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A B S T R A C T   

Background: Cardiovascular diseases (CVDs) are the leading global cause of death, with atherosclerosis as the primary cause. Chronic inflammation, 
endothelial dysfunction, and the role of molecules like nitric oxide and reactive oxygen species are crucial in this context. Our previous research 
indicated that cilostazol and ginkgo biloba extract could enhance the ability of endothelial cells to dissolve blood clots, but the effects of cilostazol 
on monocytes remain unexplored. 
Method: This study utilized peripheral blood mononuclear cells from 10 healthy donors, treated ex vivo with cilostazol. RNA-sequencing, over- 
representation analysis, xCell stromal cell analysis, and Gene Set Enrichment Analysis were employed to investigate the gene expression changes and 
biological pathways affected by cilostazol treatment. 
Results: The study identified specific gene sets and pathways that were enriched or reduced in response to cilostazol treatment, providing insights 
into its effects on monocytes and potential therapeutic applications in CVD. The analysis also revealed the potential impact of cilostazol on the 
stromal cell compartment, further broadening our understanding of its multifaceted role. 
Conclusion: The findings offer a nuanced understanding of the advantages and mechanisms of cilostazol in CVD, uncovering novel therapeutic targets 
and strategies to enhance the clinical application of cilostazol and contributing to the broader implications of this therapy in cardiovascular health.   

1. Introduction 

Cardiovascular diseases (CVDs) are the leading cause of death globally, significantly contributing to health loss and high healthcare 
system costs [1]. Atherosclerosis, characterized by arterial plaque buildup, is the primary cause of CVD. Chronic inflammation, linked 
with endothelial cell dysfunction, appears to govern the disease process [2,3], necessitating clinical research into anti-inflammatory 
and immunomodulatory treatments. Inflammation is a key factor in atherosclerosis and CVD. The roles of immune-active cells, 
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pro-inflammatory cytokines, chemokines, and lipid mediators are crucial in this context [4]. Dead cells and the oxidized forms of 
low-density lipoprotein are particularly abundant in atherosclerosis [5]. Oxidized low-density lipoprotein, known for its immunogenic 
properties, can activate endothelial cells, leading to monocyte adhesion and differentiation into macrophages [6,7]. Within athero-
sclerotic plaques, macrophages tend to accumulate and exhibit reduced migratory ability, leading to unresolved inflammation and 
progression to more complex plaques [8,9]. Macrophages contribute to inflammation by secreting pro-inflammatory mediators and 
matrix-degrading proteinases. Dying macrophages release lipid components and tissue factors, forming a prothrombotic necrotic core, 
a key component of unstable plaques that can rupture. 

The “Response-to-Injury Hypothesis” by Ross and Glomset outlines the potential process from endothelial dysfunction to athero-
sclerosis [10]. This hypothesis has been instrumental in understanding the underlying mechanisms that lead to atherosclerotic plaque 
development. A key characteristic of endothelial dysfunction is the loss of nitric oxide (NO) bioactivity [3], a critical molecule involved 
in vascular homeostasis. NO plays a vital role in maintaining vascular tone, inhibiting platelet aggregation, and preventing the 
adhesion of monocytes to the endothelium. The loss of NO bioactivity can lead to a cascade of events contributing to atherosclerosis. 
One of the factors closely related to NO production is the generation of reactive oxygen species (ROS). ROS are molecules that play a 
dual role in the vascular system. On one hand, elevated ROS levels are associated with reduced NO bioavailability [11]. This reduction 
in NO bioavailability can lead to vasoconstriction, increased platelet aggregation, and enhanced adhesion of monocytes to the 
endothelium, which are key events in the initiation of atherosclerosis. ROS may also cause an increase in monocyte-endothelium 
adhesion [12], promoting the inflammatory response that characterizes atherosclerosis. On the other hand, ROS are essential for 
macrophage differentiation [13], a process central to the immune response and atherosclerotic plaque progression. Macrophages are 
key players in the inflammatory response, and their differentiation and function are tightly regulated by various signaling pathways, 
including those involving ROS. 

Cilostazol, characterized by its antithrombotic, vasodilatory, antimitogenic, and cardiotonic properties, has been broadly inves-
tigated because of its multifaceted efficacy in CVD management [14]. Its application in CVD is substantiated by its demonstrated 
superiority over clopidogrel in reducing the incidence of recurrent ischemic strokes in those with non-cardioembolic ischemic stroke 
[15]. Furthermore, the combination of cilostazol and aspirin is comparable or superior to that of aspirin and clopidogrel in preventing 
stent restenosis [16]. Regarding cardiovascular event prevention, cilostazol has been associated with a notably low rate of serious 
events, including myocardial infarction, observed in only 1% of the patients treated with cilostazol [17]. Lin et al. further elucidated 
the drug’s efficacy in significantly reducing the risk of major coronary events, major adverse cardiovascular and cerebrovascular 
events, and symptoms of angina pectoris [18]. The influence of cilostazol on circulating endothelial progenitor cell counts, which are 
pivotal markers in cardiovascular health, also surpasses that of aspirin, suggesting an additional therapeutic benefit [19]. Moreover, 
combining cilostazol with aspirin may mitigate biological resistance to aspirin in ischemic stroke [20]. Crucially, cilostazol signifi-
cantly reduces the risk of cerebrovascular events in patients with atherothrombosis, without a corresponding increase in bleeding risk, 
thereby offering a safety advantage over other antiplatelet agents [21]. This safety profile is particularly relevant for patients with a 
history of hypertension or gastrointestinal bleeding, where cilostazol may be a safer alternative than clopidogrel [22]. 

Our previous research focusing on endothelial cells discovered that both cilostazol and ginkgo biloba extract could enhance the 
expressions of endothelial cell thrombomodulin (TM) and endothelial NO synthase (eNOS) by activating the Krüppel-like factor 2 
(KLF2) axis. This activation subsequently increased the endothelial cells’ ability to dissolve blood clots [23–25]. These findings provide 
valuable insights into the potential therapeutic applications of cilostazol and ginkgo biloba extract in cardiovascular health. However, 
the literature has not explored whether cilostazol has any other effects on monocytes. This knowledge gap prompted our current study, 
aiming to shed light on the broader implications of cilostazol in CVD and to enhance the precision of its clinical application. In this 
study, we utilized peripheral blood mononuclear cells (PBMC) from healthy donors and treated them ex vivo with cilostazol. We 
comprehensively analyzed the gene expression changes induced by cilostazol treatment through RNA sequencing. Over-representation 
analysis was employed to identify the biological pathways significantly affected by the treatment. Additionally, we utilized xCell 
immune and stromal cell analysis to investigate the potential impact of cilostazol on the stromal cell compartment. Gene Set 
Enrichment Analysis (GSEA) further allowed us to identify specific gene sets and pathways that were enriched or depleted in response 
to cilostazol treatment. The findings from this study are expected to provide a more nuanced understanding of the advantages and 
mechanisms of cilostazol in the context of CVD. By exploring the effects of cilostazol on monocytes, we hope to uncover novel 
therapeutic targets and strategies that could enhance the efficacy and precision of cilostazol in clinical settings. 

