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Abstract: Agriculture is the economy’s backbone for most developing countries. Most of these
countries suffer from insufficient agricultural production. The availability of real-time, reliable and
farm-specific information may significantly contribute to more sufficient and sustained production.
Typically, such information is usually fragmented and often does fit one-on-one with the farm or farm
plot. Automated, precise and affordable data collection and dissemination tools are vital to bring such
information to these levels. The tools must address details of spatial and temporal variability. The
Internet of Things (IoT) and wireless sensor networks (WSNs) are useful technology in this respect.
This paper investigates the usability of IoT and WSN for smallholder agriculture applications. An
in-depth qualitative and quantitative analysis of relevant work over the past decade was conducted.
We explore the type and purpose of agricultural parameters, study and describe available resources,
needed skills and technological requirements that allow sustained deployment of IoT and WSN
technology. Our findings reveal significant gaps in utilization of the technology in the context of
smallholder farm practices caused by social, economic, infrastructural and technological barriers. We
also identify a significant future opportunity to design and implement affordable and reliable data
acquisition tools and frameworks, with a possible integration of citizen science.

Keywords: Internet of Things; wireless sensor network; affordable digital data infrastructure;
technology assist in smallholder data acquisition; smart agriculture

1. Introduction

Agriculture contributes more than 25% to the gross domestic product (GDP) [1] and
55% to employment opportunities in developing countries [2]. It is thus a prominent sector
to target poverty reduction, and is crucial for economic global policy-making. Smallholder
farming forms a significant component of this sector with a food production rate of more
than 70% globally and more than 60% in developing countries [3]. For instance, in Ethiopia,
smallholder farming accounts for about 95% of total agricultural production of the coun-
try [4]. An estimated 2.5 billion people practice smallholder agriculture and, in doing so,
manage about 510 million farms [5].

Smallholder farmers often own a fragment of farmland and operate under perilous
conditions due to their heavy reliance on ecosystem services that can be scarce and poten-
tially show signs of degradation [6,7]. Unpredictable and extreme weather conditions may
bring drought or flooding, which lead to soil erosion and depletion, hindering farms from
operating at full potential [8]. The limited financial capacity of smallholder farmers also
means that their investments in yield-improving mechanisms are restricted. As a result,
an area of focus in these communities is an affordable means to increase farm production
with efficient and sustained utilization of available resources [6].
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The development of context-specific solutions is critical to improve and sustain better
production by smallholders. It is important to invest in agricultural practices that can, not
only provide for future generations, but are also climate-resilient [9,10]. Such approach
requires a data richness that comes directly from the farm allowing informed decision-
making on issues such as how to prepare land, what to plant, how much to consume and
how much to sell or store [11]. Real-time information on farming systems, soil and crop
health, water management, livestock management, and agro-climatic attributes such as
rainfall and soil moisture could enable smallholder farmers to practice more sustainably
and increase their productivity.

Sustainable agriculture consists of practices that opt to meet present and future food
demands while fulfilling social and economic equity, protecting environmental health
and increasing profitability [9,12,13]. Sustainable agriculture and optimization of farm
yield needs better understanding of local and farm level contexts of farm production
and productivity parameters, of which some are variable in space and over time. At the
same time, most smallholder farms are found in rural areas, which often display poor
infrastructure and sites are often inaccessible, challenging the collection of these data. As a
result, information produced is rarely complete and often does not quite fit with farm levels.
Even when data are available it is commonly outdated and not representative of current
situations. Consequently, intuitive farming decisions and traditional farm practices persist
among associated communities and cause over-exploitation of the scarce resources leading
to poor production [14]. Thus, viable technological approaches that are easily adoptable
and reliable are needed for the efficient acquisition of in situ farm data. With proper
enabling tools, such data can be obtained affordably [11].

Recently, with the advent of technology and powerful computing infrastructures, it
has become possible to obtain, analyze, and generate sound agricultural information in a
cost-effective and timely manner. Remote sensing (RS), proximal sensing (PS) and in-field
sensing (IfS) paved the way for enhanced data acquisition complementing conventional
approaches such as survey and physical field observation [15,16]. A detailed discussion of
each approach is presented in Section 3. The large spatial and temporal coverage and recent
advances in high-resolution imagery, has made satellite technology indispensable to capture
farm-related data remotely. Recent works have shown how RS platforms like Sentinel-1/-2
and MODIS can be used to efficiently capture farm data [17–19]. PS technology, with more
closer look than RS, is effectively utilized for better farm observation, agricultural disaster
management, and agricultural land classification [20,21]. IfS with spatially dispersed
network of small, inexpensive, and efficient sensing devices, known as wireless sensor
networks (WSN) and the Internet of Things (IoT) has created opportunities for precise farm
monitoring [22,23].

Various authors have reported the effective utilization of WSN and IoT for soil data
collection in large-scale farming [24–27]. It remains unclear how effective the case can
be in smallholder agriculture. Thus, this paper aims to establish scientific understand-
ing concerning:

1. Whether IoT and WSN can also be used and potentially benefit smallholder farming
2. Whether the immediate data needs of the smallholder farmer are addressed, and
3. Which design and implementation issues need to be considered for IoT and WSN

application in smallholder agriculture.

To this effect, we analyze literature on the state-of-the-art over the past ten years,
2011–2021. The analysis is done through a comprehensive literature review and presented
in sections below. The paper summarizes prior research work, explores key limitations
and prospects, and identifies knowledge gaps. This work also proposes a high-level,
WSN-based IoT architecture for agricultural application and discusses the challenges and
opportunities related to IoT implementation in smallholder agriculture. Published journals,
white papers, conference proceedings and real systems are the inputs to our work.

The remainder of this paper is organized as follows. Section 2 describes the unique
characteristics of smallholder farms and the main factors affecting their productivity.
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Section 3 discusses relevant approaches to data collection in smallholder agriculture.
With these, we aim to layout a better insight of the target population and bring about
the data gaps that needs to be filled. The literature search methodology is explained in
Section 4. An in-depth analysis of the use of IoT and WSN in smallholder agriculture,
based on reviewed literature and a high-level system architecture are presented in Section 5.
Discussion and possible opportunities and challenges are discussed in Sections 6 and 7,
respectively. Section 8 presents our conclusions. The overall workflow of the paper is
shown in Figure 1.
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Figure 1. Schematic workflow representation of the proposed work.

2. Characteristics of Smallholder Agriculture

Smallholder farmers are often characterized as being conservative, tech-resistant and
showing a low adoption rate to innovations [28]. It is important to understand the root
causes for these which may lie in the community. With this knowledge, we may avoid
the incongruity between technology adoption and actual farmers’ conditions. Certain
farm or farming characteristics are common amongst smallholders and distinguish them
from large-scale enterprise farming. Almost by definition, land size is a key property.
Based on this, smallholder farms are those practiced on a small portion of land, 2 ha on
average [7,29]. Most smallholder farms are also known to practice farming on the basis
of natural biophysical conditions to crop growth, such as rain [29], and to apply a mix of
crop growing and livestock breeding. However, the extent of these characteristics may vary
with demographic and economic conditions of the location, the ecological zone and other
terrain parameters [7]. A systematic, multi-criterion definition needs to be formulated from
similar characteristics exhibited by the farmers. These characteristics can be categorized in
four dimensions:

• Social attitude;
• The use of resources and infrastructure;
• Awareness and preparedness;
• Productivity.

