data reports

open 👌 access

Crystal structure of [1-(3-chlorophenyl)-5-hydroxy-3-methyl-1*H*-pyrazol-4-yl](*p*tolyl)methanone

Balbir Kumar,^a Kiran J. Nakum,^b R. N. Jadeja,^b Rajni Kant^a and Vivek K. Gupta^a*

^aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and ^bDepartment of Chemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390 002, India. *Correspondence e-mail: vivek_gupta2k2@hotmail.com

Received 24 February 2015; accepted 27 March 2015

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

In the title compound $C_{18}H_{15}ClN_2O_2$, the dihedral angles between the central pyrazole ring and the pendant chlorobenzene and *p*-tolyl rings are 17.68 (10) and 51.26 (12)°, respectively. An intramolecular $O-H\cdots O$ hydrogen bond is observed, which closes an S(6) ring.

Keywords: crystal structure; 4-acylpyrazolone derivative; hydrogen bonding.

CCDC reference: 1056475

1. Related literature

For background to 4-acylpyrazolone derivatives, see: Jadeja *et al.* (2012); Chiba *et al.* (1998); Marchetti *et al.* (2005). For related structures, see: Sharma *et al.* (2014); Abdel-Aziz *et al.* (2012).

2. Experimental

2.1. Crystal data $C_{18}H_{15}ClN_2O_2$ $M_r = 326.77$ Triclinic, $P\overline{1}$ a = 5.1469 (5) Å b = 12.0773 (12) Å c = 13.0892 (11) Å $\alpha = 87.247$ (7)° $\beta = 84.396$ (7)°

2.2. Data collection

```
Oxford Diffraction Xcalibur,
Sapphire3 diffractometer
Absorption correction: multi-scan
(SCALE3 ABSPACK in CrysAlis
PRO; Oxford Diffraction, 2010)
T_{\rm min} = 0.745, T_{\rm max} = 1.000
```

V = 794.57 (13) Å³ Z = 2Mo K α radiation $\mu = 0.25$ mm⁻¹ T = 293 K $0.30 \times 0.20 \times 0.20$ mm

 $\gamma = 79.024 \ (9)^{\circ}$

5633 measured reflections 3099 independent reflections 1411 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.041$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.062$	210 parameters
$wR(F^2) = 0.164$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
3099 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O3−H3···O14	0.82	1.90	2.581 (3)	140

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009).

Acknowledgements

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under Project No. SR/S2/CMP-47/2003.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7373).

References

Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, 01095–01096.

- Chiba, P., Holzer, W., Landau, M., Bechmann, G., Lorenz, K., Plagens, B., Hitzler, M., Richter, E. & Ecker, G. (1998). *J. Med. Chem.* **41**, 4001–4011. Farrung J. J. (2012). *J. Appl. Cryst.* **45**, 849, 854
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Jadeja, R. N., Vyas, K. M., Gupta, V. K., Joshi, R. G. & Ratna Prabha, C. (2012). Polyhedron, **31**, 767–778.
- Marchetti, F., Pettinari, C. & Pettinari, R. (2005). Coord. Chem. Rev. 249, 2909–2945.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sharma, N., Parihar, S., Jadeja, R. N., Kant, R. & Gupta, V. K. (2014). Acta Cryst. E70, o1136-o1137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, o280-o281 [doi:10.1107/S2056989015006258]

Crystal structure of [1-(3-chlorophenyl)-5-hydroxy-3-methyl-1*H*-pyrazol-4-yl](*p*-tolyl)methanone

Balbir Kumar, Kiran J. Nakum, R. N. Jadeja, Rajni Kant and Vivek K. Gupta

S1. Comment

4-Acyl-pyrazolones derivatives and their coordination complexes are broadly used in many fields, especially in biological, clinical and analytical applications (Chiba *et al.*, (1998); Marchetti *et al.*, (2005). Due to the presence of two oxygen donor atoms and facile keto-enol tautomerism, they easily coordinate with metal ions after deprotonation of the enolic hydrogen and provide stable metal complexes with six-membered chelate rings. In addition, 4-acyl pyrazolones can form a variety of Schiff bases and are reported to be superior reagents in biological, clinical and analytical applications (Jadeja *et al.*, (2012). In this article we are reporting synthesis and crystal structure of a new 4-acyl-pyrazolone derivative.

