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Abstract

Critical illness is hallmarked by major changes in all hypothalamic–pituitary–peripheral 
hormonal axes. Extensive animal and human studies have identified a biphasic pattern in 
circulating pituitary and peripheral hormone levels throughout critical illness by analogy 
with the fasting state. In the acute phase of critical illness, following a deleterious event, 
rapid neuroendocrine changes try to direct the human body toward a catabolic state to 
ensure provision of elementary energy sources, whereas costly anabolic processes are 
postponed. Thanks to new technologies and improvements in critical care, the majority 
of patients survive the acute insult and recover within a week. However, an important 
part of patients admitted to the ICU fail to recover sufficiently, and a prolonged phase of 
critical illness sets in. This prolonged phase of critical illness is characterized by a uniform 
suppression of the hypothalamic–pituitary–peripheral hormonal axes. Whereas the 
alterations in hormonal levels during the first hours and days after the onset of critical 
illness are evolutionary selected and are likely beneficial for survival, endocrine changes 
in prolonged critically ill patients could be harmful and may hamper recovery. Most 
studies investigating the substitution of peripheral hormones or strategies to overcome 
resistance to anabolic stimuli failed to show benefit for morbidity and mortality. Research 
on treatment with selected and combined hypothalamic hormones has shown promising 
results. Well-controlled RCTs to corroborate these findings are needed.

Introduction

Critical illness is defined as the presence of acute, life-
threatening organ dysfunction requiring vital organ 
support and can be evoked by major trauma, extensive 
surgery, large-scale burn injuries and severe medical 
diseases. A hallmark of critical illness, is the immediate 
initiation of multiple physiologic processes in an 
attempt to rebalance the complex dynamic equilibrium, 
commonly known as homeostasis. This so-called ‘stress 
response’ comprises many tightly controlled neural 
and endocrine adaptations to provide sufficient energy 
and hemodynamic stability to survive and overcome 
the immediate phase after onset of critical illness. 
Supported by advancements in modern health care such 
as mechanical ventilation, renal replacement therapy 
or broad-spectrum antibiotics, the majority of critically 
ill patients will survive the acute phase of their illness. 

However, a significant number of patients admitted to 
the ICU fail to recover sufficiently within a few days 
and enter a more prolonged phase of critical illness, also 
known as ‘chronic critical illness’ (1). Although timing of 
this transition is unclear, after approximately 10 days of 
critical illness, the severity of illness upon admission is no 
longer predictive for mortality (2). Depending on the used 
criteria, 5–30% of the patients admitted to an ICU will 
eventually suffer from chronic critical illness.

Independent of the underlying cause for admission 
to the ICU, the hormonal stress response to critical illness 
follows a biphasic pattern related to the time course of 
critical illness (3, 4). A first phase, further referred to as 
the acute phase of critical illness, starts within minutes 
or hours after the occurrence of the deleterious event. An 
evolutionary hormonal ‘fight or flight’ state is activated 
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by the abundancy of released proinflammatory cytokines, 
the overwhelming activation of sensory neurons, 
the release of catecholamines and/or the presence of 
pathogens in the bloodstream (5, 6). Further augmented 
by an illness-induced reduction in nutritional intake, 
hormonal changes during the acute phase of critical 
illness are directing the organism toward a catabolic state 
in an attempt to provide sufficient energy to overcome 
and survive the insult. A reduction in cellular oxygen  
and/or energy delivery, and insufficiently activated defense 
mechanisms induce mitochondrial dysfunction and 
consequently, a downregulation of cellular metabolism (7, 
8). Although survival from previously lethal conditions is 
enhanced by the provided critical care, recovery does not 
always follow fluently. When patients outlive the acute 
phase of critical illness but remain dependent on vital 
organ support, sometimes for multiple weeks, the central 
activation of most neuroendocrine axes is attenuated, 
together with complex alterations in peripheral  
hormone levels.

Two tandem key players in regulating the stress 
response in critically ill patients are the hypothalamus 
and pituitary. The hypothalamus, the major control 
center of the different neuroendocrine axes, gains a 
complex set of sensory input from a variety of internal and 
external stimuli. This collection of information together 
with the input of endocrine feedback loops triggers the 
hypothalamus to produce and secrete tropic hormones 
in the hypophyseal portal system mainly targeting the 
anterior pituitary. Highly regulated by these stimulating 
or inhibiting hypophysiotropic hormones and various 
feedback loops, the anterior pituitary produces a set of 
hormones targeting peripheral glands, such as the thyroid, 
the adrenal or the gonads or end organs directly such as 
the liver, muscle and bone.

In this paper, we will review the anterior pituitary 
function and the five main neuroendocrine axes during 

health and critical illness, both in the acute and the 
chronic phase.