2.1. Social Attitude

Family ownership, subsistence farming, risk avoidance, communal information needs
and reliance on extension services are social characteristics of smallholder farms. Most
smallholder farms are run by a family and mostly for the family’s subsistence with small
production [7]. The condition of total dependence on the farm to feed the family creates atti-
tudes of considerable risk avoidance and resistance to costly farming practices with farmers.
Consequently, there is slow adoption of technology and new farming approaches [28]. In-
stead, low-return but sustained production practice is preferred over technology-supported
farming by most smallholders [7].

Some forms of information provide added value when shared amongst members
of the farmer community. Adjacent plots owned by different smallholders will often be
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under similar farming practices and communication between neighbor farmers is more
readily trusted. As a result, relevant information emerging in the community may get
communal use. Agricultural extension workers also assist farmers through community
level knowledge transfer regarding improved farm management, input application and
other tasks towards better productivity. They serve as a bridge to pass on higher level
decisions to farmers and oversee their implementation. This makes smallholder farms
highly dependent on extension workers for information and know-how.

2.2. Resource Usage and Infrastructure

Small farm size, farming practices with mixed crops, limited access to finance and
weak transport, communication and on-farm infrastructure are conditions familiar to most
smallholder farms. A farm’s land may be further split into smaller but discontinuous plots
where different crops are cultivated. This practice expresses a risk mitigation mechanism to
stabilize farm income and reduce the impact of failure shocks, even when it is reported to
have negative correlation with yields [30]. Diverse cropping on fragmented lands causes
complications for technological assistance and innovation, for one because plot and crop
requirements may vary. The required investments make farmers resistant to such changes,
which are better suited to and have often been developed for larger-scale farming.

Their limited financial capacity also makes farmers less interested in technological
investments. They heavily rely on farming and have minimal or no alternative source of
income [7]. Most farms are remote and suffer from poor physical and institutional infras-
tructure in provision of electric power, road access, irrigation, communication networks,
and access to social services [31]. These challenges hinder successful implementation of
agricultural innovation.

2.3. Awareness and Preparedness

In the absence of agricultural information systems, smallholders are vulnerable to
natural hazards. Water excess or scarcity are particularly dangerous because most farms
apply rain-fed practices. Adoption of agricultural innovation and technology is hard to
achieve without systematic assistance and training. In addition, the generally low literacy
rate of smallholders causes low awareness and preparedness for on-farm solutions. This
requires attention to be paid to minimal initial investment level, ease of use, sensitivity to
culture, language and other acceptance barriers. Fuelled by scientific finds, it is crucial to
expand rural education and regular capacity building of extension workers.

2.4. Low Productivity

Various socio-economic, environmental and biophysical factors often correlate strongly
with production levels of smallholders. They include genetically determined behavior of
crops, soil properties, climate conditions, topography, farm financial status and illiteracy.
Weak land management practices [32], the volume of family labor [33] and uninformed
use of farm inputs are also factors that contribute to poor farm productivity. The low
productivity is also often exacerbated by crop disease and pests [34,35]. In addition to the
inculcated effect of the above factors, scarce research and development activities and lack
of accurate and timely information negatively impact farm yields [36,37].

It is worth noting that these factors do not equally impact farming across all small-
holder landscapes. Their role and severity vary with micro-climate, region, and agro-
ecological zone. Understanding them as root causes within the space-time variability is
critical for finding contextual solutions. Our review, as discussed in Section 5.2, reveals soil
(in its various properties) as the most central attribute that impacts agricultural production.
We should thus strive to obtain accurate on-farm information about relevant soil properties
to allow valuable diagnostics.

Considering the aforementioned characteristics, smallholder farms can be defined
as: family-run, small farms that are often fragmented into disjoint plots, that are nature-dependent
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and have limited operational budget, limited information access and technology support, and often
display low production levels.

3. Data Acquisition in Smallholder Agriculture

Comprehensive data on farm inputs, natural resource utilization, and environmental
and biophysical attributes is required to assist in improving farming. There are four possible
ways to acquire both technical and socio-economic data at the smallholder farm level. These
are: conventional, or by remote sensing, proximal sensing and in-field sensing.

• Conventional data collection Interviews, focus group discussions, surveys, sam-
ple collections and observations, on-farm trials and yield measurements are the
conventional primary data collection approaches used in agronomic research and
projects [38–40]. These are techniques for which physical presence of the data col-
lector is needed, and they demand high resource mobilization, especially human
labor. Sample collection, on-farm trials, observations and measurements are used
to collect physical data such as soil properties and fertility, crop condition and yield
estimates, while interviews, focus group discussions and surveys can be used for socio-
economic data collection. In general, these data collection techniques exhibit a number
of challenges. (i) Prolonged collection period to capture precisely spatio-temporal
variability [41]; (ii) non-traceability as most smallholders have little formal education
and do not keep written records of parameters during farm work, leading to lack of
evidence; (iii) data collection is considered intrusive and less-trusted by farmers as the
activities are mostly non-participatory and thus less transparent [40]. Collected data
may be biased due to misinformed collectors or the use of poor sampling schemes.
This may result in incomplete data with quality problems, subsequently leading to
incorrect conclusions. However, with careful and proper execution, conventional tools
are crucial for calibration and other statistical analytic purposes [38]. Such data may
also complement and/or validate secondary data used in decision-making systems.

• Remote sensing Recent research efforts have shown the potential of RS and GIS
technologies for monitoring smallholder farms and filling data gaps [42,43]. RS uses
space-borne and airborne systems and generates valuable data such as crop phenotype,
growth stages and crop health issues, soil type, soil moisture and farm input uses [44].
The potential of RS to assess crop and soil properties, and farm inputs is demonstrated
in [17,19,43,45,46]. The actual application of these tools is uncommon in developing
countries. The lack of ground truth data, the high learning curve to understand
and use the outcomes, the coarse spectral resolution as well as lack of appropriate
training are reasons for their limited use. Small and fragmented farms, vegetation
heterogeneity, and atmospheric conditions also diminish quality and usefulness of RS
data [47,48]. Nonetheless, RS has high potential in complementing conventional data
collection approaches and holds promise to assist sustainable farming practices.

• Proximal sensing A closer look at a farm field can be achieved with PS; sensors
positioned approx. 2 m above the field surface then capture data [49]. A number of
agricultural parameters including soil properties, crop growth metrics and farm inputs
can be acquired through this platform [50,51].This is done by electromagnetic sensors,
ground penetrating radar (GPR) and gamma-ray spectrometry sensors [15,47]. PS
sensors are typically mounted on tractors, spreaders, sprayers or irrigation booms. PS
technology is relatively economical, more accurate and offers higher spectral resolution
than RS [52]. However, low temporal resolution, labor intensity and significant cost
hinder full usability. The scarcity or absence of mechanized farming vehicles is
another barrier to utilization of PS. A review of both RS and PS technology in soil data
collection and associated challenges is provided in [53].

