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Abstract: In the wake of recent advances in machine learning research, the study of pharmacogenomics
using predictive algorithms serves as a new paradigmatic application. In this work, our goal was
to explore an ensemble machine learning approach which aims to predict probable antidepressant
treatment response and remission in major depressive disorder (MDD). To discover the status of
antidepressant treatments, we established an ensemble predictive model with a feature selection
algorithm resulting from the analysis of genetic variants and clinical variables of 421 patients who
were treated with selective serotonin reuptake inhibitors. We also compared our ensemble machine
learning framework with other state-of-the-art models including multi-layer feedforward neural
networks (MFNNs), logistic regression, support vector machine, C4.5 decision tree, naïve Bayes,
and random forests. Our data revealed that the ensemble predictive algorithm with feature selection
(using fewer biomarkers) performed comparably to other predictive algorithms (such as MFNNs
and logistic regression) to derive the perplexing relationship between biomarkers and the status of
antidepressant treatments. Our study demonstrates that the ensemble machine learning framework
may present a useful technique to create bioinformatics tools for discriminating non-responders from
responders prior to antidepressant treatments.

Keywords: antidepressant; ensemble learning; feature selection; machine learning; major depressive
disorder; pharmacogenomics; single nucleotide polymorphisms

1. Introduction

Nowadays researchers have been making significant progress in the interdisciplinary fields of
pharmacogenomics, machine learning, and psychiatry [1–3]. In the arena of pharmacogenomics, the goal
of machine learning research is to provide predictive algorithms that can in general help facilitate the
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investigation of how genetic variants and clinical variables can influence an individual’s treatment
outcomes to drugs [1–3]. Latest advancements in machine learning algorithms have demonstrated their
promising potentials with respect to pharmacogenomics for patients with psychiatric disorders [1–3].
For instance, machine learning approaches such as multi-layer feedforward neural networks (MFNNs)
have been utilized to infer clinical treatment outcomes in patients with major depressive disorder
(MDD) treated with antidepressants by using clinical characteristics and genetic variants such as
single nucleotide polymorphisms (SNPs) [4]. Therefore, it has been suggested that machine learning
and predictive algorithms play a key role in the future of pharmacogenomics since their relevant
applications encompass various aspects of pharmacogenomics [5–7].

The use of machine learning and predictive algorithms in terms of predicting antidepressant
treatment outcomes has been a focus of attention in pharmacogenomics research. For example, Kautzky
et al. [8] used a random forests approach to correctly identify 25% of responders in patients with
treatment-resistant depression by using a clinical variable (that is, melancholia) and 3 SNPs (including
BDNF rs6265, PPP3CC rs7430, and HTR2A rs6313). In addition, Patel et al. [9] employed an alternating
decision tree approach to predict treatment outcomes with 89% accuracy in patients with late-life
depression by using structural imaging data and clinical variables such as age and mini-mental status
examination scores. Furthermore, Chekroud et al. [10] proposed a gradient boosting machine learning
approach which was able to estimate clinical remission with 59% accuracy in MDD patients by using
25 variables (such as Hamilton Rating Scale for Depression (HRSD)). Moreover, Iniesta et al. [11]
utilized a regularized regression approach to forecast antidepressant treatment outcomes with clinically
meaningful accuracy by using clinical and demographical variables. Maciukiewicz et al. [12] also
demonstrated a support vector machine (SVM) approach to predict antidepressant treatment response
with 52% accuracy in MDD patients by using SNPs. Finally, a recent study by Lin et al. [4] reported
that an MFNN approach can foresee antidepressant treatment response (area under the receiver
operating characteristic curve (AUC) = 0.8228) and remission (AUC = 0.8060) by using 10 SNPs and 6
clinical variables.

