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Abstract: This is an observational study of interstitial glucose (IG) concentrations, IG variability
and dietary intake under free-living conditions in 46 females with obesity but without diabetes.
We used continuous glucose monitoring, open-ended food recording and step monitoring during
regular dietary intake followed by a low-energy diet (LED). Thirty-nine participants completed both
study periods. The mean BMI at baseline was 43.6 ± 6.2 kg/m2. Three weeks of LED resulted
in a mean weight loss of 5.2% with a significant reduction in diurnal IG concentration but with
greater glycemic variability observed during LED. The mean 24 h IG concentration decreased from
5.8 ± 0.5 mmol/L during the regular diet period to 5.4 ± 0.5 mmol/L (p < 0.001) during LED, while
the mean amplitude of glycemic excursion increased from 1.5 ± 0.7 to 1.7 ± 0.7 mmol/L (p = 0.031).
The positive incremental area under the curve at breakfast was significantly larger for LED compared
to regular diet. The daily fiber intake and the glycemic index of breakfast meals were significantly
associated with the glycemic variability during regular dietary intake. In conclusion, the 24 h mean
IG concentration was lower but with more pronounced glycemic variability during LED compared
to a regular diet.

Keywords: obesity; low-energy diet; dietary fiber; glycemic index; open-ended food record; con-
tinuous glucose monitoring; interstitial glucose; glycemic variability; mean amplitude of glycemic
excursions; area under the curve

1. Introduction

Obesity is a growing health problem worldwide and the prevalence of obesity has
more than doubled since 1980 [1]. For patients with a body mass index (BMI) of 35 kg/m2

or above, bariatric surgery has become frequently used worldwide in the struggle against
obesity-related complications such as type 2 diabetes and cardiovascular diseases [2,3]. In
recent meta-analyses, bariatric surgery was shown to result in greater weight loss compared
to non-surgical approaches [4], as well as a sustainable long-term weight loss [5].
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Low-energy diet (LED) regimens, such as diet replacement formulas or hypocaloric
diets, which are frequently used for weight loss, are also used immediately before bariatric
surgery to reduce the risk of surgical complications [6]. Previous studies have demonstrated
that LED resulted not only in lowered body weight and decreased liver volume, but
also in lowered fasting and postprandial glucose concentrations and improved insulin
sensitivity [7–11]. The Mediterranean diet demonstrated similar alterations, characterized
by high contents of both monounsaturated fatty acids from olive oil as well as dietary fibers
from fruits, vegetables and legumes [12,13]. Although the glycemic response of a mixed
meal is influenced by the fat and protein content, the amount and type of carbohydrates
have been suggested as the major contributors to the postprandial glycemic response [14].
Accordingly, diets higher in glycemic index (GI) or glycemic load were pointed out as causal
factors contributing to the incidence of type 2 diabetes [15], while high carbohydrate quality
diets (e.g., high in fiber, whole grains, low GI) were associated with lower prevalence of
obesity and type 2 diabetes [16,17]. Furthermore, estimated dietary GI under free-living
conditions was found to be a predictor of glycemic stability and variability in persons
with type 2 diabetes [18] and an energy-reduced diet with low GI resulted in lowered
glycemic variability in subjects with obesity but without diabetes [7]. Previous studies have
demonstrated that LED regimens as well as the carbohydrate amount and quality may
affect the glucose concentration, glycemic variability and health outcome. LED products
such as total dietary replacement formulas are low in energy but might be proportionally
high in carbohydrates, and even if weight reduction and improved fasting blood glucose
and insulin concentrations are observed, the diurnal and postprandial glycemic variability
has been sparsely explored in subjects without diabetes during this kind of regimen. As
such, the aim of our study was to investigate diurnal and postprandial interstitial glucose
(IG) concentrations in the everyday life of females with obesity but without diabetes, first
during their regular dietary intake and then during LED treatment. Our secondary aim
was to study whether there were significant relationships between dietary factors and
physical activity level on the one hand and glucose concentrations or glycemic variability
on the other.