• In-field sensing IoT and WSN can complement the above approaches and help min-
imize their mentioned challenges. IoT is a platform through which objects can be
interconnected to generate and exchange relevant and valuable information. Objects
can be both physical and virtual. WSN is at the heart of this platform enabling reliable
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interaction between dispersedly located objects. IoT and WSN have application in
the broader agricultural domain. Monitoring, tracking, automation, and precision
agriculture can be mentioned in this context. Several projects are known in the de-
veloped world: the EU’s Food and Farm 2020 project, the Kansas water preservation
through sensors, and NanoGanesh are a few examples [54]. The NanoGanesh project,
for instance, is an irrigation automation system that creates mobile-based remote
control for water pumps and water tanks using sensor information. The project helps
farmers to control water pumps, their power supply, and provides vandalism alerts
of field-deployed equipment. Other projects have designed affordable, all-inclusive
farm improvement mechanisms that utilize IoT and WSNs [25,26,55,56]. Smallholder
farmers require information and advice, down-scaled to the plot level, to improve their
practice; stakeholders such as agricultural extension agents, and (non-)governmental
aid organizations also rely on such information for planning. The point-level data
offered through IoT and WSN makes the technology fitting with only a limited number
of sensors per plot. Inexpensive sensors keep things affordable, also to smallholders.
In addition, IoT and WSN are simple and quick approaches for farm-level data collec-
tion that allow direct interpretation. Further discussion of IoT and WSN is presented
in Section 5.

4. Literature Search Methodology

Agriculture encompasses various activities including crop farming and livestock
breeding. IoT and WSN can have various applications in this broad domain including farm
monitoring, animal tracking, and precision agriculture. Our literature search considered
all these sub-domains and followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) framework as a standard [57]. The use of IoT and WSN for
agricultural applications was insignificant until around 2010 and has increased significantly
since then. Hence, we searched for publications in the years 2011–2021. Research articles,
software and data publications, white papers and conference proceedings were searched
and acquired from three citation databases: ACM, Scopus and ScienceDirect. Our search
query and inclusion and exclusion criteria are presented in Table 1.

Table 1. Systematic search parameters to identify relevant papers for review. * is a wildcard of zero
or more search characters and can take ing, er, ers.

Search Parameter Value

Search query Internet of Things (IoT) AND (Wireless Sensor Network (WSN) OR sensor)
AND small AND (agriculture OR farm *) AND “smart farming”

Inclusion criteria

Open access
Research article, conference proceeding, book chapter, software or data publication
Small farms or smallholder agriculture
Wireless communication
2010–2021

Exclusion criteria

Targets mechanized, large-scale farms, developed countries
Non-English manuscripts
Less technical details or mostly higher-level descriptions
Theoretical frameworks
Non-agricultural applications

Citation databases
ACM
Scopus
ScienceDirect

Our searches followed a three-step approach: paper acquisition, paper filtering and
paper analysis. Before paper acquisition, a metadata search was executed on the citation
databases. Reviews, early access articles, theoretical frameworks, editorials, encyclopedia
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and magazines were excluded. Publications that addressed large-scale enterprise farms
or deployment in resource-rich environments were also excluded. Thirdly, publications
with little or unclear technical discussion or with little focus on the physical or hardware
details were left out from our review. Figure 2 shows the schematic representation of our
search results.

 

Identification of studies through online databases 

Records identified 

ScienceDirect    (n = 268 ) 

Scopus ( n = 46 ) 

ACM ( n = 97 ) 

Records removed before 
screening 

No duplicates were found 

Id
e
n
ti
fi
c
a
ti
o
n
 

Records screened manually and 
through filtering on the 

databases 

( n = 411 ) 

Records excluded  

( n = 156 ) 

Reports assessed through title 
and abstract skimming 

( n = 255 ) 

Excluded records 

( n = 178 ) 

Reports assessed for eligibility 
through full-text skimming 

( n = 77 ) 

Studies included in review 

( n = 53 ) 

Reports excluded 

Reason 1: less technical details 

( n = 15 ) 

Reason 2:  irrelevant to our study 

 ( n = 9 ) 

S
c
re

e
n
in

g
 

In
c
lu

d
e
d
 

Figure 2. Search procedures for review papers and obtained results based on PRISMA framework.

A first round search was conducted between February and March 2021, and a second
round in December 2021. A crude total of 411 papers from more than 20 journals were iden-
tified. Next, results were filtered using the exclusion criteria mentioned in Table 1. A first
level discrimination was based on the paper’s type, followed by title and abstract skimming
to assess whether the scope of the work falls into our research interest. Finally, full-text read
was conducted to check the relevance, technicality, usability and deployment environment.

Some 53 papers were found relevant to our study, of which about 50% were in con-
ference proceedings. Further analysis was carried out on these papers to understand the
hardware and technical details. Sensors and nodes used in the work, communication tech-
nologies, power sources and energy harvesting schemes, micro-controllers and transceivers
were specifically studied. Section 5 presents a detailed discussion of findings.
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5. IoT and WSN in Smallholder Agriculture

We argued in Section 3 that IoT has sound justification to assist in agriculture data
collection and address the information gap that smallholder farms face. Monitoring crops,
soil and weather at farm-level, continually and in (near) real-time with reasonable cost
may provide closer insight into possible farm investments for improved productivity.
Livestock tracking, pest detection, farm input application may support decision-making
and better farm management practice.Unfortunately the deployment areas where IoT is
most useful are also those the technology is most vulnerable to theft, vandalism and other
physical damages. Social awareness campaigns can help prevent this and enhance the
capability of a community to collect data that assist its agricultural practices. With proper
design and implementation considerations, smallholder farms can be made to benefit from
the technology. In line with this, We propose an IoT-WSN architecture for agricultural
applications. The proposed architecture is presented in Figure 3 and it has five layers:
sensing, control, backhaul, application and decision layer.

 

Wired, wireless 

Wired, wireless 

Wired, wireless 

Wired, wireless   Zigbee, LoRa 

  Cellular,  GPRS 

 WiFi, Ethernet 

WiFi, standalone 

plication Layer Backhaul Layer 
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plication Layer Application  Layer 
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Sensing Layer 

Figure 3. A general Internet of Things (IoT)-wireless Sensor Network (WSN) architecture for agricul-
ture applications (PA:Precision Agriculture, LM: Livestock Management, WM: Weather Monitoring,
PAIM: Pest and Animal Infestation Monitoring).

As can be seen in the figure, the sensing layer comprises objects used to monitor and
interact with agricultural elements such as soil, livestock or crop. Measurement sensors
and their controlling nodes are found on this layer. Nodes run embedded instruction on
when to measure which agriculture elements through one or more sensors. Data collected
from this layer needs to reach the control layer through wired or wireless communication
protocols. Data rate, power consumption and communication range are some important
factors that affect the choice. Less power-hungry and optimal communication are required
in agriculture applications. Examples of wireless communication protocols are presented
in Table 2. In real agricultural fields’ deployment, communication signal could be weak
due to environmental obstructions such as tree. This might cause frequent communication
interruption between sensing layer and the control layer with significant data loss. Design
and/or implementation considerations such as obstruction-aware deployment scheme or
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node’s temporary data buffering scheme are required. The control layer is responsible for
aggregation of received data and transfer to the back end system. It also controls actions
of actuators through decisions coming from the back end system. Based on the device’s
capability and application requirement, this layer can be setup to perform additional
tasks such as controlling the frequency and time of data reading by sensor nodes and
data buffering. A node with higher processing and communication capability is setup at
this layer. This node is often referred as gateway and supports different communication
protocols. The backhaul layer bridges the communication between the resource-constrained
gateway device and relatively resource-rich back end system. It manages the underlying
network and application communication protocols between gateway and network server
and between the network server and application server. In the later case, the communication
protocols can be synchronous as in Message Queuing Telemetry Transport (MQTT) or
asynchronous as in Constrained Application Protocol (CoAP). The network communication
protocol can be the reliable Transport Control Protocol (TCP) or the efficient User Datagram
Protocol (UDP). In both cases, the protocol choice depends on energy-efficiency, inter-
operability and resource need. It is possible for this communication to be disrupted due to
unstable communication infrastructure. Alternatives that could withstand such disruptions
may need to be identified. The application layer defines the business rules and required
functionality of the agriculture application. This layer also creates the required seamless
integration of data coming from heterogeneous sensors. Finally, the decision layer performs
analysis of data received from devices based on the business rules and user requirements.
Data analysis, report generation and decision support all happen in this layer. The type of
information that is generated, target stakeholders, information re/presentation and delivery
interface are all decisions that must be addressed at the level of this layer. The application
and decision layers shall address requirements of a specific agriculture application domain
and answer all users’ needs. This trickles down and dictate the type and number of nodes
to deploy at the sensing layer as well as the timing and amount of data to read. Usefulness
of decisions made at these two layers also heavily rely on the quality of data generated at
lower layers. Hence, data validation and quality assurance measures needs to be in place
at the lower layers.