In a previous study, Lin et al. [4] proposed that the MFNN model can mediate the relationship
between biomarkers and the responsiveness of antidepressant treatment in MDD patients. Here,
we employed the same cohort of MDD patients and performed the first study on the prediction of
antidepressant treatment response and remission with 10 genetic variants and 6 clinical variables
by using a boosting ensemble algorithm in the Taiwanese population. Moreover, in order to foresee
treatment outcomes, we utilized the wrapper-based feature selection algorithm [13] to carry out a
small subset of suitable features from 10 genetic variants and 6 clinical variables. To the best of our
knowledge, no previous studies have been conducted to assess predictive algorithms for antidepressant
treatment outcomes in MDD patients by using boosting ensemble techniques with the wrapper-based
feature selection algorithm. We chose the boosting ensemble algorithm as this algorithm is routinely
used to deal with complicated applications in predictive modeling and may possess numerous
advantages such as better prediction, greater consistency, robust generalization, and the prevention of
overfitting [14,15]. The present study precisely compared the performance of the boosting ensemble
algorithm to extensively-used machine learning models, including MFNNs, logistic regression, SVM,
C4.5 decision tree, naïve Bayes, and random forests. Our analysis indicated that our boosting ensemble
framework with feature selection (using fewer biomarkers) led to comparable performance.

2. Results

2.1. The Study Cohort in the Taiwanese Population

In brief, there were 421 patients with MDD, including 257 antidepressant treatment responders and
164 treatment non-responders. In addition, there were 139 remission patients and 282 non-remission
patients. We also followed the previous study [4] and used six clinical variables in the subsequent
analysis, including age at the time of the initial study, gender, 21-item HRSD at baseline, marital status,
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the number of previous depressive episodes (prior to the time of the initial study), and the status of
suicide attempt history. In addition, demographic features (such as age, gender, and ethnicity) and
their range of values for the 421 Taiwanese patients were detailed before [4].

2.2. Boosting Ensemble Model for Antidepressant Treatment Response

In this study, we followed the previous study [4] and used 16 biomarkers including 10 genetic
variants and the aforementioned six clinical variables to build the predictive models for differentiating
antidepressant treatment responders from non-responders by employing the boosting ensemble
framework. The 10 genetic variants for antidepressant treatment response were detailed before [4],
including ABCA13 rs4917029, BNIP3 rs9419139, CACNA1E rs704329, EXOC4 rs6978272, GRIN2B
rs7954376, LHFPL3 rs4352778, NELL1 rs2139423, NUAK1 rs2956406, PREX1 rs4810894, and SLIT3
rs139863958 SNPs (see Methods).

First, for predicting antidepressant treatment response, we used the wrapper-based feature
selection algorithm (see Methods) to identify 15 features (including 10 SNPs and 5 clinical variables)
from the aforementioned 16 biomarkers. The selected five clinical variables encompass age at the time
of the initial study, gender, 21-item HRSD at baseline, the number of previous depressive episodes
(prior to the time of the initial study), and the status of suicide attempt history. That is, the clinical
variable of marital status was removed after applying the wrapper-based feature selection algorithm.
In addition, marital status was not linked to antidepressant treatment response (p = 0.107) based on the
chi-square test.

For the boosting ensemble model for forecasting antidepressant treatment response, we performed
two different datasets using the selected 15 features as well as the original 16 biomarkers. As indicated in
Table 1, the average value of AUC for the boosting ensemble prediction model with the wrapper-based
feature selection algorithm was 0.8265 (standard deviation = 0.0574) by using the selected 15 features.

Table 1. The results of repeated 10-fold cross-validation experiments for predicting treatment response
with genetic variants and clinical variables using the boosting ensemble model with feature selection, the
boosting ensemble model, logistic regression, SVM, C4.5 decision tree, naïve Bayes, and random forests.

Algorithm AUC Sensitivity Specificity Number of
Biomarkers

Boosting ensemble with
feature selection 0.8265 ± 0.0574 0.7651 ± 0.0574 0.7114 ± 0.0721 15

Boosting ensemble 0.8236 ± 0.0564 0.7517 ± 0.0602 0.7103 ± 0.0736 16

Logistic regression 0.8168 ± 0.0553 0.7493 ± 0.0626 0.7066 ± 0.0785 16

SVM 0.7306 ± 0.0685 0.7499 ± 0.0624 0.7113 ± 0.0785 16

C4.5 decision tree 0.6802 ± 0.0853 0.6926 ± 0.0654 0.6468 ± 0.0762 16

Naïve Bayes 0.8176 ± 0.0593 0.7439 ± 0.0630 0.6844 ± 0.0771 16

Random forests 0.7852 ± 0.0644 0.7078 ± 0.0670 0.6234 ± 0.0786 16

AUC = the area under the receiver operating characteristic curve; SVM = support vector machine. The data are
presented as mean ± standard deviation.