2. Materials and Methods
2.1. Study Design and Participants

This is a prospective observational study of female subjects with BMI ≥ 35 kg/m2

in a free-living setting before bariatric surgery. Since almost 80% of patients treated with
bariatric surgery in Sweden are females [19], we chose to include only female subjects in
this study. We measured interstitial glucose concentrations during the participants’ regular
food intake (study period 1) and after a median of three weeks of LED treatment (study
period 2). Continuous glucose monitoring (CGM), open-ended food recording and a step
monitor measuring step counts were used for four days in each study period (Figure 1).
Data for the last three days in each study period were analyzed due to methodological
issues with the CGM [20]. Before the study started, all patients underwent a medical
assessment, including laboratory tests at accredited laboratories (fasting concentrations of
blood glucose, HbA1c and insulin).

Out of 104 eligible females, 45 were recruited for study period 1, and of these 39
(86.6%) returned for study period 2 (Figure 1). Exclusion criteria were diagnosis of diabetes
mellitus, the use of medications affecting glucose metabolism or bowel peristalsis, previous
bariatric surgery, celiac disease or milk protein intolerance.

2.2. Continuous Glucose Monitoring

To be able to study glucose concentrations and glycemic variability continuously
during the everyday life of the study participants, we used the Minimed IPRO-2 CGM
system (Medtronic, Northridge, CA, USA) for measuring of glucose concentrations in the
extracellular interstitial fluid (i.e., every ten seconds) to present the mean glucose value
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every five minutes. IG concentrations are highly correlated to the circulating blood glucose
concentrations, with a latency time of five to fifteen minutes [20].
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Figure 1. Flow chart of the study participants and the study process. CGM = continuous glucose monitoring;
LED = Low-energy diet.

At the start of each of the two study periods, participants attended outpatient units
at a community hospital and a university hospital in Sweden, where the CGM thin-wire
sensor was inserted in accordance with the manufacturer’s instructions. Weight and height
were measured at the same visit. For calibration purposes, patients were instructed to
measure their own capillary blood glucose with the Bayer Contour Next One glucose
meter (Ascensia Diabetes Care Holdings AG, Basel, Switzerland) four times daily (before
breakfast, lunch, dinner and at bedtime). Data were uploaded to the Carelink software
program (Medtronic, Northridge, CA, USA) and then exported to Microsoft Excel 2016
(Microsoft Corporation, Redmond, WA, USA).

We analyzed the 24 h mean glucose concentration and mean amplitude of glycemic
excursions (MAGE), as well as the postprandial mean glucose concentration and the
positive incremental area under the curve (iAUC) after breakfast. MAGE was calculated
according to Hill et al. using EasyGV version 9.0 (Nathan RJ Hill, University of Oxford,
Oxford, UK) with a cut-off level for high MAGE of ≥2.8 mmol/L [21]. The trapezoid rule
was used to calculate the 120 min positive iAUC after breakfast [22]. We chose to analyze
the postprandial glucose response in connection with breakfast to minimize potential
second meal effects [23]. Following the guidelines of the International Diabetes Federation
and the American Diabetes Association, we used 7.8 mmol/L and 3.9 mmol/L as cut-off
levels for high and low glucose concentrations [24,25].

2.3. Dietary Intake and Dietary Methods

During the first study period, the subjects were instructed to continue with their
regular diet. For the second period, all participants received a LED regimen containing
800–1100 kcal/d. The recommended LED consisted of a powder-based total diet replace-
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ment product for weight control (Modifast®, Impolin AB, Taby, Sweden), which after
preparation with water was consumed as a liquid or semisolid meal (shake, soup, porridge,
pudding and pasta). The LED was distributed free of charge. The energy and macronutri-
ent content of the LED product was 220 kcal, fat 4.5 g, carbohydrate 27 g, fiber 4.2 g and
protein 14.3 g per portion. The patients were instructed to take 4–5 portions distributed
over the day. Except for an additional 1.5–2 L of non-caloric fluid, the patients were asked
not to eat anything else during the 4-week LED period.