Table 2. Wireless communication technology comparison with example.

Wireless Technology WiFi WiMAX ZigBee Cellular Bluetooth LoRa

Wireless network WLAN WMAN WPAN WWAN PAN LPWAN

Standard 802.11 * 802.16 * 802.15.4 * 2/3/4 G 802.15.1 * LoRaWAN

Operating Frequency (Hz ) 5–60 G 2–6 G 868/919 M 2.4 G, 865 M 2.4 G 433/868/900 M

Data Rate (bps ) 1 M–6.75 G 1 M–1 G 40–250 K 50 K–1 G 1–24 M 0.3–50 K

Transmission Range 20–100 m <50 km 10–20 m Entire cellular 8–10 m <50 km

Power Consumption High Medium Low Medium Medium Very low

Cost High High Low Medium Low High

Operating Life Years Hours Up to 2 years Hours Hours 10–20 Years

Noise Resistance Low Medium Medium Medium Low High

References [58–70] [71,72] [62,73–83] [84–94] [95–99] [100–106]

* : IEEE

Actual installation and operation of IoT is often challenged in smallholder communi-
ties due to poor infrastructure and high improvement cost. More cost-effective and less
resource-hungry solutions such as WSN are potential candidates for integration with the
IoT [107]. Essentially, the low-power wireless communications contribute to improving
both IoT device connections with the Internet and the overall efficiency of the IoT applica-
tion operation. Important types of wireless communication technology are presented in
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Table 2. Minimal operational resource needs, scalability, long data range, high resistance
to signal interference, simple operation and maintenance requirements are critical criteria
when choosing a wireless communication technology for such environments.

Our analysis reveals that use of IoT and WSN in smallholder farming evolves around
the following issues:

• Purpose;
• Sensor deployment and implementation;
• Communication technology;
• Power sources;
• Computing analysis;
• Quality assurance.

We elaborate on these below.

5.1. Purpose

Agricultural productivity depends on multiple parameters: those of soil, weather, crop
and other farm management practices especially. Careful investigation is, thus, required
to identify those parameters with most impact, to allow tuning farming practices through
continuous monitoring and analysis.

Four areas have been associated by the research community with the use of IoT and
WSN in smallholder agriculture: precision agriculture (PA), weather monitoring (WM),
pest and animal infestation monitoring (PAIM) and livestock management (LM). In preci-
sion agriculture, work focuses on automatic irrigation, fertilization and other farm input
management actions. PA aims at precise and efficient use of agricultural inputs for optimal
production. The precision addresses dosage, application location or timing. Irrigation
management, using monitored soil data from sensors, and deploying actuators contributes
to efficient and timely water utilization [59,62,65,66,68,69,73,77,90,99,103,108–110]. Moni-
toring of soil nutrients and soil moisture content helps control fertilizer application and
promotes the optimal use of other natural resources [67,75,87,98,101,111].

In areas with poor coverage, Weather monitoring can potentially benefit from IoT and
WSNs through sensor-based micro-climate weather stations [70,82,83,89,94,105,112]. Weather
data by itself does not fully predict crop performance because other variables are also in
play. The correct approach is to integrate with other agro-climatic variables [67,88,105,113].
Correlation between soil moisture, air temperature and humidity, and other environmental
variables needs to be analyzed for agricultural applications. Existing agro-meteorological
data collection infrastructures in smallholder context are at best sparse. This is mainly
because of budget constraints. As a result, the quality and quantity of produced data are
poor [83,94]. Setting up automatic weather stations through WSN may complement these
weather stations. In addition to being cost-effective, they can be deployed densely to pro-
duce data of better spatial resolution, and can be configured to acquire data autonomously
at small time intervals. This brings value in agricultural early warning systems.

The third area in which IoT and WSN is used in smallholder agriculture is pest and
animal infestation monitoring. Crop pests and diseases and unwanted animal visits to
farmlands are known causes of crop loss. Both wild and domestic animals pose such threats
and farmers can benefit from real-time monitoring of animal visits to fields. Knowing
a crop’s resource requirements at the different growth stages and timely observation of
leave color changes may reduce crop failure caused by pests and diseases. Temperature
and motion sensors can capture data relevant to these problems. IoT and WSN can help
to set up a sensor network cost-effectively and to the required precision and temporal
scale [60,61,81,92,93,114,115].

Livestock management is the fourth area that may benefit from IoT and WSN technol-
ogy [79,80,86,104,116–119]. Most smallholders practice mixed crop farming in combination
with livestock breeding. The livestock may be as important as the crops. It is mostly an
income source but it can also be a source for the household’s dietary needs. Tracking of
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cattle, monitoring animal health and safety of feedlots and barns, and monitoring body
changes can become sensor-based.

Among the 53 papers reviewed, we found that PA is researched widely with about
64% of the works targeting it, as shown in Figure 4. The classes in that figure are not
mutually exclusive as some papers address more than one application domain, as discussed
in Section 5.1 and reported in [91,99]. Most data collected was used in water management
and irrigation. Since smallholder farms mostly apply rain-fed practices, other use cases
that address the much needed information of the community shall be sought. These can be
deciding which crop to plant, the sowing time and pest management [98,120,121]. Weather
sensor data may also help in situations like drought. Precise information on such and
optimal utilization of other existing farm resources is, thus, also of paramount importance
to this community.

60%

10%

14%

16%

PA LM WM PAIM

Figure 4. Thematic distribution of reviewed papers (N = 53) depicting important uses of IoT-WSN
in smallholder agriculture (PA:Precision Agriculture, LM: Livestock Management, WM: Weather
Monitoring, PAIM: Pest and Animal Infestation Monitoring); classes may be mutually overlapping.

5.2. Sensor Deployment Schemes

Multiple sensors make up a WSN. Sensor deployment in agriculture requires a
careful design that takes into account the spatio-temporal variability of the parameters
of interest. For instance, soil moisture may display high spatial and temporal variability
while crop growth tends to be slow and monotonic over time, and has higher predictability.
Appropriate sensor deployment shall address such variability. It also determines the
number of devices to be used, with budget implications. Moreover, some agricultural
parameters, like soil moisture and crop root growth, exhibit spatial variability over different
soil depths. Optimal placement of sensors is required to address such requirements and
optimization of performance and coverage of the WSN [111].