On the other hand, for forecasting antidepressant treatment response, the average value of
AUC for the boosting ensemble prediction model without feature selection was 0.8236 (standard
deviation = 0.0564) by using the original 16 biomarkers (Table 1). Although the average values of
AUC, sensitivity, and specificity for the boosting ensemble prediction model with the wrapper-based
feature selection algorithm were higher than the ones for the boosting ensemble prediction model
without feature selection, there was no statistically significant difference between these two average
AUC (p = 0.719), sensitivity (p = 0.109), and specificity (p = 0.915) values as shown in Table S1 in
the Supplementary file. Therefore, the boosting ensemble prediction model with the wrapper-based
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feature selection algorithm (using 15 biomarkers) gave comparable performance as the one without
feature selection (using 16 biomarkers) in terms of AUC, sensitivity, and specificity for antidepressant
treatment response.

2.3. Benchmarking for Antidepressant Treatment Response

To evaluate the performance of our approach for predictive models for antidepressant treatment
response, we compared the boosting ensemble model with other state-of-the-art methods, including
logistic regression, SVM, C4.5 decision tree, naïve Bayes, and random forests (Table 1). In addition,
the average value of AUC for the MFNN model was 0.8228± 0.0571 in terms of predicting antidepressant
treatment response [4].

After comparison, the boosting ensemble model with the wrapper-based feature selection
algorithm had the maximal AUC in all cases for antidepressant treatment response. The best AUC was
0.8265 ± 0.0574, which was based on the boosting ensemble model with the wrapper-based feature
selection algorithm (Table 1). Our analysis indicated that the boosting ensemble model with the
wrapper-based feature selection algorithm was well-suited for predictive models for antidepressant
treatment response.

However, there was no statistically significant difference in the average AUC, sensitivity, and
specificity values between logistic regression and the boosting ensemble model with the wrapper-based
feature selection algorithm (p = 0.225, 0.064, and 0.653, respectively) (Table S1). Similarly, there was no
statistically significant difference in the average AUC, sensitivity, and specificity values between the
MFNN model and the boosting ensemble model with the wrapper-based feature selection algorithm
(p = 0.648, 0.215, and 0.069, respectively) (Table S1). Therefore, the boosting ensemble prediction
model with the wrapper-based feature selection algorithm (using 15 biomarkers) gave comparable
performance as logistic regression and the MFNN model (using 16 biomarkers) in terms of AUC,
sensitivity, and specificity for antidepressant treatment response.

2.4. Boosting Ensemble Model for Antidepressant Remission

Moreover, we employed 16 biomarkers including 10 genetic variants and the aforementioned
6 clinical variables to build the predictive models for differentiating antidepressant remission
from non-remission by employing the boosting ensemble framework. The 10 genetic variants
for remission encompass ARNTL rs11022778, CAMK1D rs2724812, GABRB3 rs12904459, GRM8
rs35864549, NAALADL2 rs9878985, NCALD rs483986, PLA2G4A rs12046378, PROK2 rs73103153,
RBFOX1 rs17134927, and ZNF536 rs77554113 SNPs (see Methods) [4].

To foresee antidepressant remission, we utilized the wrapper-based feature selection algorithm (see
Methods) to identify 15 features (including 10 SNPs and five clinical variables) from the aforementioned
16 biomarkers for remission. The selected 5 clinical variables include age at the time of the initial study,
gender, 21-item HRSD at baseline, the number of previous depressive episodes (prior to the time of the
initial study), and the status of suicide attempt history. Namely, the clinical variable of marital status
was removed after applying the wrapper-based feature selection algorithm. In addition, marital status
was not linked to antidepressant remission (p = 0.898) based on the chi-square test.

For the boosting ensemble model for forecasting antidepressant remission, we conducted two
different datasets using the selected 15 features as well as the original 16 biomarkers. As shown in
Table 2, the average value of AUC for the boosting ensemble prediction model with the wrapper-based
feature selection algorithm was 0.8122 (standard deviation = 0.0702) by using the selected 15 features.