During both study periods, the participants documented their entire intake of food,
LED products and fluids in a paper-based, open-ended food record, giving the starting
times of the meals. Dietary intake was self-reported in household measures and we ob-
tained detailed descriptions of recipes, food brands and food content [26]. We calculated
the absolute daily amounts of energy and macronutrients as well as those for all the break-
fast meals using the Dietist Net Pro 2020 (Diet and Nutrition Data AB, Bromma, Sweden)
software program and the Swedish Food Composition Database (version 20200116) plus
food composition databases from the food industry. Breakfast was defined as the first meal
of the day containing at least 50 kcal [27].

The GI for each food item was assessed according to the international GI tables pre-
sented by Atkinson et al. [28] and was based on the glucose scale. We calculated the
contribution of each food item to the total amount of carbohydrates for each of the break-
fast meals, and thereafter the GI for the entire breakfast meals, according to WHO/FAO
guidelines [29]. Meal GI was calculated by the first author (I.N.) and thereafter checked
and discussed with the two other dietitians (A.L. and A.A.). Similar to the latest Swedish
National Survey of Dietary Intake in Adults, we calculated the fiber intake in eight major
food categories and compared the total dietary fiber intake to the nutrition recommenda-
tions [30,31].

2.4. Physical Activity

An ActiGraphTM wGT3X-BT activity monitor (Pensacola, FL, USA) was used to record
step counts during the two study periods [32]. The patients wore the device around the
waist according to the manufacturer´s instructions. After each study period, data were
uploaded to the Actilife program version 6.13.3 and only data with a minimum of 9 h daily
wear time were included in the analysis.

2.5. Statistical Analysis

Because three days of CGM data were analyzed for each study participant, we per-
formed a linear mixed model analysis to examine the possible influence of the first, second
and third days on the IG indices. Since the day of measurement had no influence on the
glucose variables in either of the test periods, all days were used in the main data analysis.

Every 24 h period produced 288 glucose values for each person, and we calculated the
24 h mean values per person and day for the IG indices. Subsequently, the mean IG was
calculated for the entire group. The same principles were used for the breakfast analysis.
To compare data between the two study periods, we used paired data samples i.e., data
from the 39 females participating and completing both study periods.

Linear regression analysis was performed to examine any relations between age, BMI,
step counts, breakfast GI and the energy-adjusted macronutrient intake on the one hand
and the interstitial glycemic response indices on the other. Independent variables that
were found to relate significantly to the glycemic indices in the simple regression analysis
were added stepwise to the multiple regression model. Since independent observations
represent one of the assumptions for linear regression models, mean values for the three
days for each of the 45 participants in study period 1 were used in the analysis. Examination
of the model residuals supported that the assumptions of linearity, homoscedasticity and
normality were met [33]. Diurnal and breakfast variables for the regular dietary intake
were analyzed separately in this manner, but not the LED intake, since the participants had
similar nutritional intake during this period.
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The results are presented as mean values and standard deviations (SD), and we used
paired sample t-tests for comparison of data with normal distributions. For data with non-
normal distributions, we used the median and interquartile range (IQR) and the Wilcoxon
signed rank test to compare median values. The McNemar test for related samples was
used to compare glucose concentrations below or above the defined cut-off levels for the
regular diet period and the LED period. The level of significance was 2-sided (p < 0.05) for
all analyses. We used IBM SPSS Statistics for Windows version 26.0 (IBM Corp: Armonk,
NY, USA) for the statistical analysis.

3. Results
3.1. Characteristics of Study Participants

The baseline characteristics for the 39 females participating in both study periods are
shown in Table 1. After a median period of three weeks of the four week LED regimen, the
mean weight loss was 6.4 ± 2.6 kg, which corresponded to 5.2% total body weight loss and
a BMI of 41.4 ± 5.7 kg/m2 (p < 0.001).

Table 1. Baseline characteristics of the 39 female participants 1.