2. Material and methods 

2.1. IRB approval and PBMC treatment 

This study was conducted with the approval of the institutional review boards at both the Tri-Service General Hospital and the 
Taipei Veteran General Hospital, under IRB number 2012-03-001AC. In accordance with the ethical guidelines set forth in the 1975 
Helsinki Declaration, all participants in this study provided their written informed consent. Furthermore, all experimental procedures 
and protocols involving animals were not only approved by the Institutional Animal Care and Use Committee (IACUC) of National 
Yang-Ming University but were also in full compliance with the ARRIVE guidelines. 

Ten healthy donors were recruited for the study, and blood samples were obtained. PBMC were isolated from the blood samples 
using Ficoll-Paque Plus (Sigma-Aldrich, Inc., St. Louis, MO, USA, Cat.: GE17-1440-02) in Leucosep™ tubes (Greiner Bio-One, 
Kremsmünster, Austria), according to the manufacturer’s instructions. Following isolation, the PBMC were cultured in RPMI 1640 
medium, supplemented with 10% Fetal Bovine Serum (FBS, Thermo-Fisher Scientific Inc., Waltham, MA, USA) and 1% penicillin/ 
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streptomycin. The cells were treated with 30 μM cilostazol and an appropriate vehicle control and were incubated for 24 h at standard 
culture conditions. 

2.2. RNA sequencing and differentially expressed genes (DEG) analysis 

Treated PBMCs were subjected to RNA extraction and analysis via next-generation sequencing. The extraction process was facil-
itated by the use of TRIzol Reagent (Thermo-Fisher Scientific). Following extraction, the RNA samples were quantified and analyzed 
through the NanoDrop device (Thermo-Fisher Scientific), as well as the Agilent 2100 Bioanalyzer system (Agilent Technologies). The 
visualization and integrity of the RNA were evaluated using 1% agarose gel electrophoresis. Subsequently, we purified the mRNA using 
both Poly(A) mRNA Bead Isolation Kits and rRNA Removal Kits. First-strand cDNA synthesis was accomplished using ProtoScript II 
Reverse Transcriptase following mRNA fragmentation with First Strand Synthesis Reaction Buffer and Random Primer. We then 
synthesized Second Strand DNA by leveraging the Second Strand Synthesis Enzyme Mix. DNA fragments were then polished using End 
Prep Enzyme Mix. Adaptors were attached to both ends of the fragments via a process of dA-tailing and T-A ligation. A 420bp fraction 
of fragments was subsequently isolated through the application of magnetic beads. A 13-cycle PCR was then performed using P5 and 
P7 primers. The resulting library was quantified with a Qubit 3.0 fluorometer and sequenced on an Illumina HiSeq 4000 platform. The 
resulting sequencing data in fastq format was processed and generated by GENEWIZ®. Transcript abundance for each sample was 
estimated by separately running two iterations using both Salmon (v0.91) and Kallisto (v0.46.2) in combination with the GRCh38 
human reference transcript from GENCODE v41 [26]. These tools quasi-mapped the sequencing reads using a 31bp k-mer index. 
Subsequently, a third iteration was conducted using Salmon (v0.91) in combination with the human reference transcript downloaded 
from Ensembl (Homo_sapiens.GRCh38.cdna.all.fa.gz) [27]. The tximport package (v1.24.0) facilitated the importation of transcript 
abundance estimates from the files generated by Salmon and Kallisto for analysis in the R (v4.2.2) statistical programming environ-
ment. Transcript abundance estimates were then aggregated into gene expression counts at the gene level. The resultant raw counts 
were merged for use in downstream analyses. DEGs for cilostazol treatment were identified using the EdgeR package (v3.40.2). Criteria 
for selection of differentially expressed genes: |log2 fold change| ≥ 1; Benjamini-Hochberg (B–H) adjusted P-value <0.05. 

2.3. Over representative analysis and visualization 

Details on differentially expressed genes (DEGs) are provided in the supplementary table. To interpret the potential biological 
implications of these DEGs, over-representation analysis (ORA) was carried out to uncover significantly enriched biological processes, 
molecular functions, and cellular components. The DEGs were categorized into three clusters based on stringent criteria: Cluster “>1” 
with an absolute log2 fold change greater than 1 and FDR less than 0.05, resulting in 546 up-regulated and 631 down-regulated genes. 
Cluster “>2” with an absolute log2 fold change greater than 2 and FDR less than 0.05, resulting in 129 up-regulated and 125 down- 
regulated genes. Cluster “>3” with an absolute log2 fold change greater than 3 and FDR less than 0.05, resulting in 54 up-regulated and 
32 down-regulated genes. Gene Ontology (GO) enrichment analysis for biological processes (BP), molecular functions (MF), and 
cellular components (CC) was performed on these three clusters using the compareCluster function of the clusterProfiler package 
(v4.4.4) in R [28]. The fun was set to “enrichGO” with ontologies (ont) set as "BP", "MF", and "CC", and the showCategory parameter set 
to 3. To streamline the representation of similar gene sets, the “simplify” function was utilized with a cutoff of 0.7 by adjusted p-value 
(by = "p.adjust"). Visualization of the enriched GO terms was performed using the “dotplot” function, with the dot size determined by 
the negative log of the FDR (-logFDR) and color indicating the gene ratio. For pathway enrichment analysis, a similar approach was 
adopted, but the “fun = enricher” was employed. The analysis incorporated KEGG_2021_Human (320 gene sets), WikiPath-
way_2021_Human (622 gene sets), and Reactome_2022 (1818 gene sets) databases, which were downloaded from the EnrichR plat-
form [29]. 

