35]. With these findings, we suspect that the low-level chronic
inflammatory environment that has been characterized in chronic HIV infection may be con-
tributing to elevated levels of non-classical monocytes in peripheral blood and an active inflam-
matory phenotype that may contribute to the development of albuminuria [22].

Contrasting studies in the general population have shown non-classical monocytes in
humans to play a role in the resolution of inflammation and the differentiation into M2 macro-
phages that aide in anti-inflammatory and wound healing responses [57]. In myocardial infarc-
tions, non-classical monocytes have been shown to demonstrate a beneficial effect in
mediating vascular repair and organ function [58–60]. Similarly, recruitment of non-classical
monocytes into the brain and spinal cord have shown to be associated with beneficial effects,
which include active removal of amyloid-β peptides in neuronal tissue and maintenance of the
blood-brain barrier by differentiated perivascular macrophages [61–63].

During the resolution of inflammation, an important component of the response is TGF-β.
TGF-β is a multi-functional cytokine that regulates many cellular functions, including cellular
growth and differentiation [64]. In the context of HIV infection, TGF-β is observed to be ele-
vated in infected individuals and has been suggested to contribute to the pathogenesis of HIV-
associated nephropathy [23, 24, 65]. Mesangial cells have been reported to contribute to the
elevated production of TGF-β in the kidneys of HIV-infected individuals [23, 24]. Peripheral
blood mononuclear cells have also been found to produce and secrete TGF-β, with associated
elevation of TGF-β in the plasma and tissues [37, 38, 66–69]. Thus, monocytes/macrophages
infected with HIV may also contribute to the local production of TGF-β in the kidneys. As our
results show, non-classical monocytes are associated with increase intra-renal production of
TGF-β as measured in urine. This suggests that in chronic HIV infection, monocyte-derived
TGF-βmay be increased and contribute to the elevated intrarenal levels, further driving albu-
minuria. Additional studies are warranted to assess these mechanisms.

This study is limited by its relatively small sample size and the lack of HIV-uninfected con-
trols with measured UACR and phenotyped immunologic cellular subpopulations. However,
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the strengths of the study are the careful clinical and cardio-metabolic characterizations per-
formed on HIV-infected groups, as well as detailed phenotypes of T cell and monocyte subpop-
ulations and quantification of urine biomarkers that reveal discriminating associations in the
HIV-infected group.

In conclusion, elevation of non-classical (CD14low/+CD16++) monocytes is associated with
worsening albuminuria in HIV-infected individuals on ART. This association is independent
of traditional- and ART-associated risk factors of albuminuria. Furthermore, HIV-infected
individuals with albuminuria excrete higher levels of urine TGF-β1 and collagen IV as com-
pared to those without albuminuria, and increased non-classical monocytes are associated with
increased urine TGF-β1. The role of non-classical monocytes in pro-inflammatory and/or pro-
fibrotic responses in the kidney of HIV-infected individuals on ART warrants further study.
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