Patient Characteristics

Age 2, y 37 (17)
Body weight, kg 122.5 ± 20.3

BMI, kg/m2 43.6 ± 6.2
Fasting P-glucose, mmol/L 5.7 ± 0.5

B-HbA1c, mmol/mol 36.6 ± 4.0
Fasting S-insulin, mE/L 25.8 ± 1.5

1 Results are presented as means ± SD unless otherwise indicated. 2 Median (IQR). HbA1c = glycosylated
hemoglobin; BMI = body mass index.

3.2. Diurnal IG Concentrations

All but three of the 39 participants had three days each of CGM data, which resulted
in a total of 114 days being included in the analysis. Our results show that the mean IG
concentration was significantly lower during the LED treatment compared to the regular
diet period (Table 2, Figure 2). LED resulted in even lower glucose concentrations during
the night (00:00–04:00) compared to regular diet, with 5.0 ± 0.8 and 5.8 ± 0.9 mmol/L,
respectively (p < 0.001) (Figure 2). Conversely, the glycemic variability represented as
MAGE was significantly higher during the LED period, while low glucose concentrations
(≤3.9 mmol/L) were more frequent during this period (Table 2).

Table 2. Diurnal interstitial glucose variables for 114 days in 39 females during the regular diet
period and the LED period 1.

Regular Diet LED p

24 h mean glucose, mmol/L 5.8 ± 0.5 5.4 ± 0.5 <0.001
24 h MAGE, mmol/L 1.5 ± 0.7 1.7 ± 0.7 0.031

Glucose 2 ≥ 7.8 mmol/L 38 (33%) 31 (27%) 0.229
Glucose 2 ≤ 3.9 mmol/L 10 (9%) 25 (22%) 0.011
MAGE 2 ≥ 2.8 mmol/L 5 (4%) 8 (7%) 0.581

1 Results are presented as means ± SD from paired sample t-test (2-tailed) unless otherwise indicated. 2 Number
of days (proportions) with instances of glucose above or below defined cut-off levels and McNemar’s test for
related samples (2-tailed). LED = low-energy diet; MAGE = mean amplitude of glycemic excursions.
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Figure 2. Mean diurnal interstitial glucose concentrations during regular diet and LED. Mean values
of glucose from 114 days in 39 females with obesity were plotted every 5 min; means + SD for regular
diet and – SD for LED were plotted every 60 min. LED = low-energy diet; IG = interstitial glucose.

3.3. Breakfast IG Concentrations

One person omitted breakfast for one day during the LED period; hence, 113 days were
included in the breakfast analyses. The mean of 120 min postprandial IG concentrations
after breakfast was similar for both study periods (Table 3, Figure 3A); however, the
postprandial glucose increment was larger for the LED regimen compared to the regular
diet, as was the positive iAUC (Table 3, Figure 3B).

Table 3. Two-hour postprandial interstitial glucose variables for 113 breakfast meals in 39 females
during the regular diet period and the LED period 1.

Regular Diet LED p

Mean of 0–120 min glucose, mmol/L 6.1 ± 0.7 6.0 ± 0.7 0.209
Mean glucose at 0 min, mmol/L 5.7 ± 0.8 5.4 ± 0.6 <0.001

Mean glucose at 120 min, mmol/L 6.0 ± 0.7 5.7 ± 0.7 <0.001
120 min positive iAUC 2, mmol/L/min 43.5 (43.6) 77.8 (62.4) <0.001

Glucose 3 ≥ 7.8 mmol/L 13 (12%) 16 (14%) 0.648
Glucose 3 ≤ 3.9 mmol/L 0 0 -

1 Results are presented as means ± SD from paired sample t-test (2-tailed) for the entire 120 min postprandial
period and for the glucose concentrations at 0 min and 120 min after breakfast. 2 Median (IQR) and Wilcoxon
signed rank tests (2-tailed) for the positive iAUC for the entire 120 min postprandial period. 3 Number of days
(proportions) of breakfast meals with instances of glucose above or below defined cut-off levels and McNemar’s
test for related samples (2-tailed). iAUC = incremental area under the curve; LED = low-energy diet.