The five main neuroendocrine axes

The somatotropic axis during health

Growth hormone (GH), the most abundant pituitary 
hormone, is synthesized by the somatotropes in the 
anterior pituitary. Hypothalamic GHRH stimulates 
production and release of stored GH into the bloodstream. 
Counteracting, somatostatin inhibits production of both 
GHRH and GH. Upon stimulation, GH is secreted in a 
pulsatile manner, noticeable by the highly fluctuating 
serum concentrations, with peaks every 3–4 h followed by 
a decline down to undetectable levels (Fig.  1). Whereas 
GHRH levels positively correlate with the amplitude of the 
GH peak, high somatostatin levels determine the end of the 
GH release and thus the initiation of the interpulse-trough 
(9). On top of this straightforward interplay between two 
regulating hormones, a third key player in GH production 
is the in the stomach synthesized hormone ghrelin. 
Through binding with the GH secretagogue receptor 
(GHS-R) at the level of the pituitary and hypothalamus, 
ghrelin stimulates, directly and indirectly, pituitary 
secretion of GH. Ghrelin has similar but less potent effects 
on pituitary ACTH and PRL secretion (10). Furthermore, 
ghrelin has a profound orexigenic effect, which appears 
to be mediated by the GHS-R but in a GH-independent 
fashion, as suggested by GH-deficient animal studies (11). 
GH, acting in a direct and indirect manner, the latter by 
stimulating the hepatic production of the para-/autocrine 
hormone insulin-like growth factor-I (IGF-I), is named 
for one of its main functions: mediating linear bone 
and organ growth. Whereas adequate nutritional intake 
and adequate sex hormone levels are the main growth 
promoters during respectively infancy and puberty, 

Figure 1
Changes in GH during critical illness. During the 
acute phase of critical illness, the nocturnal 
secretion of growth hormone is augmented with 
an increase in pulse amplitude and pulse 
frequency. In prolonged critical illness this 
pulsatile pattern becomes blunted. Adapted, with 
permission, from (3).
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GH takes up this role during childhood. In adults, GH 
remains important as a regulator of metabolism. The set 
of complex actions of GH and IGF-I on carbohydrate, fat 
and protein metabolism is highly variable depending on 
the nutritional status of the individual. In well-nourished, 
healthy individuals IGF-I stimulates protein synthesis and 
peripheral free fatty acid uptake, whereas in prolonged 
fasting, GH will enhance the release and oxidation of free 
fatty acids and antagonize insulin actions.

The somatotropic axis during critical illness

GH serum concentrations start to rise in the hours 
after the onset of critical illness. An increment in both 
amplitude and frequency of GH peaks and the loss 
of the typical troughs during the interpulse periods 
contribute to the elevated serum concentrations (Fig. 1) 
(4, 12, 13). Furthermore, the hepatic GH receptor 
function is oppressed, often referred to as ‘peripheral 
GH resistance’, leading to low circulating levels of  
IGF-I, IGF-binding protein 3 (IGFBP-3), its acid label subunit 
(ALS) and GH-binding protein (GHBP) (14). Combined, 
these alterations in the GH axis lead to a shift from the 
anabolic effects of IGF-I to more catabolic actions of GH, 
such as lipolysis, insulin antagonism and to immune 
stimulation (15). When recovery does not ensue within 
a week and patients enter the chronic phase of critical 
illness, the pulsatile pattern of GH secretion fades and GH 
peaks become blunted with IGF-I, IGFBP-3 and ALS levels 
remaining low (Fig. 1). Interpulse GH concentrations also 
decrease but still appear to be higher than in healthy 
subjects (16). Whereas in the acute phase of critical illness 
hepatic GH resistance has a key role in altering the GH 
axis, the main driver of hyposomatotropism during the 
prolonged phase of critical illness is thought to be an 
impaired hypothalamic drive. Hepatic GH resistance does 
not seem to persist during chronic critical illness (17). This 
hypothesis is supported by a high GH responsiveness to 
administration of GH secretagogues (GHRPs) in chronic 
critically ill patients. Indeed, restoration of pulsatile GH 
secretion pattern can be evoked by the administration 
of GHRP, alone or with the co-administration of GHRH, 
leading to a six-fold and ten-fold increase in amplitudes of 
GH serum peaks, respectively. Strikingly, administration 
of GHRH alone is not capable of restoring the typical 
pulsatile pattern of GH secretion (18). Besides an altered 
hypothalamic drive, another possible contributor to 
the attenuated GH levels during chronic critical illness 
may be the scarcity of the active form of ghrelin, the 
endogenous ligand of the GHS receptor and a powerful 

GH secretagogue (19). The low circulating IGF-I and its 
binding proteins levels are associated with biochemical 
markers of impaired anabolism, such as low serum 
osteocalcin and leptin (20). The chronic GH deficiency, 
with reduced anabolism and ongoing catabolism, thus 
likely contributes to the wasting syndrome, a hallmark of 
chronic critical illness.