Work by [72] presents WSN deployment from three perspectives: node movement
(dynamic, static, hybrid), node type (homogeneous, heterogeneous) and system hierarchy
(single-tier, multi-tier). In static node deployment, nodes are placed in a fixed position
for the entire sensing duration [122]. The dynamic node set-up allows mobility of nodes,
and a hybrid set-up integrates static and dynamic nodes. Homogeneous nodes are those
with near-identical characteristics while heterogeneous nodes differ in computation power,
sensing capability and/or transceiver units. A tiered hierarchy organizes nodes into clusters
to extend the spatial coverage with the same [123] or a different [122] number of nodes
in each cluster. Sensor placement in WSN typically follows a random [122] or grid-based
approach [75,106,111]. In the first, nodes are distributed randomly over the target location.
In a grid-based set-up, nodes are arranged in a regular equidistant way, placed at the edge
or center of the polygon [106,124,125]. As most reviewed papers are experimental, little
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is discussed regarding node placement. A few papers mention cluster-based static sensor
placement [75,106], and in livestock monitoring, nodes are tied to moving animals.

The number and type of sensors in a WSN for agriculture monitoring are specific
to the application theme or purpose. Sparse air temperature and humidity sensors may
suffice to collect weather data at village-level. High sensor density is needed with motion
sensors in livestock monitoring, unless the purpose is to follow group movements only.
Measurements from some sensors can also serve multiple needs. For instance, relative
humidity can be used for weather analysis and in crop pest manifestation assessment.
A dense deployment of nodes with high frequency data collection generates a large amount
of data. However, such affects the network’s lifetime and comes with budget implications.
The papers we reviewed use different sensor types. In PA applications, soil water content
or soil temperature measurement are common while in livestock management animal
movement is required. Some sensor types are also commonly found among applications:
soil moisture and relative humidity sensors are frequently used, as shown in Figure 5. Air
and soil temperature sensors are also often deployed sensors while others like light, CO2,
location, soil electrical conductivity (EC), soil acidity (pH), wind speed and direction are
less often applied [79,80,82,83,86,92,94,101,110,111,118,126,127].

70%

57%

45%

40%

21%

15%
13%

13%
11% 9% 8%

Humidity Air temperature
Light Motion
Air pressure Wind speed & direction

Soil moisture 
Soil temperature 
Soil acidity
CO Solar radiation2

Figure 5. Sensor type distribution of reviewed papers (N = 53) showing important types in small-
holder agriculture. Papers typically report multiple sensor types in use.

Most agricultural parameters require time-series monitoring. Expected parametric
temporal variability is the key factor to determine sensor reading frequency and period; in
principle, one wants to capture each significant parameter value change. An additional
concern is especially the daily cycle in the sensor’s ambient conditions, which may nega-
tively impact comparability of sensor readings. Thus, sensors should collect data at fixed
moments in the day, where it needs to be understood that ‘at 7 a.m.’ and ‘one hour after
sunrise’ are different notions of time fixation. Still, post-processing of sensor data should
analyze whether the day/night rhythm is manifest in the data, and how, if so, to correct
for it.

In PA, for instance, as plants grow their demand for resources evolves. It may thus be
beneficial to monitor throughout the season for optimal production. In pest monitoring,
the appropriate sensing period may fall between the flowering and senescence phases.
For some parameters, even within the active sensing window, measurements are required
more frequently as, for instance, in soil moisture compared to soil type [128]. In most
reviewed papers, a data read frequency may range between 15 and 30 min with no specific
justification. We observed more emphasis given to the energy use efficiency of nodes and
less focus to the efficient applicability of acquired data.
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As discussed in Section 2, smallholder farms have communal data needs and similar
characteristics in weather and soil attributes. Thus, it is more cost-effective to deploy a
variety of sensors than a dense scatter of redundant sensors to obtain a more holistic view.
A WSN node can listen to multiple sensors as most reviewed papers actually do. This helps
to improve understanding of site-specific interplay between parameters. It also simplifies
communication management when more nodes are deployed. Overall, an efficient sensor
deployment scheme for smallholder agriculture shall give due consideration to wide area
coverage, efficient power use, extended network lifetime, reduced signal loss, low cost
and reliable data generation. It is also crucial to acquire all needed data to the required
spatial-temporal resolution. These are discussed in less detail in the reviewed papers. Only
some projects mention a systematic node deployment strategy [73,75,88,100,111]. Most of
weather monitoring projects follow the World Meteorology Organization (WMO) standard
to set up their network [82,83].

5.3. Data Communication Approaches

Efficient communication needs to be established between the sensing and control layer
as well as between control and backhaul layer for transmission of sensed data. The advance-
ment of the wireless communication technology has brought significant breakthroughs in
IoT. Radio frequency identifiers (RFID) and short-range wireless communications have
Bluetooth and ad hoc WSNs as examples. Though these technologies are known to have
low power requirements and can operate for a considerable amount of time, most also have
short-range coverage and are not suitable for wide spatial coverage applications such as
agriculture [129]. Cellular wireless networks can be used to address this limitation but as
IoT keeps growing and more objects become connected, network traffic management and
signal generation becomes a concern and requires further design improvements [130,131].

A recent communication technology that tries to overcome these limitations is the
Low-Power Wide Area Network (LPWAN). It elevates the short-range and high cost of
predecessor technology and can connect a wide domain of IoT applications. LPWAN is
suitable for services with infrequent and small data exchange requirements. However,
it also spans wide spatial coverage with tolerable data loss, making it appropriate for
applications that target resource-constrained and remote locations. Table 2 gives examples
of wireless communication technology mostly used in IoT.

Preference trends for wireless communication technology in smallholder agriculture
over the past ten years are shown in Figure 6. As can be seen, Zigbee and WiFi commu-
nication protocols were predominantly used until recently, while LoRa communication
has received more interest in the last three years. Both Zigbee and WiFi have limited
range coverage but better data rates, making them suitable for short- or medium-distance
applications with high data needs. The low duty cycle of the Zigbee protocol, which is an
operational method of reducing power consumption, and its large network size also made
it preferred in most smallholder agriculture applications [132,133]. A number of projects
also operate in standalone mode, a set-up in which a device acts both as a sensing node
and as controller or gateway.

Considering the backhaul communication that allows gateways to transfer received
data to application servers, not many alternatives exist in rural areas to cellular communi-
cation. The penetration of this technology has increased in developing countries reaching
rural areas [134–136]. Most publications use the technology for data transmission from
farms to central server. Trends in technology choice among the reviewed work is shown
in Figure 7. Despite wide penetration, cellular communication is frequently unstable and
unreliable in remote areas and may result in data loss. As a result, more reliable options
need to be considered.



Sensors 2022, 22, 3273 14 of 31

0

1

2

3

4

5

2011 2013 2015 2017 2019 2021

P
a

p
e
r 

c
o

u
n
t

Cable/Standalone Wifi Cellular

Bluetooth Zigbee LoRa/LoRaWAN

Figure 6. Wireless communication technology preference trends of the reviewed works for small-
holder agriculture applications. The Y–axis denotes number of works using a specific communication
technology. Some papers have used multiple of this technology, simultaneously.

0

1

2

3

4

5

6

7

2011 2013 2015 2017 2019 2021

P
a

p
e

r 
c
o

u
n

t

Cable/Standalone Ethernet Wifi LoRa Cellular

Figure 7. Trends of common backhaul communication standards use in smallholder agriculture applications.