For the visualization of over-representation analysis (ORA), Cytoscape (v3.9.1) along with the ClueGo app was utilized, focusing on 
the 546 up-regulated and 631 down-regulated genes identified in our study [30,31]. The ClueGo app in Cytoscape was set up to 
reference multiple databases, including Gene Ontology biological processes (GOBP), Gene Ontology molecular functions (GOMF), 
Gene Ontology cellular components (GOCC), KEGG, Reactome, and WikiPathways with the default parameters. 

2.4. Gene Expression Omnibus (GEO) database access 

Public datasets were accessed from the National Center for Biotechnology Information’s Gene Expression Omnibus (NCBI GEO) 
database to validate our findings related to cardiovascular diseases. Dataset GSE19151 included 70 adults with prior venous 
thromboembolism (VTE) on warfarin and 63 healthy controls, analyzed using Affymetrix Human Genome U133A 2.0 Array (log2 RMA 
signal) [32]. Dataset GSE28829 contained samples from atherosclerotic carotid artery segments, including 16 advanced and 13 early 
plaques, analyzed with Affymetrix Human Genome U133 Plus 2.0 Array (RMA-calculated signal intensity) [33]. Dataset GSE100927 
comprised samples from 69 atherosclerotic and 35 control arteries from deceased organ donors, analyzed using Agilent-039494 
SurePrint G3 Human GE v2 8 × 60K Microarray (normalized signal intensity ln) [34]. All datasets were obtained from publicly 
available GEO database repositories, and the corresponding microarray data and patient follow-up information were used for analysis, 
with raw data preprocessed and normalized as required for the specific microarray platforms, and appropriate statistical methods 
applied for validation of our findings. 
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3. Cell subsets enumeration using xCell approach 

For a comprehensive understanding of the cellular composition of the samples, the xCell analysis was employed to enumerate 
various cell subsets in the gene expression data [35]. This analysis was carried out using the IOBR package (version 0.99.9) in R 
(v4.2.0), specifically employing the deconvo_tme function with the method parameter set to “xcell” and arrays set to “TRUE” [36]. The 
64 cell types identified were categorized into five major classes: Lymphoid, Stem cells, Myeloids, Stromal Cells, and Others. This 
categorization allowed for an in-depth analysis of the cell subsets within the samples, enabling a nuanced understanding of their 
respective roles and interactions. A heatmap was constructed to visualize the hierarchical clustering of the data. Utilizing the Euclidean 
distance as the metric, the clustering was executed using the Morpheus web tool. The raw data were standardized using Z-score 
normalization to ensure comparability across the different samples. Statistical analysis was performed using a t-test to compare the 
samples to the control group. The results were visualized through violin plots, drawn using the ggplot2 package (v3.4.2) in R. 

3.1. Machine learning algorithms 

Supervised machine learning algorithms were employed to predict the relative scores of PBMCs being identified as diseased post 
cilostazol treatment. To predict the relative likelihood of PBMCs being classified as diseased following cilostazol treatment, we 
employed a series of supervised machine learning algorithms. Machine learning analysis was conducted using Orange (v3.35) [37]. 
The xCell signatures of each database were imported into Orange via the widget “CSV File Import” feature. For cross-validation, we 
used the widget “Data Sampler”. We created 10 subsets and reserved 1 as an unused subset. We configured the widget “Neural 
Network” with 3,6,3 neurons in the hidden layers and employed ReLu as the activation function. The Adam method was selected as the 
solver and regularization was set to α = 0.0001. The maximum number of iterations was set to 200, and replicable training was 
enabled. The “Random Forest” widget was configured with 500 trees. The option in Growth Control "Do not split subsets smaller than" 
was set to 5. For logistic regression, we utilized the widget “Logistic Regression”. The regularization type was set to Ridge (L2), and 
strength was set at C = 1. Widget “Test and Score” was used for cross-validation with a number of folds set to 10. The "stratified" option 
was selected. ROC Analysis was carried out using the widget “ROC Analysis”. The target was set to venous thromboembolism (VTE), 
advanced atherosclerotic plaque, and atherosclerotic artery, respectively. The widget “Prediction” was used to calculate the cardio-
vascular disease score for samples of PBMCs both with and without cilostazol treatment. The predicted scores were saved using the 
widget “Save Data” feature. The resulting data were then exported to R for visualization and statistical analysis using the ggplot2 
package (v3.4.2). Specifically, bar plots were created to illustrate the predictive scores of cardiovascular diseases for the different 
treatment groups. 

3.2. Gene Set Enrichment Analysis (GSEA) 

GSEA was executed to discern gene sets that showed statistically significant, concordant differences between cilostazol-treated and 
untreated samples. The analysis was carried out using the gseaplot2 function within the enrichplot package (v1.16.2). The gene sets 
were derived from various sources, including the vascular endothelial cell activation pathway related to growth factor, NO, and ROS in 
triggering vascular inflammation from the Elsevier Pathway Collection; fibrin clot-associated gene sets from the Reactome pathway; 
regulation of ROS biosynthetic process and metabolic process from the Gene Ontology Biological Process (GOBP); macrophage 
behavior from the MGI Mammalian Phenotype Level 4 2021, filtered by “macrophage”; and macrophage biomarker gene sets from the 
CellMarker database, filtered by “macrophage” and “peripheral blood.” All these gene sets are available for download from enrichR 
[29]. A Gene-Concept Network was constructed using the cnetplot function in the enrichplot package (v1.16.2), and a heatmap-like 
plot for functional classification was created with the heatplot function in the same package. 

3.3. Cell viability assay and reactive oxygen species production assay 

The production of ROS in Human Umbilical Vein Endothelial Cells (HUVEC) was assessed to gauge cellular oxidative stress status. 
Initially, cell viability was evaluated using the MTT assay (Sigma-Aldrich, Cat.: M5655), treating cells with vehicle (DMSO, Thermo- 
Fisher Scientific; Cat.: 036480.K2) and cilostazol at concentrations of 10 μM, 30 μM, and 100 μM. After a 24-h incubation, optical 
density (OD) was measured to calculate relative cell viability. Subsequently, ROS production was quantified using the H2DCFDA 
(Thermo-Fisher Scientific; Cat.: D399) method. This fluorescent dye is oxidized by ROS into a highly fluorescent compound, allowing 
ROS detection within the cells using a BD FACSCanto™ II flow cytometry system (Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA). Cells were seeded and allowed to adhere before treatment with cilostazol (0.1 μM, 1 μM, 10 μM, and 30 μM), then treated with 
H2DCFDA and incubated under specified conditions for ROS production. Following incubation, ROS levels were detected and 
quantified through flow cytometry. 