3.4. Dietary Intake and Physical Activity

The absolute amount of reported daily and breakfast intakes of energy and macronu-
trients was significantly lower during the LED regimen compared to the regular diet period,
except for fiber intake, which was similar during both periods (Table 4). According to the
reported food intake during the LED regimen, 16 of 114 days contained a limited amount
of food items in addition to the LED products. All but one of these 16 days had total energy
intakes below the upper limit of the prescribed LED regimen of 1100 kcal/d. The median
number of daily LED portions was 4.

During the LED regimen, the daily energy percentages (E%) for carbohydrate, fat
and protein were 51%, 21% and 28%, respectively. The corresponding distributions for the
regular diet period were 40%, 42% and 16%, respectively, in addition to 2 E% from alcohol.
The E% for breakfast intake was similar to the diurnal distribution for both study periods
but with no alcohol.
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Table 4. Mean daily energy and macronutrient intakes for 114 days in 39 females (113 days for
breakfast data) during regular diet and LED 1.

Regular Diet LED p

Daily intake:
Energy, kcal 2069 ± 688 827 ± 197 <0.001

Carbohydrate, g 195.3 ± 7.0 98.5 ± 24.7 <0.001
Fiber, g 16.1 ± 6.1 16.5 ± 4.9 0.583
Fat, g 97.9 ± 42.0 19.4 ± 9.2 <0.001

Protein, g 79.7 ± 24.3 56.6 ± 11.1 <0.001
Alcohol, g 7.6 ± 18.7 0.0 <0.001

Days on LED 2 - 21 (2) -
Breakfast intake:

Breakfast time 2, h:min 8:30 (2:45) 9:00 (2:00) 0.006
Energy, kcal 401 ± 198 218 ± 26 <0.001

Carbohydrates, g 42.2 ± 21.7 26.4 ± 5.2 <0.001
Fiber, g 3.8 ± 2.6 4.2 ± 1.2 0.088
Fat, g 17.6 ± 11.5 4.9 ± 1.3 <0.001

Proteins, g 16.9 ± 8.9 14.8 ± 3.0 0.026
GI 3 53 ± 15 - <0.001

1 Dietary data based on a 3-day self-reported food record and presented as means ± SD from paired sample t-test
(2-tailed) unless otherwise indicated. 2 Median (IQR) and Wilcoxon signed rank tests (2-tailed). 3 International
tables of glycemic index (28). GI = glycemic index; LED = low-energy diet.

The main sources of daily fiber intake during the regular diet period were bread; rice;
pasta and cereals (32%); and vegetables, fruit and potatoes (31%) (Figure 4); however, on
only 12 of the 114 days did fiber intake reach the level of nutritional recommendations of
at least 25 g per day [30]. The LED products contributed 95% of the fiber intake during the
LED period, in which inulin was by far the most dominant fiber source. None of the study
participants reported taking any fiber supplements in either of the two study periods.

Physical activity, assessed by step counts, was similar during the two periods (6654 ± 2571
vs. 6519 ± 2998 steps per day, p = 0.699). Out of 114 days during each study period, 23 days
from period 1 and 22 days from period 2 were excluded due to a daily registration time of less
than 9 h. This implies 91 and 92 days with at least 9 h registration of step counts and with
78 pairs of days for statistical comparison.
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intake. Means + SD for 114 days in 39 women.

3.5. Independent Contributors to the Glycemic Response

The linear regression analysis for the 24 h period revealed significant associations be-
tween daily energy-adjusted fiber and protein intake and MAGE during regular diet,
with only fiber reaching the level of significance in the multiple regression analysis
(Table 5). The R-square values indicated that fiber and protein intake explained 22%
of the variation in MAGE. None of the remaining variables were significantly related to the
24 h IG response.