The choice of an efficient distribution and communication channel among sensing
nodes is critical to achieve energy efficiency and reliably collect data. It ensures that nodes
have increased lifetime and regular responsiveness. To this end, a WSN mesh topology is
common among projects; a few mention the use of star topology [100,113] or a clustered
hierarchical topology [110]. In mesh network topology, nodes have routing capability and
communication can be established among each other. This allows reliable data transmission
and reduced data loss. It requires more power energy and thus suitable for short range
communication. In star topology, nodes are connected to one central node with routing
capability, and make a star-like structure. Child nodes transmit data to this central hub
with no guarantee of delivery. The communication range between nodes and the sink shall
thus be kept reasonable or data could be lost. Clustered topology is a tree-like arrangement
of two or more star topology to enhance this communication range. The scale, deployment
environment and resource have a play on which topology to adopt.

5.4. Energy Sources and Saving

Another design consideration for IoT and WSN applications in smallholder agriculture
is the power consumption of devices as commonly there is limited or no electricity access.
A typical sensing node functional set-up is shown in Figure 8: it has a radio transceiver,
a micro-controller board that interfaces with sensors, and a power unit. Dependent on the
application, a node can also have extra elements such as a power generator, mobilizer or
location finder [137].
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Figure 8. Elementary components of typical sensor node in a WSN (ADC: Analog-Digital-Converter;
RF: Radio Frequency; Tx/Rx: Transmitter/Receiver).

Nodes can run on electricity mains, battery, or solar power. For nodes at the sensing
layer, easily replaceable Li-Ion batteries are preferred power sources because they are
affordable and bring no technical complications. However, frequent replacement is required
and caution must be taken on the reliability or quality of transmitted data due to their
limited lifetime. A work-around is to apply an energy saving scheme such as sleep-and-
awake [76,81,83]. This allows reducing power consumption of nodes in idle state and
thus extend battery life. Solar power is also a promising option though it has seasonal
fluctuations. Nodes at the control layer need to run uninterrupted and require continuous,
reliable power supply. It also demands significant power, which cannot be achieved with
simple batteries. The wired electric mains is a sound source for such requirements. It is,
however, not always available and then solar panels [66,91,92,106,118,138], rechargeable
batteries [81,84,93,94] or power banks [101] are the possible options.

5.5. Computational Analysis

For a systematic study and comparison of approaches taken in the reviewed projects,
we used an idealized workflow of a general data science project as presented in Figure 9. It
depicts a functional action chain from data acquisition to decision-making and information
delivery. It shows how data are produced, processed and presented (PPP) to stakeholders
at different operational levels.

• Data acquisition This entails the process of what and how data are being collected.
In IoT and WSN set-ups, the data acquisition layer focuses on parameter identification,
device selection and set-up, communication network selection and establishment,
and the data collection phase itself. The sensing and control layers discussed in
Section 5 are mapped to this stage of data science.

• Data curation In this phase, data cleaning and pre-processing of acquired sensor
data are conducted to improve its reliability. Important tasks are filtering, adding,
dropping and transferring. It also handles integration of data from different sensors,
through well-defined data mapping algorithms. The heterogeneity of devices, oper-
ating platforms and absence of de facto communication standards in IoT and WSN
communication often obstruct direct and full utilization of the technology. The syn-
tactic and semantic variations at hardware and software levels of the system pose
interoperability and integration challenges [93]. Variation in data collection and rep-
resentation, different communication specifications such as transmission rate and
bandwidth, and data processing and presentation are issues to be addressed in this
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context. One of the critical functionality of a data curation is, thus, facilitation of such
data integration. This phase is crucial as the remaining action chains are dependent
on its outcome.

• Data processing and analysis The data processing and analysis phase is where compu-
tations are executed on the raw, sensor data acquired from farms. These computations
can be classified into three general groups: (a) Simple, which is a threshold-based
if-then analysis that determines incidents as deviations from pre-defined values;
(b) Statistical, that determines standard statistics such as regressions and ANOVA;
and (c) AI, which brings forecasting and prediction capabilities through advanced
mathematical and machine learning computations, using artificial neural network
(ANN), deep learning (DL) and other techniques. Operations executed in this phase
are based on specific application needs and shall assist the decision-making of small-
holder farms. It is responsible to produce usable knowledge from the pre-processed
data passed to it.

• Information presentation and visualization The presentation and visualization phase
handles the human–computer interaction (HCI) and defines appropriate information
delivery mechanisms. It also handles the information presentation format prescribed
as suitable by the end user. Three broad categories for presentation and data visual-
ization are: web-based, application-based, and SMS- or alert-based. Web-based data
presentation can reach users through a stand-alone web page or as social media feeds,
such as tweets. The application-based information presentation uses a dedicated
mobile application developed and installed on the user’s smartphone. Both web-
and application-based mechanisms support graphical and textual data visualization
options and provide multi-language access. They do require regular internet access
and smart devices. The SMS information presentation is a text-based data delivery
that runs on regular phones and can present short alert information to users on the
farm status and actions advised.

• Computing environment This environment determines the computing capabilities
used in all stages of data processing. Edge computing, cloud computing or private
computing environments can be used in agriculture data processing. The choice
of platform depends on the application needs and resource availability. In an IoT
and WSN set-up for agriculture data processing, edge computing can be ideal to
process and disseminate information to farmers in real-time. This is also advanta-
geous especially when network communications are fragile, as can be the case in
smallholder farming. Edge computing, however, may present challenges in deploy-
ment in resource-constrained devices such as sensor nodes and may set limits to data
processing implementations. AI algorithms specifically need substantial computation,
memory and power resources, which are usually scarce in a WSN. Edge comput-
ing also sets higher quality requirements to the software as it is harder to upgrade
once deployed.
Cloud computing offers rich resources to implement sophisticated and large data
processing algorithms and persistent storage. It also facilitates the re-usability of open
cloud solutions provided as software as a service (SaaS) or infrastructure as a service
(IaaS). However, accessibility and network bandwidth demand is a concern in small-
holder communities. A private server can be set up with equivalent resource provision
to a cloud computing with self-built data analysis and presentation mechanisms.

• Quality assurance These are associated tasks that ensure overall data processing
and information generation are of some expected quality standard and fit with user
expectations. It is a rigorous task that needs to be present in every stage of data
processing. During data acquisition, some QA measures can be device testing and
calibration, and communication network reliability and efficiency validation. QA
during the data curation and data processing phases can be validation of data by
pre-processing algorithms in terms of reliability, efficiency and optimality. A dearth
of accurate baseline data regarding different agriculture parameters challenges these
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tasks. Regardless, some quality assurance have to be in place to ensure sensor data
are reliable before further investigation and decision support information generation.
The computing environment also needs to meet required quality standards such as
security, reliability and accessibility.
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Figure 9. A general dataflow schema in data science computations.

The quality assurance and computing environments are cross-cutting the action chain
of data processing. We believe that such an idealized action chain can serve as a good
comparison mechanism between experiments.

We reviewed the publications against these actions and environments of an idealized
data science workflow. Table 3 provides an overview of how the methods used align with
the schematic actions described above.

Table 3. Assessment report of reviewed works based on defined data science actions. Note that
categorizations are not exclusive and some works utilized multiple classes of computing action.
ISO/IEC 9126 describes software characteristics for quality metrics.