3.4. Flow cytometry detecting macrophage differentiation markers 

Flow cytometry was employed to detect specific markers of macrophage differentiation, providing validation of the impact of 
cilostazol on monocyte differentiation into macrophages. The THP-1 acute monocytic leukemia cell line was cultured in RPMI1640 
growth medium with 10% Fetal Bovine Serum (FBS, Thermo-Fisher Scientific) and treated with DMSO and cilostazol at a concentration 
of 30 μM for 24 h. The specific markers CD80-APC (Elabscience Biotechnology Co., Ltd., Wuhan, Hubei, China, Cat.: E-AB-F1232E), 
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Fig. 1. Analysis of cilostazol’s effects on PBMCs. A) Schematic diagram illustrating the study design. PBMCs from healthy donors were treated ex 
vivo with either vehicle (DMSO) or cilostazol, followed by RNA sequencing. Subsequent analyses involved differential gene expression analysis, 
Gene Ontology (GO) interpretation, pathway analysis, digital cytometry, machine learning approaches, and Gene Set Enrichment Analysis (GSEA). 
B) Volcano plot visualizing the differential gene expression between cilostazol and DMSO-treated PBMCs. The plot represents the -log10 trans-
formed adjusted p-values (y-axis) against the log2 fold change (x-axis). Upregulated genes (548) are depicted in red and downregulated genes (632) 
in blue. C) Heatmap illustrating the expression levels of the top 100 genes with the smallest false discovery rate (FDR) upon cilostazol treatment. 
Each row corresponds to a gene, and each column represents a sample. The genes (rows) and samples (columns) were hierarchically clustered based 
on their expression profiles. The clustering process involved calculating the Euclidean distance between each pair of genes or samples and then 
grouping them using the average linkage method. This resulted in a dendrogram where closely related genes or samples are placed near each other. 
The color intensity in each cell reflects the expression level of the gene in that sample, with red indicating upregulation and green indicating 
downregulation. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 2. Over-Representation Analysis (ORA) of cilostazol’s impact on gene expression. Differentially expressed genes were screened based on | 
log2FoldChange| > 1,2,3 and a false discovery rate (FDR) < 0.05. Downregulated genes are represented by blue bars, and upregulated genes by red 
bars. The analysis was performed using the compareCluster function of the clusterProfiler package. The size of the dots represents the -logFDR, 
indicating the significance of the gene set enrichment. The color of the dots, represented using the viridis color scale, indicates the proportion of 
differentially expressed genes (DEGs) in each gene set, with yellow indicating a higher proportion. The analysis covers (A) Gene Ontology Biological 
Process (GOBP), (B) Gene Ontology Molecular Function (GOMF), (C) Gene Ontology Cellular Component (GOCC), (D) Kyoto Encyclopedia of Genes 
and Genomes (KEGG), (E) Reactome, and (F) WikiPathway. (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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CD163-BV421 antibody (BioLegend, Inc., San Diego, CA, USA, Cat.: 333612), and CD206- PE/Dazzle™ 594 antibody (Biolegend, Cat.: 
321130) were targeted to evaluate macrophage differentiation. After the incubation period, the cells were analyzed by flow cytometry 
using the Attune™ NxT Flow Cytometry (Thermo Fisher Scientific). to assess the fluorescence intensity of the markers. The variation in 
fluorescence intensity was utilized to quantify the expression levels of the specific differentiation markers, thereby evaluating the 
effect of cilostazol on the differentiation process. 

4. Results 

4.1. Exploring the impact of cilostazol on peripheral blood mononuclear cells 

The present study investigated the effects of cilostazol on PBMCs using RNA sequencing (Fig. 1A). PBMCs from 10 healthy donors 
were treated ex vivo with vehicle control (DMSO) or cilostazol. The transcriptomic profile of the treated PBMCs was examined in detail 
by RNA sequencing. This high-dimensional transcriptomic data was subsequently analyzed using the edgeR package, specifically 
designed for differential expression analysis. This provided a list of genes that showed significant changes in expression upon cilostazol 
treatment. Gene Ontology (GO) analysis was used to interpret the differentially expressed genes, which covered three domains: 
biological processes, molecular functions, and cellular components, providing a comprehensive understanding of the biological 
context of the genes. Pathway analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and 
WikiPathway databases to gain insight into the complex network of biological pathways involving these genes. The Cytoscape ClueGO 
plugin, which provides interactive visual exploration of functionally grouped GO and pathway annotation networks, was used to 
present a clear picture of the relationships between enriched terms. In addition, xCell, a digital cytometry tool, was used to derive cell- 
type-specific signatures from the gene expression data, providing a comprehensive landscape of the cellular composition of the samples 
and helping to identify potential shifts in cell populations upon cilostazol treatment. Machine learning approaches were used to 
construct predictive models of treatment response based on gene expression profiles. Finally, GSEA focusing on endothelial cell 
function and macrophage differentiation was performed to determine whether predefined gene sets showed significant differences 
between the two biological states, thus improving our understanding of the effects of cilostazol on PBMCs. 

Fig. 1B presents a volcano plot showcasing the differential gene expression between cilostazol and DMSO-treated PBMCs. Notably, 
548 genes were found to be upregulated and 632 genes downregulated. Fig. 1C highlights the top 100 genes with the smallest false 
discovery rate (FDR). Several upregulated genes have been implicated in regulating immune responses and inflammation, such as 
CSF3, CCL20, PTGS2, TNFSF15, IL6, HAS1, PTGES, IL1A, and IL1B. These genes have been associated with different aspects of immune 
regulation, including cytokine production, chemotaxis, and inflammation, suggesting that cilostazol might modulate the immune 
environment. Among the downregulated genes, MRC1, IFI44L, CMPK2, ANKRD22, HGF, CXCL11, IFIT3, SIGLEC1, C1QA, IFIT1, FST, 
IFI27, CCL8, CXCL10, and STEAP4, stand out as they have been linked to various immune processes, including immune cell activation 
and recruitment and immune response to pathogens. Notably, genes like MRC1, CXCL11, CXCL10, and C1QA are well known for their 
roles in macrophage function, especially the M1 type, which is typically associated with inflammation and tissue damage. In particular, 
MRC1 (CD206) is a well-established marker for M2 macrophages but is also expressed in a subset of M1 macrophages. The down-
regulation of MRC1 may hint at a decrease in the population of these cells or a shift in the M1/M2 balance. Similarly, the chemokines 
CXCL10 and CXCL11 are involved in the recruitment of various immune cells, including M1 macrophages, to the sites of inflammation. 
Downregulation of these chemokines could result in decreased recruitment of these cells. 