Table 5. Results of linear regression analyses performed to determine independent contributions to the diurnal interstitial
glycemic response during the regular diet period 1.

Simple Linear Regression of
24 h Glycemic Response

Multiple Linear Regression of
24 h Glycemic Response

Mean Glucose,
mmol/L

MAGE,
mmol/L

MAGE,
mmol/L

β P β P β P 95% CI

Age, y 0.01 0.103 0.00 0.938
BMI, kg/m2 −0.00 0.724 0.02 0.303

Carbohydrate, g/MJ 0.01 0.500 0.01 0.634
Fiber, g/MJ −0.21 0.064 −0.37 0.011 −0.31 0.032 −0.59, −0.03

Protein, g/MJ −0.05 0.321 −0.15 0.017 −0.12 0.052 −0.24, 0.00
Fat, g/MJ −0.02 0.722 0.04 0.546

Step Counts 0.00 0.159 0.00 0.766
1 Results are based on means of three days for the 45 study participants included in study period 1 and presented as unstandardized β and
95% CI. MAGE = mean amplitude of glycemic excursions.

In the linear regression analysis for the breakfast meal during regular diet, we found
a positive association between meal GI and positive iAUC (unstandardized β = 0.87,
p = 0.032, 95% CI (0.08, 1.65)). Figure 5 shows the scatterplots of the relationships between
daily fiber intake and MAGE (A) and the relationship between breakfast GI and the positive
iAUC (B).

In addition, age was positively related to the mean breakfast glucose concentration
(β = 0.02, p = 0.047, 95% CI (0.00, 0.04)), which implies that higher age was associated
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with higher postprandial glucose concentrations. None of the remaining variables were
significantly related to the IG response at breakfast.
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4. Discussion

Our main findings were that three weeks of LED resulted in a median weight loss of
5.2% with a significant reduction in diurnal mean interstitial glucose concentration and
with a more pronounced reduction of the mean nocturnal glucose concentrations, but with
a higher glycemic variability observed during the LED. Moreover, we observed a negative
association between the energy-adjusted daily fiber intake and MAGE, as well as a positive
relationship between the breakfast GI and positive iAUC during the period of regular
dietary intake.

The reduction of diurnal mean IG concentrations during LED found in this study is
in line with results from previous studies examining alterations in fasting blood glucose
concentrations after LED treatment [10,34]. The ameliorated glucose concentrations might
be attributed to an improved insulin sensitivity as well as the lower carbohydrate intake
during LED [9,34]. In spite of the lower mean diurnal IG concentration, we observed
significantly higher 24 h MAGE during the LED period compared to the period with regu-
lar dietary intake; however, during both study periods, mean MAGE values were below
the suggested upper normal range of 2.8 mmol/L [21]. Since high glycemic variability
has been associated with increased oxidative stress and impaired vascular endothelial
function [35,36], it is worth noting that in 7% of the days during the LED regimen and in
4.4% of the days during regular diet, MAGE was above this upper reference level. Further-
more, we observed instances of diurnal glucose concentrations ≥7.8 mmol/L for about
one-third of the days during both study periods and instances of glucose concentrations
≤3.9 in 22% and 9% of the days during LED and regular diet, respectively.

The observations in our study might be compared to those reported by Buscemi
et al., showing lower glycemic variability and improved endothelial function with an
energy-reduced diet with low GI [7]; hence, the unexpected larger positive iAUC for the
postprandial IG response after breakfast during the LED period might be explained by
the rapidly digestible carbohydrates in the LED product used in our study. The most
common carbohydrate sources were maltodextrin, skimmed-milk powder and glucose
syrup, besides inulin [37]. The iAUC after breakfast during the LED period in our study
was comparable to the results reported by Vrolix et al., whereby healthy adults ingested a
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fruit drink containing 25 g of carbohydrates from sucrose but without any fat or protein [38].
Moreover, the LED used in our study was lower in energy compared to the regular diet
and consisted of liquid or semisolid meals, which have previously been found to result
in a more rapid gastric emptying rate [39,40]. This might have resulted in accelerated
absorption of the carbohydrates in the LED breakfast.