A large RCT, investigating the effect of high-dose GH 
injection to prolonged critically ill patients, unexpectedly 
marked a doubling in mortality in the intervention cohort 
(21). Since GH resistance at least partially resolves in the 
chronic phase, it is likely that such high doses of GH, 
and consequently high levels of IGF-I, evoked toxic side 
effects such as excessive fluid retention, hypercalcemia 
and pronounced insulin resistance with hyperglycemia. 
Although small studies showed the ability of GHRP-2 to 
restore a normal GH pulsatile pattern in severe ill patients, 
and of the combination of GHRP-2 and thyrotropin-
releasing hormone (TRH) to induce an anabolism and 
suppress catabolism in prolonged critically ill patients (16, 
22), the clinical outcome of infusion with GH secretagogues 
has not yet been studied. Also substitution with ghrelin 
has recently been investigated in smaller animal and  
in vitro studies and appeared to enhance autophagy, reduce 
catabolism and improve hemodynamics (23). As ghrelin 
induces appetite, infusion of ghrelin during the chronic 
phase of critical illness when patients restart oral intake 
may enhance food intake and could lead to improvement 
in clinical outcome (24). Large-scale RCTs in humans, to 
corroborate these findings, have not yet been performed.

The thyroid axis during health

Stimulated by the hypothalamic TRH, thyrotropes in the 
pituitary gland produce and secrete thyroid-stimulating 
hormone (TSH) in a dual fashion: a basal secretion with 
a circadian pattern (nocturnal levels up to a twofold of 
daytime levels) and pulses approximately every 90 min (25). 
TSH binds the G-protein-coupled TSH receptor (TSH-R),  
predominantly but not exclusively found on thyroidal 
cells, adipocytes and orbital fibroblasts. Activation of 
the thyroidal TSH-R induces thyroid gland growth, 
transformation of cell morphology, iodine metabolism 
and synthesis of thyroid hormones thyroxin (T4) and 
to a lesser extent triiodothyronine (T3). In peripheral 
tissues, T4 crosses the cell membrane through specific 
transporters and subsequently undergoes outer- or 
inner-ring deiodination, resulting in the formation of 
respectively the metabolic active T3 or the metabolic 
inactive reverse T3 (rT3). The nuclear thyroid hormone 
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receptor (THR) exists in three active isoforms (TRα1 and 
TRβ1 and 2) and one inactive isoform TRα2. As the THRs 
are found in virtually every human organ, physiologic 
effects of thyroid hormones are heterogeneous, ranging 
from basal cellular metabolism to growth and facilitating 
local tissue functions. Thyroid hormones T4 and T3 exert 
inhibitory feedback control on both the hypothalamus 
and pituitary.

The thyroid axis during critical illness

Within hours after the onset of critical illness, circulating 
levels of T3 rapidly decline, whereas rT3 plasma 
concentrations increase. These characteristic changes 
are due to an altered peripheral conversion of T4 with a 
typical decrease in the peripheral activity of the activating 
type 1 deiodinase (D1) and increase in the inactivating 
type 3 deiodinase (D3) (26, 27). Apart from the absence 
of the nocturnal surge in TSH and a swift and transient 
rise in TSH and T4, both hormone levels remain relatively 
normal (Fig. 2) (28). These changes are often referred to 
as ‘non-thyroidal illness’ (NTI). Alterations in the affinity 
of thyroid hormone-binding proteins, thyroid hormone 
transporters and the nuclear THR further contribute to 
the NTI.

Low circulating levels of T3 reduce energy 
expenditure, but also to optimize bacterial killing 
capacity through increased D3 activity in cells of the 
innate immune system, which could play a role in 
the observed reduction in nosocomial infections and 
therefore could be beneficial, at least in the acute phase 
of critical illness (29, 30, 31, 32). When patients remain 
dependent on vital organ support for multiple days or 
even weeks and are under full nutritional support, by 
enteral and/or parenteral feeding, TSH and T4 levels 
start to decline with T3 levels remaining low. Similar 
to the observed alterations of the GH axis during 

prolonged critical illness, the pulsatile pattern of TSH 
fades and secretory peaks become blunted (Fig. 2) (33). 
Interestingly, in chronic critical illness, peripheral 
tissues seem to adapt to the sustained low T3 levels by 
enhancing local hormone availability and effectiveness. 
Indeed, a peripherally increased expression of the 
thyroid membrane transporter MCT-8, upregulated D2 
expression and increased TRα1/TRα2 ratio expression 
have been observed (34, 35). Nevertheless, ongoing low 
levels of T3 have been associated with more pronounced 
catabolism and worse outcome (18, 36). Furthermore, 
ICU patients who received an infusion of TRH combined 
with GHRP-2 showed normalized thyroid hormone levels 
and lowered markers of hypercatabolism (18). During the 
acute phase of critically ill patients, especially with the 
concomitantly reduced nutritional intake, treatment of 
the low T3 levels, in the absence of preadmission thyroid 
pathology, is probably not indicated (37). Whether or 
not the central hypothyroidism during the chronic 
phase of critical illness would benefit from treatment is 
not yet clear from available small human studies (38). In 
animal models, normal substitution doses had no impact 
on thyroid hormone levels, due to the highly increased 
metabolism. High doses of T4, T3 or the combination 
could restore normal hormone serum concentrations but 
led to overtreatment with further suppression of TSH and 
rise in rT3 (39, 40, 41). Interestingly, TRH infusion alone 
led to a twofold increase in basal TSH secretion, and 
co-infusion of TRH and GHRP-2 increased pulsatile TRH 
secretion by five-fold in prolonged critically ill patients 
(18). In addition, also anabolic markers (osteocalcin 
and leptin) appeared to be higher compared to placebo-
infused controls (20). In contrast to T3 and T4 infusions, 
treatment with a hypothalamic releasing factor allows 
normal feedback inhibition, but until today RCT’s testing 
this treatment on short- and long-term clinical outcome 
of prolonged critically ill patients are lacking.