Pharmaceuticals 2020, 13, 305 5 of 12

Table 2. The results of repeated 10-fold cross-validation experiments for predicting remission with
genetic variants and clinical variables using the boosting ensemble model with feature selection, the
boosting ensemble model, logistic regression, SVM, C4.5 decision tree, naïve Bayes, and random forests.

Algorithm AUC Sensitivity Specificity Number of
Biomarkers

Boosting ensemble with
feature selection 0.8122 ± 0.0702 0.7807 ± 0.0584 0.6589 ± 0.0872 15

Boosting ensemble 0.8111 ± 0.0691 0.7768 ± 0.0597 0.6529 ± 0.0875 16

Logistic regression 0.7985 ± 0.0772 0.7722 ± 0.0645 0.6753 ± 0.0932 16

SVM 0.7149 ± 0.0738 0.7679 ± 0.0624 0.6620 ± 0.0910 16

C4.5 decision tree 0.6276 ± 0.0955 0.6912 ± 0.0619 0.5409 ± 0.0852 16

Naïve Bayes 0.8078 ± 0.0709 0.7608 ± 0.0649 0.6743 ± 0.0869 16

Random forests 0.7733 ± 0.0766 0.7432 ± 0.0523 0.5735 ± 0.0826 16

AUC = the area under the receiver operating characteristic curve; SVM = support vector machine. The data are
presented as mean ± standard deviation.

On the other hand, for forecasting antidepressant remission, the average value of AUC for the
boosting ensemble prediction model without feature selection was 0.8111 (standard deviation = 0.0691)
by using the original 16 biomarkers (Table 2). Although the average values of AUC, sensitivity,
and specificity for the boosting ensemble prediction model with the wrapper-based feature selection
algorithm were higher than the ones for the boosting ensemble prediction model without feature
selection, there was no statistically significant difference between these two average AUC (p = 0.911),
sensitivity (p = 0.641), and specificity (p = 0.628) values as shown in Table S2 in the Supplementary file.
Thus, the boosting ensemble prediction model with the wrapper-based feature selection algorithm
(using 15 biomarkers) obtained comparable performance as the one without feature selection (using
16 biomarkers) in terms of AUC for antidepressant remission.

2.5. Benchmarking for Antidepressant Remission

To evaluate the performance of our approach for predictive models for antidepressant remission,
we compared the boosting ensemble model with other state-of-the-art methods, including logistic
regression, SVM, C4.5 decision tree, naïve Bayes, and random forests (Table 2). In addition, the average
value of AUC for the MFNN model was 0.8060 ± 0.0722 in terms of predicting antidepressant
remission [4].

After comparison, the boosting ensemble model with the wrapper-based feature selection algorithm
had the maximal AUC in all cases. The best AUC was 0.8111 ± 0.0691, which was based on the boosting
ensemble model with the wrapper-based feature selection algorithm (Table 2). Our analysis suggested
that the boosting ensemble model with the wrapper-based feature selection algorithm was well-suited
for predictive models for antidepressant remission.

However, there was no statistically significant difference in the average AUC, sensitivity,
and specificity values between logistic regression and the boosting ensemble model with the
wrapper-based feature selection algorithm (p = 0.191, 0.330, and 0.200, respectively) (Table S2).
Similarly, there was no statistically significant difference in the average AUC, sensitivity, and specificity
values between the MFNN model and the boosting ensemble model with the wrapper-based feature
selection algorithm (p = 0.539, 0.365, and 0.781, respectively) (Table S2). Therefore, the boosting
ensemble prediction model with the wrapper-based feature selection algorithm (using 15 biomarkers)
gave comparable performance as logistic regression and the MFNN model (using 16 biomarkers) in
terms of AUC, sensitivity, and specificity for antidepressant remission.
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3. Discussion