Data Science Action Techniques/Approaches

Data curation

Data preservation [61,64,74,75,84,85,89,102,105,111,115]
Data transfer to JSON and XML formats [75,89,93,102]
Data fuzzification and de-fuzzification [62]
Redundant data removal [61]

Data analysis and processing
If then [60,64,68,69,85,91,93,99,104,111,115]
Statistical [61,80,87–89,100,105]
ML and AI [62,63,65,76,92,94,103]

Data presentation and visualization
Web-based [58,61,63,64,74–76,81,84,91–94,99,100,105,111,115,138,139]
App-based [62,68,69,85,100,102,104,105,139]
SMS-based [60,85,87,92,104,115]

Computing environment
Cloud [58,60,62,64,65,68,69,75,76,82,85,89,91,93,102,104,105,115,138,139]
Edge and/or Fog [61,99,103]
Private server [74,81,84,87,94,100,111]

Quality assurance measures

Non-elaborated calibration [84,93,106]
Data validation based on descriptive statistics [104]
Reliability and data accuracy assessment based on ISO/IEC 9126 [83]
Sensor calibration based on standard laboratory results [76]
Sensor calibration using conventional weather station readings [94]
Sensor data validation against standard laboratory results [82]
Sensor data validation using linear correlation [65]
Transaction validation based on block chain [62]
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5.6. Quality Assurance

The calibration of sensors is a critical step before actual deployment in agricultural
applications.Laboratory analysis, manual investigation and existing repositories can serve
as calibration value sources [76,87,94]. Often, up-to-date ground truth data for most
smallholder agriculture is not available, thus requiring alternatives. One alternative can be
to compare redundant readings of a sensor and formulation of a calibration value. In these
cases, appropriate testing and validation measures must be taken [76,79,82,83]. Outdoor
IoT-WSN applications to smallholder agriculture also need to address environmental effects
caused by topography, climate and vegetation cover on data quality.

Another critical point related to quality assurance is security and anomaly control. Se-
curity is a challenge in IoT and WSN deployment in agriculture as it is distributed through
the ecosystem and could happen at different levels. The fact that smallholder farms are
found in uncontrolled and often inaccessible areas and the limited literacy rates exacerbate
this problem. Security can be perceived from two broad perspectives: external and internal.
The external security threats are posed by outside factors such as physical device damage or
vandalism, denial of service (DoS) attacks, signal jamming and data fabrications. Internal
security threats are anomalies that happen due to wrong data and processing step which
compromise the reliability and quality of information generated. Faults in data acquiring
and processing anomalies can be mentioned as internal security challenges. Security breach
could also happen at device, communication or transaction level. Physical and logical
failures of nodes, calibration problem, device’s lifetime and deployment environment could
cause anomaly in the sensed data. Communication anomaly could happen due to weak
security enforcement, resource or bandwidth competitions among nodes and noise attenu-
ation on the signal transported. The inability to withstand harsh and resource-deprived
environment could also challenge the communication standard and result in anomalous
data. Ambient temperature and rain pose physical damage risks to sensing nodes and may
affect data and signal quality; tree and crop canopy may compromise the communication
between sensors and gateway. Lack of proper data curation, and appropriate processing
model and algorithm could potentially lead to transaction anomaly and generate unreliable
information. All these security problems pose quality concerns to the IoT and WSN gener-
ated data which inhibit its utilization to decision supports. Careful consideration of such
factors is required before the IoT and WSN deployment for agricultural applications. Water-
proof and heat-resistant cases for nodes, integration of external, omnidirectional antennas
and/or placement of nodes at appropriate height, utilization of appropriate software tools
are relevant design and implementation considerations.

Proper monitoring and analysis schemes may determine the efficiency and reliability
of the installed technology. Moreover, appropriate anomaly detection and prevention
algorithms need to be deployed at the different layers of the IoT WSN communication to
act accordingly and avoid wrong input to a decision making. Some WSN communication
standards such as Zigbee and LoRaWAN has added security layer to the protocol to
withstand the communication security challenge [27]. Transactions can also be validated at
application layer as presented in [62]. These authors have used the block chain technology
to enforce security measures on sensor generated data at the application layer. Recent
developments in computation platforms such as cloud, edge and fog computing can also
be utilized to add security layers to an IoT system. Hardware, software and data protection
schemes can be realized at these platforms. Susceptibility of data to interference and
other security threats are likely to be reduced if data are processed near the device as in
edge or fog computing. These innovations can also enhance energy efficiency of nodes
and reduce bandwidth competition between signals and more. These anomaly detection
can be executed either at an end node or gateway level. Each end node can be set to
monitor all sensors connected to it and detect anomalous properties, in real-time. However,
the limited processing and storage capacity of these nodes might inhibit executing resource-
intensive and precise anomaly detection algorithms. End node anomaly detection are also
unable to identify communication anomalies that could possibly happen at the network
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layer. A rather optimal anomaly identification can be executed at the gateway node level.
As discussed in Section 5, gateway nodes have more storage and computational power
and can serve as a more reliable and robust security enforcement platform. In addition
to its resource abundance, the gateway node can also be set as a centralized anomaly
detection point for both device and communication level anomalies. Such computation
capability is well-suited to most smallholder agriculture applications as it eliminates the
cloud communication and computation needed for further decisions. The fact that measures
can be taken in (near) real-time and using the already established wireless communication
makes fog computing at the gateway level more promising. For a bigger WSN setup with
several and heterogeneous sub-networks and multiple gateways, a more comprehensive
centralized anomaly detection can be carried at higher level such as in cloud computing.
Advanced analytical and problem identification algorithms can also run efficiently on
such platforms. A hybrid edge and cloud computing based anomaly detection in WSN is
presented in [140].

6. Discussion

In our analysis, we found a significant growth in research effort in IoT and WSN
applications for smallholder agriculture over the last decade, with speed-up in the years
2017–2019. Not much of this work has been deployed in farm plots. Figure 10 shows
distribution of works in smallholder agricultural application domains on different WSN de-
ployment environment over the last decade. Most work was conducted only experimentally
and much remains to be done in actual deployment setting.

Advances in hardware, software and communication technology as well as increased
equipment availability are reasons for the increased research interest. In real and outdoor
deployment, the gateway and sensing nodes need to be dispersed, especially when a wider
spatial coverage is needed. Sensing nodes shall be placed at the farm without risk of loosing
of transmission. Additionally, gateway placement should consider stable power provision
and a trustworthy communication channel. In doing so, range and network lifetime
maximization shall be given utmost considerations. We found no projects that addressed
these requirements over a wide time span. Moreover, data and system validation appear
not to receive much attention. Long-term behavior of deployed systems and sensed data
quality must be evaluated repeatedly to demonstrate system reliability and usefulness. This
will establish confidence in any decision-making that utilizes the generated information.
Only a few of the projects were found to have longer implementation and validation
periods [26,73,79,82,83,88,93]. The remainder were pilot studies or proofs of concept with a
short experimentation period of maximally a month.
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Figure 10. IoT and WSN domains and deployment environment in smallholder agriculture researches
(PA:Precision Agriculture, LM: Livestock Management, WM: Weather Monitoring, PAIM: Pest and
Animal Infestation Monitoring). The Y-axis labels denote works under each deployment environment
and application domain.
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Figures 11 and 12 present the reviewed papers’ spatial and temporal distribution over
the years of interest and by continent, respectively. In both figures, the Y axis denotes the
percentage distribution of projects from the total 53 reviews.
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Figure 11. Spatial distribution to continent of IoT and WSN applications in smallholder agriculture
(PA:Precision Agriculture, LM: Livestock Management, WM: Weather Monitoring, PAIM: Pest and
Animal Infestation Monitoring). The Y-axis denotes percentage distribution of works in the three
continents and over each application domain.
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Figure 12. Temporal distribution of IoT and WSN applications in smallholder agriculture. The Y-axis
values indicate percentage distribution of works targeting each continent in the specified time period.