Figure 2
Changes in TSH during critical illness. The typical 
nocturnal surge of TSH disappears during the 
entire course of critical illness, mean TSH levels in 
the acute phase are not dramatically altered. 
Conversely, TSH levels are distinct lowered during 
the chronic phase of critical illness. Adapted, with 
permission, from (3).
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The adrenal axis during health

Pro-opiomelanocortin (POMC), synthesized in 
the corticotropic cells of the pituitary, is spliced to 
adrenocorticotropic hormone (ACTH) by proteolytic 
cleavage enzymes. ACTH is stored into dense core secretory 
granules and released into systemic circulation either 
spontaneously, in pulses every 30–40 min with a diurnal 
rhythm or acutely, upon stimulation with hypothalamic 
CRH (42). CRH activity is potentiated by the presence of 
vasopressin (VP). At the adrenal gland, ACTH binds to the 
G-protein-coupled melanocortin-2 receptor (MC2R). MC2R 
activation leads to increased expression of cholesterol 
uptake receptors (such as low-density lipoprotein-receptor) 
and the cholesterol synthesis enzyme 3-hydroxl-3-methyl-
glutaryl-coenzym A reductase (HMG CoA reductase). 
Unesterified intracellular cholesterol is then converted 
to prenenolone by P450 side chain cleavage enzyme. The 
expression of this enzyme, that is, the rate-limiting step 
in adrenal steroidogenesis, is also upregulated by ACTH-
induced MC2R activation (43). Likewise, the final enzyme 
for cortisol synthesis, 11-β-hydroxylase, which converts 
11-deoxycortisol into cortisol is upregulated upon ACTH 
stimulation. In contrast to pituitary hormones, steroid 
hormones are not stored in the adrenal gland but directly 
secreted after synthesis. This at least partially explains 
the tight correlation between serum ACTH and serum 
cortisol concentrations during health. Cortisol mitigates 
its own production via negative feedback inhibition on 
the hypothalamus and the pituitary.

Due to its lipophilic nature, 90% of the total 
circulating cortisol is bound to a protein carrier (80% to 
cortisol-binding globulin (CBG) and 10% to albumin), 
the other 10% is unbound in the blood and therefore 
biologically active. Cortisol plays an important role in the 
stress response and contributes to the provision of energy 
by increasing catabolism and delaying anabolism. Other 
important systems requiring adequate levels of cortisol 
for normal functioning include the immune system, 
cardiovascular system, fluid and electrolyte homeostasis. 
Cortisol exerts its effects by binding to the intracellular 
glucocorticoid receptor (GR). Unbound, inactive GR 
resides in the cytoplasm as part of a multimeric complex 
with one or more heat shock proteins (hsp90). Upon 
cortisol binding, the multimeric complex dissolves and 
GR is transported to the nucleus where it regulates gene 
expression. Several receptor isoforms and subtypes with 
unique functional profiles are derived from a single gene 
(NR3C1) by alternative splicing and posttranslational 
modifications.

The adrenal axis during critical illness

A hallmark of critical illness, irrespective of the causal 
event, is the increase in plasma concentrations of the 
stress hormone cortisol. It was long assumed that the 
sustained several-fold rise in cortisol levels following a 
deleterious insult was caused by ongoing central, ACTH-
driven adrenal cortisol synthesis and secretion (44). 
However, this concept now no longer stands as several 
studies have reported low rather than high ACTH plasma 
concentrations already from admission to the ICU onward 
(Fig. 3) (45). Moreover the diurnal rhythm of ACTH and 
cortisol seemed to be lost (45). In a recent prospective 
observational study, it was demonstrated that this ACTH–
cortisol dissociation was present in all ICU patients, 
with or without sepsis/septic shock and survivors and 
non-survivors alike, and that it protracted throughout 
ICU stay. However, after a prolonged ICU stay of more 
than 4 weeks, cortisol levels decreased to normal levels, 
without a concomitant rise in ACTH (46).