To our knowledge, this is the first study to date to leverage a boosting ensemble predictive
framework with the wrapper-based feature selection algorithm for building predictive models of
antidepressant treatment response and antidepressant remission among Taiwanese patients with
MDD. Our analysis found that the boosting ensemble predictive framework with the wrapper-based
feature selection algorithm (using 15 biomarkers) performed comparably to other state-of-the-art
predictive models (using 16 biomarkers) such as logistic regression and the MFNN model in terms of
AUC for distinguishing antidepressant treatment non-responders from responders in MDD. We also
pinpointed that the boosting ensemble predictive framework with the wrapper-based feature selection
algorithm (using 15 biomarkers) achieved comparatively to other state-of-the-art predictive models
(using 16 biomarkers) such as logistic regression and the MFNN model in terms of AUC for forecasting
antidepressant remission in MDD. In addition, we identified five common clinical biomarkers
for predicting both antidepressant treatment response and antidepressant remission by using the
wrapper-based feature selection algorithm, namely age at the time of the initial study, gender, 21-item
HRSD at baseline, the number of previous depressive episodes, and the status of suicide attempt history.
By leveraging the SNP data and clinical variables, we establish the predictive models of antidepressant
treatment response and antidepressant remission by using the boosting ensemble predictive framework
with the wrapper-based feature selection algorithm. Our results also implicate that our boosting
ensemble predictive framework with feature selection may serve as an applicable bioinformatics
tool for performing predictive models for foreseeing antidepressant treatment response as well as
antidepressant remission with clinically meaningful accuracy. Accordingly, our boosting ensemble
predictive framework with feature selection is a proof of concept of machine learning predictive
approaches for drug efficacy prior to antidepressant therapy in MDD.

By using the wrapper-based feature selection algorithm, we eliminated one clinical variable,
namely marital status. We also verified that marital status was not linked to antidepressant treatment
response or antidepressant remission by using the chi-square test. In accordance with our study,
no effect of marital status was observed in several previous studies [16,17]. On the other hand, it has
been reported that married patients with MDD responded better to antidepressants as compared to
unmarried ones [18]. Possible explanations for the discrepancies regarding marital status may be due
to inadequate sample sizes, distinct study designs, diverse populations, and various confounding
effects [1,19].

Furthermore, it is worthwhile to bring the discussion on the similarity of the methods for carrying
out the prediction of antidepressant treatment response or antidepressant remission in MDD patients
in our study. We observed that the boosting ensemble model with the wrapper-based feature selection
algorithm (using 15 biomarkers), the boosting ensemble model (using 16 biomarkers), logistic regression
(using 16 biomarkers), and the MFNN model (using 16 biomarkers) were equivalent methods from
a statistics standpoint. That is, these four models had similar predictive power. First, it may be
advantageous to use the boosting ensemble model with the wrapper-based feature selection algorithm
because fewer biomarkers are required to achieve comparable performance, especially when the lack
of data occurs (for example, missing data such as marital status in this study) [13,20,21]. Second,
the logistic regression model generally serves as a basis for the benchmarking task [4]. Thus, it was
encouraging that our proposed boosting ensemble framework with fewer biomarkers was comparable
to the logistic regression model.

4. Materials and Methods

4.1. Study Population

The study subjects were mainly original to a previous study by Lin et al. [4]. Briefly, the study
cohort consists of 455 patients with MDD who were treated with selective serotonin reuptake inhibitors
(SSRIs), where the subjects were part of the International SSRI Pharmacogenomics Consortium



Pharmaceuticals 2020, 13, 305 7 of 12

project [4]. The study cohort was further reduced to 421 patients after quality control procedures
(see Section 4.3). Patients were assessed by board-certified psychiatrists regularly at baseline and
week 2, 4, and 8 using the 21-item HRSD [4]. Experiments were conducted in accordance with the
Declaration of Helsinki and approved by the Institutional Review Board of Taipei Veterans General
Hospital (VGHIRB No.: 2014-06-001B). Written informed consents were obtained from all participants
ensuring adequate understanding of the study.

4.2. Measurement

Measurements of treatment response and remission were obtained for participants as follows [4,22].
First, we measured the percentage change of HRSD (that is, %∆HRSD) and classified the participant
as “non-responder” if the percentage change was greater than −50%; otherwise, we classified the
participant as “responder” [4]. Second, we measured the sum score of 21-item HRSD at the 8th week of
antidepressant treatment and classified the participant as “non-remission” if the sum score was greater
than 7; otherwise, we classified the participant as “remission” [4].

4.3. Genotyping Dat and Quality Controls

For all subjects, we performed SNP genotyping by using Illumina HumanOmniExpressExome
BeadChips in the International SSRI Pharmacogenomics Consortium [4,23]. In addition, we carried
out quality control procedures (such as kinship, sample quality, and population stratification) and then
removed a total of 34 subjects [4]. As a result, we retained 421 MDD patients for the subsequent analysis.