The overall molecular geometry of the title compound, has a normal range and are in good agreement with the corresponding values obtained in case of related structures (Abdel-Aziz *et al.*,2012; Sharma *et al.*, 2014). In the title compound $C_{18}H_{15}Cl_1N_2O_2$, all the rings are planar. The dihedral angle between central pyrazole ring and chlorobenzene ring is 17.68 (10)°, between pyrazole ring and *p*-tolyl ring is 51.26 (12)° and between chlorobenzene ring and *p*-tolyl ring is 68.78 (10)°. The bond length of C4- C3 is 1.409 Å that is near to typical C—C double bond indicate that there is double bond between C4—C3. So its geometry becomes planner. The C3—O3 bond(1.291 Å) is much longer than a typical C=O double bond, indicate that C3—O3 bond is single bond and H is attached to O3 and the molecule is in enol form.

S2. Experimental

1-(3,Chlorophenyl)-3-methyl-5-pyrazolone (20.9 g, 0.1 mol) and 80 ml of dry 1,4-dioxane were placed in a three necked 250 ml round bottom flask equipped with a stirrer, an addition funnel and a reflux condenser. The reaction mass was heated at 70 °C for 10 min. To the resulting yellow solution was added in small portions calcium hydroxide (14.82 g, 0.2 mol) and then toluoyl chloride (15.5 g, 0.1 mol) was added drop wise. During this addition, the whole mass was converted into a thick paste. After the complete addition, the reaction mixture was heated to reflux for 2 h. The yellowish mixture was cooled to room temperature and poured into a 250 ml solution of ice-cold hydrochloric acid (2 M) under stirring. The yellow precipitate was filtered, washed with water and dried in a vacuum. After drying a pale-yellow solid was obtained and recrystallized from an acetone-water mixture. (Yield 20.3 g m, 62%). Yellow blocks were obtained by the slow evaporation of the compound in acetone-water mixture (3–4 days).

S3. Refinement

All the H atoms were geometrically fixed and allowed to ride on their parent Carbon atoms, with C—H distances of 0.93–0.96 Å; and with $U_{iso}(H) = 1.2U_{eq}(C)$, except for the methyl groups where $U_{iso}(H) = 1.5U_{eq}(C)$,

Figure 1

ORTEP view of the title molecule with displacement ellipsoids drawn at the 40% probability level.

Figure 2

The packing arrangement of molecules viewed down the *a* axis.

[1-(3-chlorophenyl)-5-hydroxy-3-methyl-1*H*-pyrazol-4-yl](*p*-tolyl)methanone

$C_{18}H_{15}CIN_2O_2$	F(000) = 340
$M_r = 326.77$	$D_{\rm x} = 1.366 {\rm Mg} {\rm m}^{-3}$
Triclinic, $P\overline{1}$	$D_{\rm m} = 1.37 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 1	$D_{\rm m}$ measured by not measured
a = 5.1469 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.0773 (12) Å	Cell parameters from 1318 reflections
c = 13.0892 (11) Å	$\theta = 4.1 - 26.7^{\circ}$
$\alpha = 87.247 \ (7)^{\circ}$	$\mu = 0.25 \text{ mm}^{-1}$
$\beta = 84.396 \ (7)^{\circ}$	T = 293 K
$\gamma = 79.024 \ (9)^{\circ}$	Block, yellow
$V = 794.57 (13) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20$ mm
Z = 2	

Data collection

Oxford Diffraction Xcalibur, Sapphire3 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 16.1049 pixels mm ⁻¹ ω Scan scans Absorption correction: multi-scan (SCALE3 ABSPACK in <i>CrysAlis PRO</i> ; Oxford Diffraction, 2010)	$T_{\min} = 0.745, T_{\max} = 1.000$ 5633 measured reflections 3099 independent reflections 1411 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{\max} = 26.0^{\circ}, \theta_{\min} = 3.4^{\circ}$ $h = -6 \rightarrow 6$ $k = -14 \rightarrow 12$ $l = -16 \rightarrow 15$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.164$ S = 1.00 3099 reflections 210 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.3593 (2)	0.51342 (10)	0.37363 (9)	0.1138 (5)	
014	0.9153 (4)	0.0200 (2)	-0.12991 (19)	0.0789 (8)	
N2	0.6078 (5)	0.2834 (2)	0.0517 (2)	0.0628 (8)	
03	0.5663 (4)	0.10070 (19)	0.01592 (18)	0.0789 (8)	
Н3	0.6322	0.0518	-0.0252	0.118*	
N1	0.7645 (5)	0.3616 (2)	0.0144 (2)	0.0660 (8)	
C7	0.4381 (6)	0.3048 (3)	0.1427 (3)	0.0612 (9)	
C14	0.9791 (6)	0.1164 (3)	-0.1490 (3)	0.0661 (10)	
C8	0.4715 (6)	0.3904 (3)	0.2042 (3)	0.0671 (10)	
H8	0.5998	0.4340	0.1850	0.080*	
C15	1.1641 (6)	0.1285 (3)	-0.2406 (3)	0.0584 (9)	
C4	0.8677 (6)	0.2055 (3)	-0.0821 (3)	0.0596 (9)	
C5	0.9158 (6)	0.3162 (3)	-0.0646 (3)	0.0591 (9)	
C18	1.5098 (7)	0.1494 (4)	-0.4158 (3)	0.0759 (11)	
C16	1.3803 (7)	0.0454 (3)	-0.2639 (3)	0.0721 (10)	
H16	1.4115	-0.0190	-0.2217	0.087*	