4.2. Evaluating the global impact of cilostazol through gene ontology and pathway analysis 

In order to comprehensively analyze the potential impacts and biological responses of cilostazol regarding PBMCs, a differential 
gene expression analysis was conducted using edgeR. Genes upregulated and downregulated by cilostazol treatment were identified 
and categorized based on the absolute value of their log2 fold change, with thresholds set at 1, 2, and 3. This allowed for a nuanced 
multi-cluster analysis of the gene expression changes. GO Biological Process analysis revealed that the downregulated genes were 
associated with several immune-related processes (Fig. 2A). These include the production of molecular mediators of immune response, 
immunoglobulin production, and adaptive immune response based on somatic recombination of immune receptors built from 
immunoglobulin superfamily domains. Other processes included defense response to viruses and symbionts and cellular responses to 
lipopolysaccharides and molecules of bacterial origin. Conversely, the upregulated genes were linked to response to organophos-
phorus, lipid storage, response to purine-containing compounds, hormone transport, hormone secretion, luteinization, granulocyte 
migration, granulocyte chemotaxis, and response to molecules of bacterial origin. GO Molecular Function analysis provided further 
insights into the potential function of cilostazol on PBMCs (Fig. 2B). The downregulated genes were associated with functions such as 
antigen binding, polysaccharide binding, immunoglobulin binding, cargo receptor activity, low-density lipoprotein particle binding, 
carbohydrate binding, chemokine activity, chemokine receptor binding, and sulfur compound binding. The upregulated genes were 
linked to functions such as signaling receptor activator activity, cytokine activity, transmembrane receptor protein serine/threonine 
kinase binding, and receptor-ligand activity. The GO Cellular Component analysis revealed that cilostazol primarily affects certain 
cellular structures (Fig. 2C). Downregulated genes are associated with the immunoglobulin complex, the external side of the plasma 
membrane, blood microparticles, endocytic vesicles, and platelet alpha granules. Upregulated genes are linked to the tertiary granule, 
platelet alpha granule lumen, and serine-type peptidase complex. 

The KEGG analysis revealed that cilostazol significantly impacts various immune-related pathways (Fig. 2D). Downregulated 
pathways include those involved in the intestinal immune network for IgA production, phagosome function, hematopoietic cell 
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lineage, and the chemokine signaling pathway. Upregulated pathways include cytokine-cytokine receptor interaction and the IL-17 
and TNF signaling pathways. Interestingly, the complement and coagulation cascades and viral protein interaction with cytokine 
and cytokine receptor pathways were both upregulated and downregulated, indicating the complex effect of cilostazol on these 
pathways. The Reactome pathway analysis provides further insights into the potential effects of cilostazol on cytokine signaling and 
function (Fig. 2E). The upregulated pathways are primarily associated with cytokine and chemokine signaling, including IL-10 
signaling, chemokine receptors binding chemokines, signaling by interleukins, and IL-4 and IL-13 signaling. These pathways are 
crucial in immune response, inflammation, and cell communication. The downregulated pathways are mainly related to the interferon 
(IFN) signaling and complement cascade, including IFN signaling, IFN alpha/beta signaling, complement cascade regulation, com-
plement cascade, C4 and C2 activator creation, initial triggering of complement, antiviral mechanism by IFN-stimulated genes, and IFN 
gamma signaling. These pathways are key components of the innate immune response, suggesting that cilostazol may modulate this 
aspect of immunity. The WikiPathways analysis provides further insights into the impact of cilostazol on various biological pathways 
(Fig. 2F). Notably, several pathways related to immune response and inflammation were found to be upregulated, including photo-
dynamic therapy-induced NF-kB survival signaling, cytokines and inflammatory response, COVID-19 adverse outcome pathway, 
SARS-CoV-2 innate immunity evasion and cell-specific immune response, and IL-18 signaling pathways. These pathways play crucial 
roles in immune cell activation, communication, and response to pathogens, suggesting that cilostazol may enhance certain aspects of 

Fig. 3. Network visualization of gene ontology and pathway analysis using Cytoscape ClueGO. The network was generated using default 
settings, with upregulated gene sets represented by red clusters and downregulated gene sets represented by blue clusters. The size of each node 
corresponds to the ratio of genes in the gene set that are differentially expressed, with larger nodes indicating a higher ratio. The color intensity of 
each node reflects the false discovery rate (FDR) of the gene set, with darker colors indicating a smaller FDR. Edges between nodes represent shared 
genes between gene sets, with the length of the edges indicating the number of shared genes - shorter edges represent a higher number of shared 
genes. Pie charts represent the proportion of each gene set cluster in all upregulated or downregulated gene-associated gene sets. The percentage 
next to each term in the pie charts indicates the proportion of that term in the total gene set. Asterisks next to the terms represent the significance of 
the gene set, with one asterisk (*) indicating a p-value <0.05, and two asterisks (**) indicating a p-value <0.01. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.) 
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immune response. However, the downregulated pathways are particularly interesting. The type II IFN signaling pathway, which plays 
a key role in antiviral defense and immune response modulation, was downregulated. 

The comprehensive analysis of the effect of cilostazol on PBMCs suggests a significant modulation of immune responses. 

Fig. 4. xCell Analysis of PBMCs Treated with Cilostazol. The heatmap (left) displays the z-score of xCell scores for each identified cell type, with 
each row representing a cell type and each column representing a sample. The color intensity in each cell reflects the z-score of the xCell score for 
that cell type in the corresponding sample, with red indicating a higher score and blue indicating a lower score. The cell types are grouped into five 
categories: Stromal (pink), Stem Cells (dark green), Others (light green), Myeloids (blue), and Lymphoids (light blue), and are clustered hierar-
chically based on Euclidean distance. The violin plots (right) show the distribution of z-scores for each cell type within the five categories. Inside 
each violin plot, a boxplot is embedded. The box represents the interquartile range (IQR), the line inside the box marks the median, and the whiskers 
extend to the smallest and largest values. Statistical significance between the cilostazol-treated and untreated groups was determined using a t-test, 
with * indicating a p-value <0.05, ** indicating a p-value <0.01, and *** indicating a p-value <0.001. The abbreviations used for the cell types are 
as follows: ly_endothelial cell (Lymphatic Endothelial Cell), iDC (Immature Dendritic Cell), pDC (Plasmacytoid Dendritic Cell), aDC (Activated 
Dendritic Cell), MSC (Mesenchymal Stem Cell), mv endothelial cell (Microvascular Endothelial Cell), CLP (Common Lymphoid Progenitor), CMP 
(Common Myeloid Progenitor), GMP (Granulocyte-Macrophage Progenitor), HSC (Hematopoietic Stem Cell), MEP (Megakaryocyte-Erythroid 
Progenitor), MPP (Multipotent Progenitor), Tem (Effector Memory T Cell), Tgd (Gamma Delta T Cell), NK (Natural Killer Cell), NKT (Natural Killer T 
Cell), Tcm (Central Memory T Cell), Treg (Regulatory T Cell). (For interpretation of the references to color in this figure legend, the reader is referred 
to the Web version of this article.) 
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Downregulated genes and pathways are predominantly associated with key aspects of adaptive and innate immunity, including an-
tigen binding, immunoglobulin production, and IFN signaling. This suggests that cilostazol may exert an immunosuppressive effect, 
potentially reducing the body’s ability to respond to pathogens. However, the upregulation of certain immune-related pathways, 
particularly those involved in cytokine signaling, suggests a complex, multifaceted impact on immune function. 