As ACTH levels are low, the increase in systemic 
cortisol availability has to be brought about by non-ACTH-
driven mechanisms. By using stable isotopes, elevated 
cortisol levels could indeed be attributed to suppressed 
cortisol metabolism, and, only in patients suffering from 
hyperinflammation, to a moderately increased cortisol 
production (47). The attenuated cortisol metabolism seems 
to be brought by reduced hepatic expression and activity 
of cortisol-metabolizing enzymes 5α- and 5β-reductase and 
renal 11β-hydroxysteroid dehydrogenase-2 (11βHSD2) 
(47). Cortisol-binding proteins CBG and albumin, 
also suppressed throughout ICU stay, further increase 
circulating levels of free cortisol and thus systemic 
cortisol availability (46, 47). A recent experimental mouse 
study documented a key role of reduced signaling of the 
hepatic GR in both suppression of cortisol metabolism 
and lowering levels of cortisol-binding proteins and thus 
attributing to hypercortisolemia (48).

The local tissue effects of highly elevated free cortisol 
levels during critical illness, such as modulation of the 
immune response, enhancement of hemodynamics and 
provision of energy, could also be affected by altered GR 
expression in various target organs. In analogy with the 
observed reduction of hepatic GR expression, the activity 
and expression of the active GR isoform (GRα) in target 
cells found in immune tissue seems to be reduced, whereas 
the negative GR isoform (GRβ) was transiently increased 
(49). This so-called ‘glucocorticoid resistance’, if present 
in other tissues such as the vasculature, and seemingly 
associated with disease severity, would pose a problem 
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during critical illness as it would counteract any potential 
beneficial effects of cortisol (50). However, further research 
on tissue-specific changes of GR expression during critical 
illness is required.

Altogether, depressed ACTH-dependent secretion 
altered cortisol metabolism, and tissue-specific 
glucocorticoid resistance could lead to a state during 
critical illness in which the systemic cortisol availability 
could be insufficient for survival and recovery. Initially 
referred to as ‘relative adrenal insufficiency’, this state is 
nowadays labeled ‘critical illness-related corticosteroid 
insufficiency’ (CIRCI). In contrast to the occurrence of 
absolute adrenal failure in critically ill patients, neither 
a clear definition nor reliable diagnostic criteria nor an 
irrefutable treatment of CIRCI exist, as illustrated by 
the lack of consensus in recent guidelines (51, 52, 53). 
However, recent research revealed that cosyntropin 
stimulation tests are confounded by the increased cortisol 
distribution volume during critical illness. Indeed, low 
total cortisol responses to cosyntropin during critical 
illness rather reflect the increased cortisol distribution 
volume, given the low plasma binding, and can thus 
not provide reliable information on the functional status 
of the adrenal cortex (52). Controversy regarding the 
treatment of CIRCI and also regarding the overall use of 
glucocorticoids in septic shock, was further evoked by the 
recent publication of two large RCTs: the APROCCHSS 
trial and the ADRENAL trial (54, 55). In the APROCCHSS 
trial, irrespective of CIRCI as defined by the response to 
cosyntropin, 90-day all-cause mortality was lower among 
patients receiving hydrocortisone-plus-fludrocortisone 
compared to placebo, whereas this outcome did not 
significantly differ in the ADRENAL trial (54, 55).  

Although differences in inclusion and exclusion criteria, 
studying different stages of sepsis, as well as in the 
therapeutic agent, dosage and posology used, could partly 
explain the discordant findings, the studies contribute to 
the long-lasting controversy of adjunctive glucocorticoid 
therapy in critical illness (56).

The recent findings that low cortisol plasma-binding 
proteins and suppressed cortisol breakdown determine the 
systemic free cortisol availability during the first 4 weeks 
of critical illness, but that cortisol plasma concentrations 
return to normal levels beyond that timeframe, despite 
high severity of illness, suggests that especially these 
prolonged stayers might require treatment (46). Indeed, 
the persistently low levels of ACTH during a prolonged 
ICU stay could eventually lead to adrenal atrophy. This 
hypothesis is supported by the ten-fold higher prevalence 
of absolute adrenal insufficiency in ICU long-stayers 
(>14  days) compared to shorter-stayers (57). Also, only 
for patients with a prolonged ICU stay, adrenal atrophy 
and suppressed ACTH-regulated gene expression was 
documented postmortem (58). Whether these long 
stay patients would benefit from treatment with ACTH 
(or CRH) infusion, over exogenous glucocorticoids, in 
analogy with what has been described for the thyroidal 
axis should be investigated in future studies.

The lactotropic axis during health

In non-pregnant humans, lactotropes secrete a 
burst of prolactin (PRL) every 2–3 h, varying in 
amplitude throughout the day (59). Unlike for 
other hypophyseal hormones, lactotropes show 
a high grade of spontaneous intrinsic activity. 