C9	0.3107 (7)	0.4095 (3)	0.2944 (3)	0.0751 (11)
C11	0.0854 (7)	0.2626 (4)	0.2618 (3)	0.0858 (12)
H11	-0.0425	0.2188	0.2814	0.103*
C20	1.1174 (7)	0.2212 (3)	-0.3063 (3)	0.0737 (10)
H20	0.9691	0.2774	-0.2921	0.088*
C3	0.6724 (6)	0.1890 (3)	-0.0040 (3)	0.0626 (9)
C12	0.2420 (6)	0.2418 (3)	0.1708 (3)	0.0733 (11)
H12	0.2166	0.1859	0.1284	0.088*
C6	1.1176 (6)	0.3801 (3)	-0.1179 (3)	0.0733 (11)
H6A	1.0483	0.4191	-0.1780	0.110*
H6B	1.2784	0.3282	-0.1377	0.110*
H6C	1.1544	0.4338	-0.0721	0.110*
C10	0.1147 (7)	0.3465 (4)	0.3240 (3)	0.0851 (13)
H10	0.0058	0.3612	0.3847	0.102*
C17	1.5527 (7)	0.0571 (4)	-0.3503 (3)	0.0835 (12)
H17	1.7012	0.0009	-0.3641	0.100*
C19	1.2894 (8)	0.2317 (4)	-0.3935 (3)	0.0827 (12)
H19	1.2552	0.2949	-0.4370	0.099*
C21	1.6955 (8)	0.1619 (4)	-0.5112 (3)	0.1139 (16)
H21A	1.6488	0.1217	-0.5661	0.171*
H21B	1.8752	0.1316	-0.4970	0.171*
H21C	1.6802	0.2404	-0.5308	0.171*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1352 (10)	0.1143 (10)	0.0849 (9)	-0.0078 (7)	0.0057 (7)	-0.0276 (8)
O14	0.0959 (17)	0.0706 (17)	0.0744 (18)	-0.0365 (14)	0.0131 (13)	-0.0027 (14)
N2	0.0660 (17)	0.0642 (19)	0.0591 (19)	-0.0223 (14)	0.0078 (14)	0.0016 (16)
03	0.0893 (16)	0.0740 (17)	0.0770 (19)	-0.0360 (14)	0.0159 (14)	-0.0026 (15)
N1	0.0724 (17)	0.064 (2)	0.063 (2)	-0.0256 (15)	0.0060 (15)	0.0046 (15)
C7	0.0538 (19)	0.071 (2)	0.053 (2)	-0.0069 (17)	0.0046 (16)	0.0139 (18)
C14	0.068 (2)	0.079 (3)	0.054 (2)	-0.0241 (19)	-0.0048 (17)	0.008 (2)
C8	0.070 (2)	0.065 (2)	0.062 (2)	-0.0086 (18)	0.0025 (18)	0.0011 (19)
C15	0.069 (2)	0.061 (2)	0.049 (2)	-0.0225 (17)	-0.0024 (17)	-0.0053 (18)
C4	0.0609 (19)	0.065 (2)	0.056 (2)	-0.0222 (17)	0.0037 (16)	-0.0032 (18)
C5	0.065 (2)	0.063 (2)	0.050 (2)	-0.0180 (17)	0.0011 (16)	0.0082 (17)
C18	0.078 (2)	0.103 (3)	0.056 (3)	-0.041 (2)	0.000 (2)	-0.008 (2)
C16	0.083 (2)	0.070 (3)	0.061 (3)	-0.015 (2)	0.0024 (19)	0.006 (2)
C9	0.085 (2)	0.080 (3)	0.050 (2)	0.007 (2)	-0.0008 (19)	0.002 (2)
C11	0.071 (2)	0.104 (3)	0.078 (3)	-0.017 (2)	0.014 (2)	0.008 (3)
C20	0.089 (2)	0.075 (3)	0.056 (3)	-0.014 (2)	-0.0051 (19)	0.006 (2)
C3	0.064 (2)	0.070 (2)	0.058 (2)	-0.0267 (18)	0.0003 (17)	0.0068 (19)
C12	0.062 (2)	0.084 (3)	0.072 (3)	-0.0156 (19)	0.0028 (19)	0.007 (2)
C6	0.086 (2)	0.072 (3)	0.065 (2)	-0.0315 (19)	0.0070 (19)	0.007 (2)
C10	0.078 (3)	0.100 (3)	0.064 (3)	0.002 (2)	0.016 (2)	0.018 (2)
C17	0.078 (2)	0.095 (3)	0.073 (3)	-0.011 (2)	0.006 (2)	-0.007 (3)
C19	0.106 (3)	0.088 (3)	0.059 (3)	-0.035 (2)	-0.006 (2)	0.012 (2)