4.4. Key SNPs

The key SNPs were detailed in the previous study by Lin et al. [4]. In brief, for predictive modeling
in antidepressant treatment response, we selected 10 top-rated SNPs showing an evidence of association
with antidepressant treatment response using a significant level of p < 7.5 × 10−5 in an odds ratio
analysis [4]. These 10 key SNPs encompass rs4917029 adjacent to the ABCA13 gene, rs9419139 adjacent
to the BNIP3 gene, rs704329 in the CACNA1E gene, rs6978272 in the EXOC4 gene, rs7954376 adjacent
to the GRIN2B gene, rs4352778 in the LHFPL3 gene, rs2139423 in the NELL1 gene, rs2956406 in the
NUAK1 gene, rs4810894 adjacent to the PREX1 gene, and rs139863958 adjacent to the SLIT3 gene [4].

In addition, for predictive modeling in antidepressant remission, we identified 10 top-rated
SNPs showing an evidence of association with antidepressant remission using a significant level of
p < 9.9 × 10−5 in an odds ratio analysis [4]. These 10 key SNPs encompass rs11022778 in the ARNTL
gene, rs2724812 in the CAMK1D gene, rs12904459 adjacent to the GABRB3 gene, rs35864549 adjacent to
the GRM8 gene, rs9878985 in the NAALADL2 gene, rs483986 in the NCALD gene, rs12046378 adjacent
to the PLA2G4A gene, rs73103153 adjacent to the PROK2 gene, rs17134927 in the RBFOX1 gene, and
rs77554113 adjacent to the ZNF536 gene [4].

4.5. Wrapper-Based Feature Selection Algorithm

In this study, we employed the wrapper-based feature selection algorithm [13], where the feature
selection algorithm acts as a wrapper around the predictive algorithm. The wrapper-based method
performs the best-first search for a good subset of features by using the predictive algorithm itself as
part of the procedure for assessing feature subsets [13,20]. The best-first search starts with an empty set
of features and then searches forward to choose a potential subset of features by a greedy hill-climbing
approach augmented with a backtracking technique [13,20].

4.6. Boosting Ensemble Predictive Framework

In this study, we integrated a boosting ensemble model with the wrapper-based feature selection
algorithm. Figure 1 shows the illustrative diagram of the boosting ensemble predictive framework
which is combined with the wrapper-based feature selection algorithm. More specifically, we utilized a
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boosting ensemble model called LogitBoost [24] and employed the Waikato Environment for Knowledge
Analysis (WEKA) software (which is available from https://www.cs.waikato.ac.nz/ml/weka/) [25] to
conduct the boosting ensemble predictive framework. All the experiments were conducted on a
computer with Intel (R) Core (TM) i5-4210U, 4 GB RAM, and Windows 7.

The LogitBoost algorithm is a boosting ensemble model, which incorporates the performance
of many weak predictive models (also referred to as base predictive models) to accomplish a robust
predictive model with higher accuracy [26]. Moreover, the LogitBoost algorithm employs a binomial
log-likelihood algorithm that adjusts the predictive error linearly, thereby tending to be robust in
handling outliers and noisy data [26]. The base predictive model we utilized is an MFNN, which consists
of one input layer, one hidden layer, and one output layer. Here, for the LogitBoost algorithm, we used
the default parameters of WEKA, such as 1.0 for the shrinkage parameter, 100 for the batch size, 3.0 for
the Z max threshold, and 10 for the number of iterations. In addition, for the MFNN model, WEKA’s
parameters were chosen as follows: the momentum = 0.01, the learning rate = 0.001 or 0.002, and the
batch size = 100 [4,26]. The momentum, learning rate, and batch size were set at the given values using
a grid search approach [27].
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Figure 1. The schematic illustration of the boosting ensemble predictive framework with feature
selection. First, the wrapper-based feature selection algorithm is performed to select a good subset of
features, which provides the input to the boosting ensemble predictive algorithm. Next, the idea of the
boosting ensemble predictive algorithm is to train base predictors in a sequential process such that each
base predictor manages to adjust its predecessor. A higher weight is then designated to samples that
are wrongly predicted by earlier rounds. In other words, base predictors are performed sequentially by
using a weighted version of the dataset within the training phase. Finally, the prediction is generated
by a weighted majority vote. In this study, we chose multi-layer feedforward neural networks (MFNNs)
as the base predictor.