Figure 3
Changes in the ACTH and cortisol during critical 
illness. (A) The ACTH–cortisol dissociation, that is 
high levels of cortisol and low levels of ACTH, 
during the first week of ICU stay. Adapted, with 
permission, from (47). (B) The time course of HPA 
axis alteration beyond the first week of critical 
illness. The ACTH–cortisol dissociation appears to 
continue throughout the first month of ICU stay. In 
‘very long stay’ patients (>4 weeks in ICU) cortisol 
and ACTH plasma concentrations gradually return 
to normal levels, despite their severity of illness. 
The blue areas indicate the range of healthy 
individuals. Adapted by permission from Springer 
Nature: Intensive Care Medicine; Adrenocortical 
function during prolonged critical illness and 
beyond: a prospective observational study, 
Peeters B, Meersseman P, Vander Perre S, 
Wouters PJ, Vanmarcke D, Debaveye Y, Billen J, 
Vermeersch P, Langouche L & Van den Berghe G; 
copyright 2018 (46).
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Indeed, when hypothalamic control is withheld,  
an unrestrained secretion of PRL is observed (60). In the 
normal physiological state, however, this intrinsic high-
secretory tone is suppressed by dopamine (DA). Far less 
potent than DA, several other hormones such as TRH, 
oxytocin and vasoactive intestinal peptide (VIP) are 
known stimulators of PRL synthesis and secretion. Besides 
its important reproductive role by stimulating lactation 
and maternal behavior, PRL also affects several other 
functions such as maintenance of immune competence 
of lymphocytes and liver growth and is crucial for 
survival (61).

The lactotropic axis during critical illness

In patients with sepsis or septic shock a clear rise in PRL 
levels is seen in the first days after the occurrence of a 
stressful life-threatening event (62). Interestingly, in one 
study of critically ill patients without sepsis or shock, 
prolactin levels on admission did not differ with those 
of matched healthy controls (63). When critical illness 
is prolonged, PRL levels start to decrease and eventually 
becomes suppressed. The mechanism behind this 
observation is not clear; however, a role of endogenous 
and exogenous DA has been suggested (33).

The gonadal axis during health

Like most other hypothalamic hormones, GnRH is 
discharged in pulses into the hypophyseal portal system. 
At the level of the pituitary, GnRH stimulates the 
gonadotropes to synthesize and release stored luteinizing 
hormone (LH) and follicle-stimulating hormone (FSH). 
GnRH pulses are typically seen every 60–90 min and seem 
to be crucial for normal reproductive functioning (64). 
Whereas fluctuating gonadotropin-releasing hormone 
(GnRH) serum concentrations highly correlate with 
LH serum concentrations, FSH peaks are obscured and 
fluctuate less, partially caused by the longer biological 
half-life of FSH (65). LH stimulates steroidogenesis, in 
men predominantly testosterone by the testicular Leydig 
cells and in women primarily estrogens by the ovaries. 
A distinct function of LH in women is induction of 
ovulation and luteinization, both initiated by the surge in 
LH in the middle of the menstrual cycle. FSH stimulates 
folliculogenesis in the ovaries and spermatogenesis by 
the testicular Sertoli cells. Various fast and slow feedback 
loops both negative and positive, often intercrossing 
with other hormonal axes, reflect the complexity of the 
gonadal axis.

The gonadal axis during critical illness

Gonadal steroid levels decrease after the onset of severe 
illness. In men, testosterone levels drop in face of 
apparently normal or even high LH levels (66). Cytokines 
that can reduce Leydig cell function and increase 
peripheral aromatization of androgens seem to mediate 
this effect (67). When recovery is not initiated and critical 
illness is prolonged, testosterone levels further decrease 
and may become unmeasurably low (68). The pulsatile 
pattern and amplitudes of LH fall and eventually lead to 
severe hypogonadotropism (69).

Levels of female gonadal hormones, estrogen and 
progesterone, are decreased in women who experience 
abnormal levels of stress, such as women with anxiety 
disorders, female athletes and women with various chronic 
diseases. This estrogen and progesterone deficiency is 
presumed to be the result of a combination of a central 
inhibition of the gonadal axis, through increased portal 
levels of CRH, because of an activated HPA axis and 
inhibition at the level of the hypothalamus, pituitary 
and ovaries exerted by the increase in systemic cortisol 
availability (70). However, most studies supporting this 
hypothesis arise from research studying minor physical 
and psychological stress. Furthermore, as described 
earlier, the central component of the HPA axis is rather 
suppressed instead of activated during prolonged critical 
illness. Importantly, most female ICU patients are post-
menopausal and have an altered hypothalamic–pituitary–
gonadal axis homeostasis. In these patients a paradoxically 
rise in estrogen levels is seen, presumably caused by an 
increase in peripheral aromatase activity (71).