C21 0.112 (3) 0.170 (5) 0.071 (3) $-0.069 (3)$ 0.024 (2) $-0.011 (3)$ Gemetric parameters (Å. ") Cl1—C9 1.735 (4) Cl8—C19 1.376 (5) 014—C14 1.276 (4) Cl8—C19 1.376 (5) N2=C3 1.352 (4) Cl6—C17 1.386 (4) N2=C7 1.410 (4) C9—C10 1.390 (5) 03-C3 1.293 (3) Cl1—C12 1.371 (4) N1=C5 1.307 (4) C1—H11 0.9300 C7—C12 1.388 (4) C20—C19 1.391 (4) C14—C4 1.418 (4) C12—H12 0.9300 C4=C5 1.376 (4) C6—H6A 0.9600 C4=C5 1.376 (4) C6—H6B 0.9600 C15—C16 1.370 (4) C10—H10 0.9300 C4=C5 1.438 (4) C21—H21A 0.9600 C15—C16 1.370 (4) C10—H10 0.9300 C4=C5 1.438 (4) C21—H21A 0.9600 C15=C16 1.508 (4) C21—H21A </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>support</th> <th>ing information</th>						support	ing information
Geometric parameters ($d, 2$) CII—C9 1.735 (4) C18—C19 1.376 (5) Ol4—C14 1.276 (4) C18—C17 1.356 (6) N2—N1 1.352 (4) C16—C17 1.386 (4) N2—N1 1.397 (3) C16—H16 0.3900 N2—C7 1.410 (4) C9—C10 1.390 (5) 0.3—H3 0.8200 C11—C12 1.377 (4) NI—C5 1.307 (4) C11—H11 0.9300 C7—C12 1.388 (4) C20—C19 1.391 (4) C7—C12 1.388 (4) C20—H20 0.9300 C14—C4 1.418 (4) C12—H12 0.9300 C14—C4 1.418 (4) C12—H12 0.9300 C15—C16 1.370 (4) C6—H68 0.9600 C3=-C20 1.376 (5) C17—H17 0.9300 C4=C3 1.396 (4) C21—H21A 0.9600 C4=C3 1.396 (4) C21—H21A 0.9600 C4=C3 1.376 (5) C12—H21A 0.9600 C5=-C6 1.50	C21	0.112 (3)	0.170 (5)	0.071 (3)	-0.069 (3)	0.024 (2)	-0.011 (3)
CII-C9 1.735 (4) C18-C19 1.376 (5) 014-C14 1.276 (4) C18-C21 1.516 (5) N2-C3 1.352 (4) C16-C17 1.386 (4) N2-C3 1.352 (4) C16-H16 0.9300 N2-C7 1.410 (4) C9-C10 1.399 (5) O3-C3 1.293 (3) C11-C10 1.369 (5) O3-H3 0.8200 C11-C12 1.377 (4) N1-C5 1.307 (4) C11-H11 0.9300 C7-C8 1.388 (4) C20-C19 1.391 (4) C7-C12 1.388 (4) C20-H20 0.9300 C14-C15 1.477 (4) C6-H6A 0.9600 C8-C9 1.376 (4) C10-H10 0.9300 C14-C15 1.477 (4) C6-H6C 0.9600 C15-C16 1.370 (4) C10-H10 0.9300 C4-C3 1.396 (4) C21-H21A 0.9600 C18-C17 1.371 (5) C21-H21B 0.9600 C18-C17 1.371 (5) C21-H21B 0.9600 <	Geome	etric parameters ((Å, °)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—0	С9	1.735 (4	4)	C18—C19		1.376 (5)
$\begin{split} & \text{N2}-\text{C3} & 1.352 (4) & \text{C16}-\text{C17} & 1.386 (4) \\ & \text{N2}-\text{N1} & 1.397 (3) & \text{C16}-\text{H16} & 0.9300 \\ & \text{N2}-\text{C7} & 1.410 (4) & \text{C9}-\text{C10} & 1.390 (5) \\ & \text{O3}-\text{C3} & 1.293 (3) & \text{C11}-\text{C10} & 1.369 (5) \\ & \text{O3}-\text{H3} & 0.8200 & \text{C11}-\text{C12} & 1.377 (4) \\ & \text{N1}-\text{C5} & 1.307 (4) & \text{C11}-\text{H11} & 0.9300 \\ & \text{C7}-\text{C8} & 1.386 (4) & \text{C20}-\text{C19} & 1.391 (4) \\ & \text{C7}-\text{C12} & 1.388 (4) & \text{C20}-\text{H20} & 0.9300 \\ & \text{C14}-\text{C15} & 1.477 (4) & \text{C6}-\text{H6A} & 0.9600 \\ & \text{C4}-\text{C29} & 1.376 (4) & \text{C6}-\text{H6A} & 0.9600 \\ & \text{C8}-\text{C9} & 1.376 (4) & \text{C6}-\text{H6C} & 0.9600 \\ & \text{C15}-\text{C16} & 1.370 (4) & \text{C10}-\text{H10} & 0.9300 \\ & \text{C15}-\text{C20} & 1.376 (6) & \text{C1}-\text{H17} & 0.9300 \\ & \text{C4}-\text{C3} & 1.396 (6) & \text{C1}-\text{H17} & 0.9300 \\ & \text{C4}-\text{C3} & 1.396 (6) & \text{C1}-\text{H19} & 0.9300 \\ & \text{C4}-\text{C5} & 1.438 (4) & \text{C21}-\text{H19} & 0.9300 \\ & \text{C4}-\text{C5} & 1.438 (4) & \text{C21}-\text{H21A} & 0.9600 \\ & \text{C3}-\text{C6} & 1.508 (4) & \text{C1}-\text{H11} & 119.4 \\ & \text{O}-\text{G0}-\text{O} \\ & \text{C3}-\text{N2}-\text{C7} & 12.98 (3) & \text{C1}-\text{C21}-\text{H11} & 119.4 \\ & \text{N1}-\text{N2}-\text{C7} & 119.7 (3) & \text{C1}-\text{C20}-\text{H20} & 119.6 \\ & \text{C3}-\text{N2}-\text{C7} & 119.7 (3) & \text{C1}-\text{C20}-\text{H20} & 119.6 \\ & \text{C3}-\text{C7}-\text{C12} & 120.3 (3) & \text{O3}-\text{C3}-\text{N2} & 123.5 (3) \\ & \text{C3}-\text{O3}-\text{H3} & 10.9.5 & \text{C1}-\text{C20}-\text{H20} & 119.6 \\ & \text{C3}-\text{C7}-\text{N2} & 118.6 (3) & \text{O3}-\text{C3}-\text{C4} & 128.3 (3) \\ & \text{C1}-\text{C1}-\text{C1} & 119.4 \\ & \text{N1}-\text{N2}-\text{C7} & 119.7 (3) & \text{C1}-\text{C2}-\text{H2} & 120.2 \\ & \text{C3}-\text{C4} & 18.5 (3) & \text{C1}-\text{C1}-\text{C1} & 119.6 \\ & \text{C3}-\text{C1}-\text{C2} & 123.5 (3) \\ & \text{C3}-\text{C1}-\text{C2} & 123.5 (3) \\ & \text{C3}-\text{C1}-\text{C2} & 123.6 (3) & \text{C1}-\text{C1}-\text{C1} & 119.6 \\ & \text{C3}-\text{C1}-\text{C2} & 119.6 \\ & \text{C3}-\text{C1}-\text{C2} & 119.6 \\ & \text{C3}-\text{C1}-\text{C1} & 119.5 \\ & \text$	014—	-C14	1.276 (4	4)	C18—C21		1.516 (5)
N2-N1 1.397 (3) C16-H16 0.9300 N2-C7 1.410 (4) C9-C10 1.380 (5) O3-C3 1.293 (3) C11-C10 1.366 (5) O3-H3 0.8200 C11-C12 1.377 (4) N1-C5 1.307 (4) C1-H11 0.9300 C7-C8 1.386 (4) C20-C19 1.391 (4) C7-C12 1.388 (4) C20-H20 0.9300 C14-C4 1.418 (4) C12-H12 0.9300 C14-C5 1.376 (4) C6-H6A 0.9600 C8-B8 0.9300 C6-H6C 0.9600 C15-C16 1.376 (5) C17-H17 0.9300 C4-C3 1.396 (3) C10-H10 0.9300 C4-C3 1.396 (4) C21-H21A 0.9600 C5-C6 1.508 (4) C21-H21B 0.9600 C3-N2-N1 110.0 (2) C10-C11-H11 119.4 N1-N2-C7 129.8 (3) C15-C20-C19 128.8 (3) C3-N2-N2 118.6 (3) C3-C2-C19 128.8 (3) C3-N2-C7 129.8 (3) C15-C20-C19 128.8 (3)	N2	23	1.352 (4	4)	C16—C17		1.386 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—N	J 1	1.397 (3)	C16—H16		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2(27	1.410 (4	4)	C9—C10		1.390 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03-0	23	1.293 (3)	C11—C10		1.369 (5)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	03—F	13	0.8200	-)	C11—C12		1.377 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-0	25	1 307 (4	4)	C11—H11		0.9300
C7-C12 1.388 (4) C20-H20 0.9300 C14-C4 1.418 (4) C12-H12 0.9300 C14-C4 1.418 (4) C12-H12 0.9300 C14-C15 1.477 (4) C6-H6A 0.9600 C8-C9 1.376 (4) C10-H10 0.9300 C5-C16 1.370 (4) C10-H10 0.9300 C4-C3 1.396 (4) C19-H19 0.9300 C4-C3 1.396 (4) C19-H19 0.9300 C4-C5 1.438 (4) C21-H21A 0.9600 C3-N2-N1 110.0 (2) C10-C11-H11 119.4 C3-N2-N1 110.0 (2) C10-C11-H11 119.4 N1-N2-C7 119.7 (3) C15-C20-C19 120.8 (3) C3-N2-N1 100.6 (2) C19-C20-H20 119.6 C5-N1-N2 106.5 (2) C19-C20-H20 119.6 C5-N1-N2 106.5 (2) C19-C20-H20 119.6 C8-C7-N2 118.6 (3) O3-C3-C4 128.3 (3) C12-C7-N2 121.1 (3) N2-C3-C4 108.5 (3) C14-C14-C15 117.6 (3) C11-C12-H12 120.	C7—C	28	1 386 (4)	C_{20} $-C_{19}$		1 391 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7—C	12	1 388 (4)	C20—H20		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	C4	1.500 (1)	C12—H12		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14	C15	1.410 (+ <i>)</i> 1)	С12 1112		0.9500