4.3. Integrated analysis suggests immunosuppressive effects of cilostazol on PBMCs 

A visual distribution map was created using Cytoscape ClueGO to comprehensively evaluate the significant results of GO and 
Pathway analyses (Fig. 3). This map was color-coded, with red and blue marking the upregulated and downregulated differentially 
expressed gene-associated gene sets, respectively. The map revealed a considerable overlap among many associated gene sets, indi-
cating shared genes and pathways. Pie charts were created to further assess the proportion of upregulated and downregulated 
differentially expressed genes associated with gene sets. The top three upregulated gene set clusters were neutrophil migration 
(30.5%), IL-10 signaling (16.5%), and the Th17 cell differentiation pathway (13.5%). However, the top three downregulated gene set 
clusters were IFN signaling (40.74%), IFN alpha/beta signaling (16.05%), and nanomaterial-induced inflammasome activation 
(12.35%). These findings suggest that while inflammation-related IFN pathways were present in both upregulated and downregulated 

Fig. 5. Machine Learning Analysis of Cilostazol’s Impact on Cardiovascular Disease Prediction. A) Flowchart illustrating the process of 
machine learning training and prediction. B) Receiver Operating Characteristic (ROC) analysis and Score. True Positive Rate (TP Rate), False 
Positive Rate (FP Rate), Area Under the Curve (AUC), Classification Accuracy (CA), F1 Score, Precision, and Recall are presented. C) Barplot 
representing the predicted disease scores for each database. The data are presented as the mean values of three sample groups after prediction. The 
significance of differences between groups was calculated using the t-test, with * indicating p < 0.05 and ** indicating p < 0.01. 
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tendencies, cilostazol primarily appears to exert an anti-inflammatory effect by downregulating these pathways. This is particularly 
relevant in CVDs, as chronic inflammation is a key driver of atherosclerosis, a condition characterized by the buildup of plaques in the 
arteries. Interestingly, the upregulation of IL-10 signaling and Th17 cell differentiation pathways, which accounted for significant 
proportions of the upregulated gene sets, may have implications for atherosclerosis. IL-10 is a potent anti-inflammatory cytokine that 
can inhibit the synthesis of proinflammatory cytokines and prevent atherogenesis [38,39]. Similarly, Th17 cells, a subset of T-helper 
cells, have been implicated in regulating inflammation and autoimmunity. Although their protective role in atherosclerosis is still 
being researched [40], it has been suggested that Th17 cells may reduce immune cell adhesion by modulating the expression of 
VCAM1, a key molecule involved in the adhesion of leukocytes to the vascular endothelium. This modulation could potentially be 
linked to the observed changes in neutrophil migration. 

4.4. xCell analysis reveals the role of cilostazol role in inhibiting monocyte differentiation and promoting endothelial cell function 

To assess the impact of cilostazol on PBMC composition, we utilized xCell, a computational tool that can simulate and analyze the 
cellular composition of 64 different cell types. Following the original authors’ suggestions, all results were divided into five categories: 
lymphoids, myeloids, stem cells, stromal cells, and others. A heatmap was generated to visualize the distribution of score differences 
caused by cilostazol treatment, with individual cell group comparisons presented in violin plots on the right (Fig. 4). Notably, the 
stromal cell category showed an increase in specific cell populations following cilostazol treatment. These included endothelial cells, 
ly_endothelial cells, adipocytes, pericytes, preadipocytes, and mv_endothelial cells. In contrast, the myeloid category showed a general 

Fig. 6. GSEA plot and Experimental Validation of Cilostazol’s Impact on ROS Production and Endothelial Cell Viability. A) GSEA reveals the 
enrichment of several gene sets related to endothelial cell activation and fibrin clot formation. B) GSEA plot and CNET plot indicate the enrichment 
of gene sets related to the biosynthetic process of Reactive Oxygen Species (ROS), highlighting the leading edge genes. C) The results of a cell 
viability assay for HUVEC treated with different concentrations of cilostazol are presented. The results indicate that *** has a significantly lower P 
value (t-test, P < 0.001) compared to DMSO. D) Flow cytometry was used to analyze ROS production in HUVEC following 24-h treatment 
with cilostazol. 
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decrease following cilostazol treatment. The most significant changes were observed in dendritic cells (cDC and DC decreased, iDC 
increased) and macrophage subsets (decrease in macrophage, macrophage M1, and macrophage M2). The lymphoid category also 
showed a general decrease following cilostazol treatment. However, CD4 memory T cells and Treg cells showed a significant increase. 
This suggests that cilostazol treatment could alter the Th17/Treg imbalance, contributing to plaque stabilization, a crucial aspect of 

(caption on next page) 
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atherosclerosis management [41]. These findings provide valuable insights into the immunomodulatory effects of cilostazol on PBMCs. 
The observed changes in cell composition suggest that cilostazol may exert its effects by modulating the balance of various immune cell 
populations. The increase in stromal cells, particularly endothelial cells and adipocytes, could enhance vascular health and lipid 
metabolism, respectively. The decrease in myeloid cells, particularly dendritic cells and macrophages, could reduce inflammation and 
immune response, potentially mitigating the immune-mediated damage associated with CVDs. These changes align with the previously 
observed downregulation of inflammation-related pathways and upregulation of anti-inflammatory and protective pathways, further 
supporting the potential therapeutic benefits of cilostazol in CVDs. 