In the early 2000s, a growing body of evidence 
suggested that the administration of the anabolic 
synthetic androgenic steroid oxandrolone in patients 
suffering from severe burns was associated with shorter 
hospital stay (72). Furthermore, in pediatric burn patients 
the use of oxandrolone was associated with fewer long-
term catabolic complications such as burn-induced 
growth arrest (73). Despite the promising results of 
supplementation of estrogens in several animal models 
of critical illness, including traumatic brain injury and 
hemorrhagic shock, well-designed human studies are 
lacking (74, 75).

Studies on the use of androgens in prolonged critical 
illness failed to demonstrate any conclusive clinical 
benefit. Exogenous pulsatile GnRH administration, given 
together with GHRP2 and TRH infusion, induced an 
anabolic response, but research focusing on the potential 
clinical outcome benefit is still lacking (76).
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Are the neuroendocrine changes illness- or 
fasting-induced in the acute phase?

Cytokines

At the onset of critical illness, cells from the innate immune 
system are activated by binding of pathogen-associated 
and damage-associated molecular patterns on the 
pattern recognition receptors. Following such activation, 
most leukocytes will release a number of small protein 
mediators, such as cytokines, which play an important 
role not only in the proinflammatory, but also in the 
anti-inflammatory response to critical illness. Circulating 
cytokines are able to induce or repress the production 
of other cytokines, creating a complex interplay, also 
called ‘cytokine networks’, with an important role in the 
pathogenesis of critical illness (77, 78).

Cytokines have been proposed to play an important 
role in the increase in circulating levels of pituitary 
hormones GH and PRL, the swift, transient rise in TSH 
and the decrease in plasma concentrations of ACTH, 
possibly through mediating an inflammatory response 
in the pituitary gland (79, 80). Moreover, at the level of 
the hypothalamus, cytokines as stimulators of local nitric 
oxygen (NO) secretion were shown to be able to induce 
apoptosis of hypothalamic neurons and glial cells (81). 
In a small post mortem study, reduced pituitary ACTH 
levels without a concomitant rise in hypothalamic CRH 
or vasopressin expression with increased iNOS expression 
have been reported in patients who died after septic shock 
(82). In contrast, the observation that in patients who 
recovered from critical illness ACTH and cortisol levels 
rose to supra-normal levels 1 week after ICU discharge (46) 
and suppressed ACTH responses to CRH infusion in the 
prolonged but not acute phase of critical illness (83), argues 
against a severely damaged hypothalamus and pituitary in 
critically ill patients. Moreover, in an experimental study, 
neutralization of TNF did not influence circulating levels 
of thyroid hormone or TSH (84). These mechanisms are 
distinct from the anatomical damage to the hypothalamus 
and/or the pituitary present in some patients suffering 
from traumatic brain injury (85).

Central feedback inhibition

Besides cytokines, the increase in circulating GH can 
also be explained by a decrease in feedback due to 
low effector hormone IGF-I (52). Also, the observed 
increase in peripheral PRL levels could be mediated by 
altered stimulating and inhibiting effects of dopamine,  

oxytocin and VIP (80). High circulating levels of total 
and free cortisol on the other hand could exert a strong 
inhibitory effect on the hypothalamus and pituitary 
through negative feedback (83). This hypothesis is 
supported by the observation that ACTH levels fully 
recover or even become elevated after ICU discharge 
(46). Among other potential contributors to a centrally 
suppressed HPA axis are bile acids, as these are elevated 
during critical illness and have been observed to suppress 
the HPA axis in patients with and animal models of 
cholestasis (86). Altogether, pituitary hormone synthesis 
and release is highly influenced by feedback of the effector 
hormones, which may take place between the different 
pituitary cell types (87).

Drugs

Patients admitted to the ICU often receive multiple drugs 
to support vital organ function. Several drugs frequently 
used at the modern ICU are well-known inhibitors of the 
adrenal axis in a dose-dependent manner and may possibly 
contribute to decreased ACTH production and secretion at 
the level of the pituitary (88). However, nowadays obsolete 
in most ICUs, nearly half a century ago intravenous infusion 
of dopamine was the first choice as inotropic agent, as 
historic studies showed a mortality benefit in critically ill 
patients with septic and cardiogenic shock with renal- and 
splanchic-sparing effects (89). However, two decades ago, 
it became clear that infusion with dopamine, in analogy 
with increased endogenous dopamine levels, aggravates 
suppression of circulating pituitary-dependent hormones, 
TSH, PRL and LH in the acute phase of critical illness and 
GH in the chronic phase (90).