https://www.cs.waikato.ac.nz/ml/weka/
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4.7. Machine Learning Algorithms for Benchmarking

For the benchmarking task in the present study, we employed five state-of-the-art machine
learning algorithms including logistic regression, SVM, C4.5 decision tree, naïve Bayes, and random
forests to compare with the boosting ensemble predictive framework. We performed the analyses for
these five machine learning algorithms using the WEKA software [25] and a computer with Intel (R)
Core (TM) i5-4210U, 4 GB RAM, and Windows 7.

As a basis for comparison, the logistic regression model is the standard approach for predictive
modeling in clinical applications [4].

The SVM model [28] utilizes a kernel function to map the training vectors into a higher dimensional
space and then identifies a linear separating hyperplane with the maximal margin [29]. In this study,
we used the polynomial kernel with the exponent value of 1.0.

The C4.5 decision tree model constructs decision trees in top-down processing and prunes the
decision trees using the notion of information entropy [20]. Here, we used the default parameters
of WEKA, such as 0.25 for the confidence factor and two for the minimum number of instances per
leaf node.

The naïve Bayes model measures the probability that a given instance belongs to a certain class
(for example, “non-responder” or “responder” in this study) by using the Bayes’ theorem [26]. Here,
we used the default parameters of WEKA for the naïve Bayes model, such as 100 for the batch size.

The random forests model builds a collection of decision trees during training and then produces
the class that is the mode of the classes among the individual trees [30]. Here, we used the default
parameters of WEKA for the random forests model; for example, 100 for the batch size and 100 for the
number of iterations.

4.8. Evaluation of the Predictive Performance

In this study, we utilized the receiver operating characteristic (ROC) methodology and determined
the AUC to assess the performance of predictive models [20,29,31]. The better the prediction model,
the higher the AUC [20,31]. In addition, we calculated sensitivity (namely, the proportion of correctly
predicted responders of all tested responders) as

Sensitivity = True Positive/(True Positive + False Negative)

and specificity (namely, the proportion of correctly predicted non-responders of all the tested
non-responders) as

Specificity = True Negative/(True Negative + False Positive)

Furthermore, we performed the repeated 10-fold cross-validation method to examine the
generalization of predictive models [20,32]. In brief, the whole dataset was randomly split into
ten separate segments. The predictive model used nine-tenths of the dataset for training and the
remaining tenth of the dataset for testing. Then, the previous step was repeated nine more times by
using distinct nine-tenths of the dataset for training and a distinct tenth of the dataset for testing.
Finally, the data are presented as mean ± standard deviation.

The Student’s t test was conducted to measure the difference in the means of two continuous
variables (for example, AUC, sensitivity, and specificity) [4].
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5. Conclusions

In conclusion, we proposed a boosting ensemble predictive framework with the wrapper-based
feature selection algorithm for predicting antidepressant treatment response and remission in Taiwanese
patients with MDD. The present results suggest that our boosting ensemble predictive framework
with the wrapper-based feature selection algorithm may leverage a feasible way to create predictive
algorithms for forecasting antidepressant treatment response and remission with clinically meaningful
accuracy. Furthermore, we revealed the similarity of the machine learning methods in terms of
predictive performance when we compared the boosting ensemble predictive framework (with fewer
biomarkers) to other state-of-the-art models such as MFNNs and logistic regression. In future work,
we will further explore the utility of the boosting ensemble predictive framework and investigate ways
to demonstrate the superiority of new approaches. Therefore, we could assume that the analysis of the
present study might be generalized for machine learning studies of pharmacogenomics in foreseeing
treatment response and remission for human diseases. Moreover, the results would be utilized to build
bioinformatics tools in pharmacogenomics within the next few years. All in all, it is crucial to explore
further findings into the role of the boosting ensemble predictive framework examined in this study by
using various independent samples of replication studies.
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model with feature selection and other models including the boosting ensemble model, logistic regression, SVM,
C4.5 decision tree, naïve Bayes, random forests, and MFNN models.
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