C3 C4 C5 C5 C6 C7 C6 C1 C7 C1 C1 <thc1< th=""> C1 C1 <th< td=""><td>C_{8}</td><td>0[°]</td><td>1.477 (</td><td>4) 1)</td><td>С6—Н6В</td><td></td><td>0.9600</td></th<></thc1<>	C_{8}	0 [°]	1.477 (4) 1)	С6—Н6В		0.9600
C3 - H3 0.730 C4 - H10 0.9300 C15-C16 1.370 (4) C10-H10 0.9300 C4-C3 1.396 (4) C19-H19 0.9300 C4-C3 1.396 (4) C19-H19 0.9300 C4-C3 1.396 (4) C21-H21A 0.9600 C5-C6 1.508 (4) C21-H21B 0.9600 C18-C17 1.371 (5) C21-H21C 0.9600 C3-N2-N1 110.0 (2) C10-C11-H11 119.4 C3-N2-C7 129.8 (3) C15-C20-C19 120.8 (3) C3-03-H3 109.5 C15-C20-H20 119.6 C5-N1-N2 106.5 (2) C19-C20-H20 119.6 C8-C7-N2 118.6 (3) O3-C3-C4 128.3 (3) C12-C7-N2 121.1 (3) N2-C3-C4 108.2 (3) C14-C14-C15 117.6 (3) C11-C12-C17 119.6 (4) C14-C14-C15 117.6 (3) C11-C12-H12 120.2 C4-C4 118.5 (3) C5-C6-H6A 109.5 C9-C8-C7 118.6 (3) C5-C6-H6B 109.5 C9-C8-H8 120.7 H6A-C6-H6B 1	C8_E	18	0.9300	•)	С6—Н6С		0.9600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	C16	1 370 (1)	C10 H10		0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15	C20	1.370 (-	+ <i>)</i> 5)	C17 H17		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{1}	C20 73	1.370 (.	1)	C10 H10		0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_4 - C$	25 75	1.390 (-	+ <i>)</i> 1)	C21 H21A		0.9500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{4}	.5 76	1.438 (*	+ <i>)</i> 1)	C_{21} H_{21} H_{21}		0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C18	C17	1.308 (*	+ <i>)</i> 5)	C_{21} H_{21C}		0.9000
C3-N2-N1110.0 (2)C10-C11-H11119.4C3-N2-C7129.8 (3)C12-C11-H11119.4N1-N2-C7119.7 (3)C15-C20-C19120.8 (3)C3-O3-H3109.5C15-C20-H20119.6C5-N1-N2106.5 (2)C19-C20-H20119.6C8-C7-C12120.3 (3)O3-C3-N2123.5 (3)C8-C7-N2118.6 (3)O3-C3-C4128.3 (3)C12-C7-N2121.1 (3)N2-C3-C4108.2 (3)O14-C14-C4118.5 (3)C11-C12-C7119.6 (4)O14-C14-C15117.6 (3)C11-C12-H12120.2C9-C8-C7118.6 (3)C5-C6-H6A109.5C9-C8-H8120.7C5-C6-H6B109.5C16-C15-C20118.8 (3)C5-C6-H6C109.5C16-C15-C14120.4 (3)H6A-C6-H6C109.5C16-C15-C14120.8 (3)H6B-C6-H6C109.5C3-C4-C14119.5 (3)C11-C10-C9118.5 (3)C3-C4-C5103.9 (3)C11-C10-C9118.5 (3)C3-C4-C513.64 (3)C9-C10-H10120.7C14-C4-C5136.4 (3)C9-C10-H10120.7C14-C4-C5136.4 (3)C9-C10-H10120.7C14-C4-C5136.3 (3)C18-C17-C16121.7 (4)N1-C5-C6118.3 (3)C18-C17-H17119.2C4-C5-C6130.2 (3)C16-C17-H17119.2	C10—	017	1.571 (.	5)	C21—H2IC		0.9000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—N	J2—N1	110.0 (2	2)	C10-C11-H11		119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—N	J2—C7	129.8 (3	3)	C12-C11-H11		119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1-N	N2—C7	119.7 (3	3)	C15—C20—C19		120.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—С	03—Н3	109.5		С15—С20—Н20		119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—N	J1—N2	106.5 (2	2)	С19—С20—Н20		119.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С	C7—C12	120.3 (3)	O3—C3—N2		123.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С	C7—N2	118.6 (.	3)	O3—C3—C4		128.3 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—	C7—N2	121.1 (3)	N2—C3—C4		108.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014—	-C14C4	118.5 (.	3)	C11—C12—C7		119.6 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014—	C14—C15	117.6 (3	3)	C11—C12—H12		120.2