The mean fiber intake during regular diet was low, with only 10% of the days reaching
the recommended level of at least 25 g of fiber per day [30]. Furthermore, we showed
that fiber intake was negatively associated with MAGE, implying that increased fiber
intake might lower the diurnal glycemic variability. This is consistent with previous
studies reporting that an increased fiber intake reduced the postprandial blood glucose
concentration and the diurnal glycemic variability in subjects with overweight or obesity
but without diabetes [41,42]. The effects of dietary fiber intake on the glycemic response is
probably elicited through several mechanisms, such as slowed digestion and absorption of
glucose by certain soluble fiber types, as well as the bacterial degradation of indigestible
fibers, which might affect insulin sensitivity [43,44]. We found that at least one-third of the
total dietary fiber intake during regular dietary intake came from food rich in soluble fiber
such as fruits, vegetables and legumes, while a similar proportion came from common
sources of insoluble fiber such as bread, rice, pasta and cereals. Moreover, we observed a
wide range of GI levels in breakfast meals and a significant relationship between GI and
the postprandial positive iAUC during regular dietary intake. This is compatible with
the findings by Kochan et al., whereby GI was found to be an important determinant
of glycemic response after self-selected breakfast meals in subjects with obesity [45]. In
addition, Lagerpush et al. showed that a diet with a GI level of 40 compared to a diet with
a GI level of 74 resulted in significantly lower diurnal iAUC [46]. Indeed, previous studies
have pointed out that a dietary pattern rich in high-fiber or low-GI food items such as
fruits, vegetables and whole grains is helpful in reducing the risk of obesity and type 2
diabetes [16,17]; hence, the low fiber intake found in our study group during their regular
dietary intake is of concern from a public health perspective.

One strength of our study is its prospective design, with the study participants being
their own controls. Another strength is the homogeneity of the participants in the study
regarding gender, absence of diabetes, not using medications with known glucometabolic
or gastrointestinal effects and with all patients carefully investigated and approved for
bariatric surgery. Moreover, the use of the CGM method, which continuously measures
glucose concentrations under free-living conditions, enabled detection of alterations in
glucose status that are difficult to discover by self-testing of blood glucose or in a laboratory
setting [20]. A further strength is the consideration of the degree of physical activity
measured by a step monitor. Regarding our study’s potential limitations, the comparison
of LED with regular diet was not ideal because of the different textures with these two
diets; however, we wanted to investigate the most common type of LED treatment before
bariatric surgery in a real life observational setting, although being aware that various
LEDs with different textures might give different results. Furthermore, the self-reported
data for dietary intake should be interpreted with caution due to the risk of underreporting,
which is especially common among people with a higher BMI [47,48]. The reported energy
intake during the period of regular dietary intake was low when taking the estimated
basal metabolic rate with an energy-balanced state into account; however, during the LED
treatment, the reported mean energy intake was within the recommended diet regimen,
although at the lower end of the interval prescribed. To prevent incorrect reporting, all
participants were fully guided individually by a dietitian with extensive experience in
obesity care in how to report their food intake in detail regarding contents and time.
Upon return, all food records were carefully checked along with the study subjects so that
ambiguous recording could be clarified. We think that these efforts to properly register
food intake constitute one of the strengths of this study.
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5. Conclusions

In conclusion, we found that three weeks of treatment with a low-energy diet com-
pared to a regular diet resulted in a significantly lowered diurnal mean interstitial glucose
concentration but greater glucose variability in females with obesity but without diabetes
mellitus. Furthermore, our observations from the regular diet period suggest that an
increased daily intake of dietary fiber and a lower glycemic index of breakfast meals might
lower the glucose variability.

With reference to these findings, we suggest that future bariatric studies take the
food texture and carbohydrate quality into account when investigating the glucometabolic
effects of hypocaloric diets, as this might be of particular importance in long-term treatment
with hypocaloric regimens.
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