4.5. Exploring the potential of cilostazol in alleviating cardiovascular diseases through supervised Machine Learning Analysis 

To understand the substantive effects of cilostazol on healthy donor PBMCs and their association with clinical CVD, we used the 
xCell approach to analyze three datasets providing patient data for cardiovascular conditions. These datasets were GSE19151, 
GSE28829, and GSE100927, each representing a different CVD target group: venous thromboembolism (VTE) vs. healthy donors, 
advanced vs. early atherosclerotic plaque, and atherosclerotic vs. control artery, respectively. We classified the original data into 
binary categories and used 10-fold cross-validation to train our models for sample selection. Our approach involved four supervised 
machine learning algorithms: random Forest, Neural Network, Naïve Bayes, and Logistic Regression. These were used to predict the 
relative scores of PBMCs identified as diseased following cilostazol treatment (Fig. 5A). Fig. 5B shows the predictive ability of the four 
algorithms for each disease group in the databases, demonstrating that the area under the curve for all reached nearly 0.9, indicating 
high accuracy. After training, the algorithms were used to estimate scores for samples with and without cilostazol treatment. The 
results showed that after cilostazol treatment, the scores for being classified as VTE, advanced atherosclerotic plaque, or athero-
sclerotic artery all decreased to varying degrees (Fig. 5C). This suggests that cilostazol can alleviate CVD progression. 

4.6. Analysis of gene set enrichment provides insight into the role of cilostazol in regulating reactive oxygen species and endothelial cell 
activation 

A previous study showed that cilostazol activates eNOS and TM expression through the KLF2 pathway, indicating its potential 
antithrombotic and vascular protective effects on endothelial cells (Reference: 34638626). Our analysis included the GSEA strategy to 
identify relevant gene sets. The findings revealed positive enrichment for gene sets related to “Vascular Endothelial Cell Activation by 
Growth Factor” (normalized enrichment score [NES]: 1.83, FDR: 0.0104), "Vascular Endothelial Cell Activation by NO” (NES: 1.87, 
FDR: 0.007), and “Dissolution of Fibrin Clot R-HSA-75205" (NES: 1.57, FDR: 0.088). In contrast, the gene set related to “Intrinsic 
Pathway of Fibrin Clot Formation R-HAS-140837” (NES: 1.55, FDR: 0.088) had negative enrichment, consistent with the experimental 
results in HUVEC (Fig. 6A). A significant correlation was found between cilostazol treatment and the “ROS in Triggering Vascular 
Inflammation” gene set (NES: 2.08, FDR: 0.000934). To comprehend the association between cilostazol and the production/meta-
bolism of reactive oxygen species (ROS), we searched for gene sets from GO for GSEA, which are related to the regulation of ROS 
production and metabolism. Amongst all, only “Positive Regulation of Reactive Oxygen Species Biosynthetic Process (GO:1903428)” 
displayed negative enrichment (NES: 1.73, FDR: 0.0644). The GO term, “Negative Regulation of Reactive Oxygen Species Biosynthetic 
Process (GO:1903427),” did not reach statistical significance but showed positive enrichment (NES: 1.19, FDR:0.384). This suggests 
that cilostazol treatment can inhibit ROS biosynthesis in endothelial cells (see Fig. 6B, Left panel). The genes at the leading edge of the 
“ROS Biosynthetic Process” were plotted using the cnetplot function of clusterProfiler (Fig. 6B Right panel). The leading-edge genes in 
this group are ZNF205, TLR4, and CD36, known for their roles in causing oxidative stress and inflammation. TLR4 activates an immune 
response, while CD36 promotes foam cell formation within atherosclerotic plaques. In contrast, the gene set that negatively regulates 
reactive oxygen species biosynthesis shows a positive NES, indicating an increase in genes that suppress ROS production. The set 
comprises PPARA, SLC18A2, FYN, and ABCD2 as core genes. PPARA deserves special attention as it affects lipid metabolism and 
inflammation, which are crucial in the development of atherosclerosis. Finally, the gene set “Regulation of Reactive Oxygen Species 
Biosynthetic Process” displayed a negative NES, suggesting a general reduction in the regulation of ROS production. The set consists of 
core genes ABCD1, SPHK2, TLR6, PARK7, SLC25A33, ALOX5, TLR4, and CD36. These genes participate in various processes such as 
inflammation, lipid metabolism, and oxidative stress response, collectively contributing significantly to the development of athero-
sclerosis. We additionally exposed HUVEC to DMSO, 10 μM, 30 μM, and 100 μM cilostazol, revealing that up to 30uM does not hinder 
the growth activity of HUVEC (Fig. 6C). By employing H2CFDA to evaluate ROS production, we observed that an increase in cilostazol 
effectively suppressed ROS production (Fig. 6D), corroborating our findings in transcriptomics. 

Fig. 7. GSEA Plot and Experimental Validation of Cilostazol’s Impact on Macrophage Behavior and Trends of Differentiation. A) Sum-
marized circular GSEA NES plot revealing the enrichment of selected gene sets related to macrophage biological behaviors. Red bar indicates 
positive enrichment, blue bar indicates negative enrichment, black text represents FDR <0.25 (indicating significance), and gray text denotes an 
FDR that is not significant. Statistical significance is further denoted by *: FDR <0.05, **: FDR <0.01. B) GSEA plot representing the association with 
macrophage subtypes in peripheral blood, sourced from the CellMarker database. C) CNET plot showcasing the enrichment of gene sets pertinent to 
macrophage subtypes in peripheral blood, with an emphasis on the leading edge genes; the corresponding heatplot arranges leading edge genes in 
alphabetical order. D) Flow cytometry analysis of macrophage biomarkers in the THP-1 cell line following a 24-h treatment with cilostazol, 
compared to DMSO; statistical significance denoted by ****: p < 0.0001. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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4.7. Inhibitory effects of cilostazol on macrophage differentiation evidenced by Gene Set Enrichment Analysis 