C9—C8—C7118.6 (3)C5—C6—H6A109.5C9—C8—H8120.7C5—C6—H6B109.5C7—C8—H8120.7H6A—C6—H6B109.5C16—C15—C20118.8 (3)C5—C6—H6C109.5C16—C15—C14120.4 (3)H6A—C6—H6C109.5C20—C15—C14120.8 (3)H6B—C6—H6C109.5C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)C3—C4—C5103.9 (3)C11—C10—H10120.7C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6138.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	C4—C	C14—C15	123.9 (3	3)	С7—С12—Н12		120.2
C9—C8—H8120.7C5—C6—H6B109.5C7—C8—H8120.7H6A—C6—H6B109.5C16—C15—C20118.8 (3)C5—C6—H6C109.5C16—C15—C14120.4 (3)H6A—C6—H6C109.5C20—C15—C14120.8 (3)H6B—C6—H6C109.5C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)C3—C4—C5103.9 (3)C11—C10—H10120.7C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6138.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	С9—С	С8—С7	118.6 (3	3)	С5—С6—Н6А		109.5
C7—C8—H8120.7H6A—C6—H6B109.5C16—C15—C20118.8 (3)C5—C6—H6C109.5C16—C15—C14120.4 (3)H6A—C6—H6C109.5C20—C15—C14120.8 (3)H6B—C6—H6C109.5C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)C3—C4—C5103.9 (3)C11—C10—H10120.7C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6138.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	С9—С	С8—Н8	120.7		С5—С6—Н6В		109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С	С8—Н8	120.7		H6A—C6—H6B		109.5
C16—C15—C14120.4 (3)H6A—C6—H6C109.5C20—C15—C14120.8 (3)H6B—C6—H6C109.5C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)C3—C4—C5103.9 (3)C11—C10—H10120.7C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6118.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	C16—	C15—C20	118.8 (.	3)	С5—С6—Н6С		109.5
C20—C15—C14120.8 (3)H6B—C6—H6C109.5C3—C4—C14119.5 (3)C11—C10—C9118.5 (3)C3—C4—C5103.9 (3)C11—C10—H10120.7C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6118.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	C16—	C15—C14	120.4 (3)	H6A—C6—H6C		109.5
C3-C4-C14 119.5 (3) $C11-C10-C9$ 118.5 (3)C3-C4-C5 103.9 (3) $C11-C10-H10$ 120.7 C14-C4-C5 136.4 (3) $C9-C10-H10$ 120.7 N1-C5-C4 111.3 (3) $C18-C17-C16$ 121.7 (4)N1-C5-C6 118.3 (3) $C18-C17-H17$ 119.2 C4-C5-C6 130.2 (3) $C16-C17-H17$ 119.2	C20—	C15—C14	120.8 (3)	H6B—C6—H6C		109.5
C3—C4—C5 103.9 (3) C11—C10—H10 120.7 C14—C4—C5 136.4 (3) C9—C10—H10 120.7 N1—C5—C4 111.3 (3) C18—C17—C16 121.7 (4) N1—C5—C6 118.3 (3) C18—C17—H17 119.2 C4—C5—C6 130.2 (3) C16—C17—H17 119.2	С3—С	C4—C14	119.5 (.	3)	С11—С10—С9		118.5 (3)
C14—C4—C5136.4 (3)C9—C10—H10120.7N1—C5—C4111.3 (3)C18—C17—C16121.7 (4)N1—C5—C6118.3 (3)C18—C17—H17119.2C4—C5—C6130.2 (3)C16—C17—H17119.2	С3—С	C4—C5	103.9 (.	3)	C11—C10—H10		120.7
N1-C5-C4111.3 (3)C18-C17-C16121.7 (4)N1-C5-C6118.3 (3)C18-C17-H17119.2C4-C5-C6130.2 (3)C16-C17-H17119.2	C14—	C4—C5	136.4 (1	3)	C9—C10—H10		120.7
N1—C5—C6 118.3 (3) C18—C17—H17 119.2 C4—C5—C6 130.2 (3) C16—C17—H17 119.2	N1-C	С5—С4	111.3 (3	3)	C18—C17—C16		121.7 (4)
C4—C5—C6 130.2 (3) C16—C17—H17 119.2	N1-C	С5—С6	118.3 (3	3)	C18—C17—H17		119.2
	C4—C	C5—C6	130.2 (3)	C16—C17—H17		119.2