Nutritional signals

A third mechanism that may drive the alterations in 
pituitary and peripheral hormones is the lack of full 
(enteral) nutrition in the acute phase of critical illness. 
As critically ill patients are often unable to eat by mouth, 
nutritional support has to be initiated by the caregiving 
physician. However, nutrition guidelines recommend the 
early initiation of enteral feeding (EN) in most patients 
(91, 92), recent RCTs have questioned the ideal time to 
start parenteral nutrition (PN) if enteral feeding fails to 
meet the prespecified nutritional target (30, 31, 93, 94). 
Interestingly, most neuroendocrine changes in the acute 
phase of critical illness resemble those during fasting in 
healthy individuals: an increase in GH in face of low levels 
of IGF-I, a decrease in T3 with concomitant rise in rT3 
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despite relatively normal levels of TSH and T4 (NTI), a rise 
in systemic cortisol availability and a decrease in gonadal 
steroid hormones (29, 95). In this view, it is likely that the 
neuroendocrine adaptations in the acute phase of critical 
illness are beneficial or at least evolutionary selected 
and may enhance the chances of survival and recovery. 
Furthermore, accepting an early macronutrient deficit in 
critically ill patients by withholding PN in the (hyper)
acute phase of critical illness was found to aggravate NTI 
in the late PN cohort, which statistically explained at least 
part of the outcome benefit of not feeding early (37, 96).

A uniform central suppression in the chronic 
phase of critical illness

The chronic phase of critical illness is hallmarked by a 
uniform suppression of all neuroendocrine axes (Fig. 4). 
Some of the proposed drivers of the neuroendocrine 
changes in the acute phase of critical illness are unlikely 
to play a prominent role in the chronic phase. Cytokines 
could be involved, although their levels substantially 
decline during the time course of severe illness (97). Also 
nutritional signals are different compared to patients in 
the acute phase of critical illness as most patients are now 
fully fed, either by enteral feeding, parenteral feeding or a 
combination of both (98).

The most plausible mechanism behind this uniform 
pituitary suppression is probably the decrease in 
hypothalamic, mostly activating, hypophysiotropic 
hormones. Indeed, a post mortem analysis of hypothalamic 
tissue demonstrated markedly reduced TRH gene expression 
in patients who died after severe illness compared to 
healthy patients who succumbed from a sudden lethal 
insult (99). Furthermore, ongoing hypercortisolemia 
and high levels of endogenous dopamine may enhance 
negative feedback and therefore contribute to decreased 
pituitary hormone production and secretion (100).

Interestingly, hypothalamic type 2 deiodinase (D2) 
and local expression of thyroid hormone transporters are 
increased during critical illness and could theoretically 
increase local T3 availability and therefore alter the 
set point for feedback inhibition (101). Whether such 
alteration in set point for feedback is present in other 
pituitary cell types is unknown.

Conclusion

During critical illness, the neuroendocrine axes are altered 
in a biphasic manner (Fig.  4). Neuroendocrine changes 

during the acute phase of critical illness resemble, at least 
partially, a fasted state and seem to be evolutionary selected 
and likely beneficial for survival. Therefore, treatment of 
altered hormone levels in this phase of critical illness might 
not be indicated. When patients fail to recover sufficiently, 
central and peripheral hormone levels further alter. These 
profound alterations no longer represent a natural fasting 
state and could be interpreted as maladaptive and may 
hamper recovery. Although treatment with exogenous 
peripherally active hormones in this more chronic phase 
of critical illness seems a reasonable option, experimental 
studies in the past have highlighted difficulties with 
optimal dosing and posology, sometimes even causing 
harm. A more physiological solution would be the use of 
central releasing factors instead of peripheral hormones, 
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Figure 4
Simplified cartoon depicting the biphasic neuroendocrine response to 
critical illness. Trends in plasma concentrations of the most important 
pituitary and peripheral hormones during critical illness are rendered 
over time and compared to the physiological ranges in healthy individuals 
(black line). A rise in growth hormone levels is seen in the first hours after 
the onset of critical illness (orange line). This rise in GH coincides with a 
decrease in IGF-I (yellow line). During the chronic phase of critical illness, 
IGF-I further decreases and GH plasma concentration start to normalize. 
Thyroid hormone T3 levels rapidly decreases after the onset of critical 
illness with a further decline during the prolonged phase of critical illness 
(yellow line). It is currently unclear when the plasma levels of both IGF-1 
and T3 fully normalize (dotted yellow line). Although TSH levels (green 
line) are not significantly altered during the first hours and days of critical 
illness, plasma concentration decreases when chronic critical illness sets 
in. When recovery is commenced, TSH transiently rise to supra-normal 
concentration before returning to physiological levels. Cortisol levels (red 
line) rise after a severe insult. High cortisol levels plateau in the first week 
of critical illness. When critical illness is prolonged, cortisol levels start to 
decrease. ACTH levels are rapidly reduced in acute critical illness but start 
to normalize after several days of critical illness. During the recovery 
phase, a rise in plasma concentrations of both ACTH and cortisol is seen 
(dotted blue line and dotted red line); however, when this rise is 
dampened and the circulating levels of ACTH and cortisol start to 
normalize is not clear.
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allowing a normal feedback regulation which would avoid 
toxic levels of peripherally active hormones. Further 
intervention studies are needed to investigate the future 
role of treatment with releasing factors in chronic critical 
illness.
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