To understand the effect of cilostazol on macrophage differentiation, we used the MGI mammalian database to filter for 
“macrophage,” resulting in 16 gene sets describing the biological behavior of macrophages. Fig. 7A shows the NES and significance of 
the 16 gene sets after GSEA. Among them, “abnormal macrophage chemotaxis MP:0010760” (NES: − 1.87, FDR: 0.0145), “abnormal 
alveolar macrophage morphology MP:0008245” (NES: 1.66, FDR: 0.0257), "decreased macrophage cell number MP:0003884" (NES: 1. 
51, FDR: 0.121), and “impaired macrophage phagocytosis MP:0001798” (NES: 1.4, FDR: 0.228) were significantly negatively 
enriched, suggesting that cilostazol affects macrophage function. We also used the Cell Marker database to filter for “peripheral blood” 
and “macrophage,” resulting in three gene sets. GSEA showed that cilostazol treatment was significantly negatively enriched for 
“Macrophage: Peripheral Blood” (NES: 1.64, FDR: 0.00587), “M1 macrophage: Peripheral Blood” (NES: 1.83, FDR: 0.00461), and “M2 
macrophage: Peripheral Blood” (NES: 1.16, FDR: 0.103), suggesting that cilostazol may inhibit the differentiation of monocytes into 
macrophages (Fig. 7B). The leading-edge genes of the three gene sets were presented using the cnet and heat plots, showing that all 
genes related to macrophages were downregulated under cilostazol treatment (Fig. 7C). To validate the effect of cilostazol on 
macrophage-related biomarkers, we treated THP-1 cells with 30 μM cilostazol for 48 h and evaluated the expression of M1 marker 
CD80 and M2 markers CD163 and CD206. The results showed that cilostazol effectively reduced the biomarkers of both M1 and M2 
macrophages, confirming that cilostazol can inhibit the differentiation of monocytes into macrophages. 

5. Discussion 

The comprehensive analysis of the effect of cilostazol on PBMCs and its potential role in mitigating CVD presents several intriguing 
areas of discussion. The study discovered that the influence of cilostazol on PBMCs highlights its potential role in enhancing vascular 
health and regulating lipid metabolism. A notable increase in stromal cells, including endothelial cells and adipocytes, implies a 
synergistic approach to cardiovascular health [42]. Our previous study consistently supported the activation of KLF2 expression and its 
associated endothelial functions (eNOS activation, NO production, and TM secretion) by cilostazol [24]. Such evidence emphasizes its 
ability to inhibit oxidative stress-induced premature senescence and Sirt1 upregulation in human endothelial cells [43]. The findings 
from different studies further extend the understanding of the impact of cilostazol on lipid metabolism. It potentiates adipocyte dif-
ferentiation in 3T3-L1 cells [44], and its effect on plasma lipoproteins in patients with intermittent claudication has also been noted 
[45].Conversely, the influence of cilostazol on specific immune cells like dendritic cells and macrophages indicates reduced inflam-
mation, a critical factor in CVD [46–49]. Its anti-inflammatory attributes are further affirmed in various scenarios, including hindlimb 
ischemia in a mouse model [50], potential COVID-19 treatment [51], and the inactivation of NF-κB in BV2 microglial cells [52]. This 
aligned evidence consolidates cilostazol’s potential therapeutic value. 

The analysis of gene expression changes induced by cilostazol in PBMCs highlights its complex immunomodulatory role, which is 
crucial for understanding its effects on CVDs. The gene downregulation related to antigen and immunoglobulin binding, alongside IFN 
signaling, positions cilostazol as a potential immunosuppressant. This observation is particularly relevant in the context of CVD, where 
elevated total serum IgE levels are associated with increased cardiovascular mortality risk in older adults [53], and serum 
antigen-specific IgE shows a significant association with CVD independent of traditional risk factors [54]. The impact on IFN signaling 
pathways is also noteworthy, considering the critical role of IFNs in atherosclerosis and related cardiovascular conditions [55–57]. 
Furthermore, the modulation of Th17 and Treg cells by cilostazol mirrors evidence suggesting an imbalance in these cell types is linked 
to CVDs, highlighting its potential in addressing pro-inflammatory states and vascular damage [58–60]. 

The anti-inflammatory potential of cilostazol, marked by the upregulation of IL-10 signaling, aligns with its proposed therapeutic 
role in cardiovascular disorders characterized by inflammation. The regulatory effect of IL-10 on inflammation and its correlation with 
CVD progression is complemented by the dual role of IL-17 in atherosclerosis [61–66]. The influence of cilostazol on macrophage 
polarization is also of significant interest; macrophage phenotype shifts in epicardial adipose tissue are closely associated with 
atherosclerosis [67,68]. Additionally, the influence of CXCL10 by cilostazol suggests its potential in conditions like ischemic stroke, 
where elevated levels of these chemokines are observed [69]. The modulation of Fc gamma receptors and their involvement in 
atherogenesis indicates a further therapeutic angle for cilostazol in CVD management [70–72]. Moreover, the impact of cilostazol on 
CD163 highlights its role in the broader spectrum of cardiovascular health [73]. 

A critical aspect of the study explored the role of cilostazol in controlling ROS and endothelial cell activation. The findings sug-
gested a balanced mechanism, inhibiting ROS biosynthesis and promoting protective genes, offering potential antithrombotic and 
vascular protective effects [74,75]. Also, the inhibitory effects of cilostazol on macrophage differentiation contribute to understanding 
its immunomodulatory roles. The integration of supervised machine learning provided a novel perspective, accurately predicting the 
relative scores of PBMCs identified as diseased following cilostazol treatment. This high level of accuracy underlines the potential of 
cilostazol as a therapeutic agent, warranting further clinical exploration. While these findings present a comprehensive analysis of the 
therapeutic potential of cilostazol, some limitations must be acknowledged. The reliance on computational tools and in vitro models 
may not accurately mimic complex biological interactions within human organisms. Techniques like the xCell approach and GSEA, 
although valuable, may be susceptible to biases or inaccuracies. Furthermore, the machine learning applications need further vali-
dation with more diverse patient data to ensure robustness. 

6. Conclusion 

The comprehensive role of cilostazol in cardiovascular health, highlighted through extensive research, emphasizes the need for 
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further clinical investigation. Its influence on PBMCs, endothelial function, lipid metabolism, and anti-inflammatory pathways 
demonstrates its potential as a versatile therapeutic agent in CVD management. Its capability to regulate ROS particularly underscores 
its protective role against vascular dysfunction. Additionally, the application of advanced machine learning techniques to predict the 
therapeutic effects of cilostazol showcases its promise in personalized medicine for cardiovascular care. The insights into the 
immunomodulatory effects of cilostazol, especially its potential as an immunosuppressant, align with the increasing recognition of 
immune response dysregulation in cardiovascular pathologies. Therefore, cilostazol, with its myriad of benefits, warrants further 
exploration in both in vitro and in vivo studies to substantiate these findings and enhance patient outcomes in cardiovascular therapy. 
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