C17 C10 C10	110 1 (4)	C10 C10 C20	120.5(4)
	118.1 (4)	C18—C19—C20	120.5 (4)
C17—C18—C21	121.9 (4)	С18—С19—Н19	119.7
C19—C18—C21	120.0 (4)	C20—C19—H19	119.7
C15—C16—C17	120.1 (4)	C18—C21—H21A	109.5
C15—C16—H16	119.9	C18—C21—H21B	109.5
C17—C16—H16	119.9	H21A—C21—H21B	109.5
C8—C9—C10	121.7 (4)	C18—C21—H21C	109.5
C8—C9—Cl1	118.7 (3)	H21A—C21—H21C	109.5
C10—C9—Cl1	119.5 (3)	H21B—C21—H21C	109.5
C10-C11-C12	121.2 (4)		
C3—N2—N1—C5	1.8 (4)	C7—C8—C9—C10	-1.0 (6)
C7—N2—N1—C5	174.8 (3)	C7—C8—C9—Cl1	177.9 (3)
C3—N2—C7—C8	158.0 (4)	C16-C15-C20-C19	-1.4 (5)
N1—N2—C7—C8	-13.5 (5)	C14—C15—C20—C19	-179.0 (3)
C3—N2—C7—C12	-21.7 (5)	N1—N2—C3—O3	177.2 (3)
N1—N2—C7—C12	166.8 (3)	C7—N2—C3—O3	5.1 (6)
C12—C7—C8—C9	1.5 (5)	N1—N2—C3—C4	-2.2 (4)
N2—C7—C8—C9	-178.3 (3)	C7—N2—C3—C4	-174.3(3)
O14—C14—C15—C16	-41.9 (5)	C14—C4—C3—O3	-2.2 (6)
C4—C14—C15—C16	138.7 (4)	C5—C4—C3—O3	-177.7 (4)
O14—C14—C15—C20	135.7 (4)	C14—C4—C3—N2	177.1 (3)
C4—C14—C15—C20	-43.8 (5)	C5—C4—C3—N2	1.7 (4)
O14—C14—C4—C3	-6.5 (5)	C10-C11-C12-C7	1.8 (6)
C15—C14—C4—C3	173.0 (3)	C8—C7—C12—C11	-1.8(5)
O14—C14—C4—C5	167.1 (4)	N2-C7-C12-C11	177.9 (3)
C15—C14—C4—C5	-13.5 (7)	C12—C11—C10—C9	-1.3 (6)
N2—N1—C5—C4	-0.7 (4)	C8—C9—C10—C11	1.0 (6)
N2—N1—C5—C6	-177.1 (3)	Cl1—C9—C10—C11	-178.0 (3)
C3—C4—C5—N1	-0.6 (4)	C19—C18—C17—C16	0.3 (6)
C14—C4—C5—N1	-174.9 (4)	C21—C18—C17—C16	-179.1 (3)
C3—C4—C5—C6	175.3 (4)	C15—C16—C17—C18	-1.7 (5)
C14—C4—C5—C6	1.0(7)	C17—C18—C19—C20	0.5 (5)
C20-C15-C16-C17	2.2 (5)	C21—C18—C19—C20	179.9 (3)
C14—C15—C16—C17	179.8 (3)	C15—C20—C19—C18	0.1 (5)
+ - ,	- (-)		X- 7

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O14	0.82	1.90	2.581 (3)	140