Looking into the continental distribution of projects, Asia is the front-runner (Figure 11)
and this aligns with the global Information Communication Technology (ICT) development
index report of the International Telecommunication Unit (ITU) [141]. Asian countries are
reported to have better ICT coverage and utilization, also in rural areas. This implies that ac-
tive research is less challenged and equipment may be more readily available. Nonetheless,
research in Africa also shows promise. An interesting factor is the heterogeneity of research
on the African continent. There seems to be an equivalent effort in all types of smallholder
application, possibly due to equivalent importance and impact on farm productivity. We
also observed, only 29% of the total projects in Africa are deployed in real-field while 50%
and 21% are experimental and simulation executed, respectively. This is also similar in
Asia but Latin America has better real-field execution.

As discussed in Section 5.1, PA is researched most widely and usually for the purpose
of irrigation management. Smallholder farms apply, however, mostly rain-fed practices
with limited or minimal irrigation and so there is potential mismatch between farmer infor-
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mation needs and produced information. The ubiquity of PA and irrigation management
may imply two things. First, WSN and IoT implementation and management is easy in
a confined area, as in plot-level deployment. It can provide precise data readings with a
small number of sensors and few controlling nodes. Secondly, the application will not fully
utilize the data provided by the technology. Further research on advanced data analysis is
needed as all four domains may have significant effects towards sustainable agriculture.

Even though irrigation is important for sustainable and productive farming, it is not
always a solution to the poor productivity of these farmers. Instead, research must focus
more on other key parameters such as soil nutrient monitoring or early draught prediction.
Such can address the urgently needed data by smallholder farms and assist sustained and
efficient utilization of those. Soil moisture data, for instance, can be used beyond irrigation
decisions such as in pest management, decisions in appropriate sowing time and crop
type to plant [98,120,121]. Information from weather sensors may help farmers to take
appropriate measures in situations like drought.

Existing projects utilize off-the-shelf equipment. Furthermore, in smallholder farmer
community, technical maintenance and operation skills may not suffice. In dense de-
ployment schemes, the equipment costs may also become a sustenance bottleneck. Such
conditions could affect farmer interest to use the technology. Hence, it is important to
consider alternatives like producing custom-made devices by integrating components that
are open source, simple, affordable and easily accessible. Non-proprietary Arduino or
Raspberry Pi (RPi) based node micro-controllers can fit to this purpose. In addition to being
open source, these hardware allows researchers to experiment with and program for a fit
to the specific needs. A serious online community support also adds to the advantage of
using open source devices. Table 4 shows micro-controllers used among reviewed projects.
As can be seen in the table, most of the works used Arduino and RPi while in rare cases
others like Atmega, MICA and Waspmote are mentioned. Proprietary hardware comes
with pre-installed firmware that avoids programming and other technical skills at the
expense of flexibility and ease of customization.

Table 4. Major micro-controllers used in smallholder agriculture application projects (PA:Precision
Agriculture, LM: Livestock Management, WM: Weather Monitoring, PAIM: Pest and Animal Infesta-
tion Monitoring).

Micro-Controllers
Application Domain

PA LM WM PAIM

Arduino [62,77,78,85,87,98,100] [86,104] [81]

Atmega [89,91,96,102] [79] [91,92]

NodeMCU [58,68] [70] [60,61]

RPi [63,64,84,101,139] [83,105]

Others [73–76,110,113] [82,94]

Through open source devices and in collaboration with local start-ups, vocational
schools or universities, the required equipment can be produced locally, may help to mini-
mize the needed budget and technical assistance. Training and empowering members of
the community through hands-on and easily understandable materials, following partic-
ipatory research where community members are included from conception to execution
and working with active projects in the area could also be possible alternatives.

Our review brings to light that Zigbee (35%) and WiFi (31%) WSN communication
standards are common in smallholder agriculture. As shown in Figure 10, most work
is in indoor or experimental simulations, and this explains the preference for these stan-
dards. The significant set-up complexity and cost, limited area coverage and network
instability in Zigbee and WiFi makes them less-fitting to smallholder agriculture deploy-
ments. In Figure 6, we show that recent experiments work with other WSN communication
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technologies, such as the Long range (LoRa) LPWAN standard. This indicates future
possibilities and rooms for emerging WSN standards to be of use in the agriculture domain.

For gateway–server communication, about 80% of the reviewed work used cellular
communication while wired approach is used in rest. They are legitimate choices for the
smallholder environment though cellular communication is often unreliable. An alternative
is to use a micro-SD in the gateway for storage and later reading, to eliminate data loss as
well as transmission mismatches. Edge computing (data processing at the control layer) is
a recent technology that shall also be considered when communication between gateway
and server is challenged [142]. Communication standards used for node–gateway and
gateway–server among the reviewed works is presented in Table 5.

Most reviewed papers focused on establishing the WSN and on data acquisition.
The other computing actions defined in Section 5.5 were discussed sparsely, as shown in
Table 3. Specifically, the data curation and quality assurance phases, which are crucial for
reliable information generation, were not specially described in these works. Neither was
much reported on usability of the collected data or how such was used in real application
analysis. In the few papers that reported on data analysis, approximately half used simple
data analysis, and a quarter statistical and AI analysis. The typical analysis method
reported was the determination of a threshold value. For instance, to set an irrigation
trigger, a pre-defined soil water content level is checked against the sensor-derived soil
moisture level. Or such could trigger an alert message regarding possible crop disease that
reaches farmers when the pre-set alert condition is met [60]. Although these approaches
are simple and require few computing resources, more precise and robust applications
require soft-coded implementations based on holistic and exhaustive scenarios that are
hard to handle with pre-sets. Proactive applications of such type can also support reliable
prediction and forecasting, which is needed in many agriculture applications [23]. These
mechanisms allow farmers to acquire information ahead of time and be aware of what to
anticipate on. We postulate they may even come with a learning effect. This in turn will
prepare farmers for risks and spur them to explore alternative coping mechanisms.

Table 5. WSN and backend communication standards adopted in smallholder agriculture applications
(PA:Precision Agriculture, LM: Livestock Management, WM: Weather Monitoring, PAIM: Pest and
Animal Infestation Monitoring).

Network Communication Standard
Application Domain

PA LM PAIM WM

WSN

Bluetooth [95–98] [99]
GPRS/GSM [84,85] [86]
LoRa/LoRaWAN [100–103] [104] [105]
WiFi [58,59,89,98] [60,61] [93]
Zigbee [62,73–78,88,106] [79,80] [81] [82,83]
Wired [63–65,68,96,113] [92] [70,94]

Backhaul

GPRS/GSM [73,77,87–90,102] [86,104] [91,92] [93,94]
LoRa [106]
WiFi [58,62–69,85,89,97,98] [60,61,99] [70,82]
Ethernet/standalone [74,78,84,95,96,100,103,110,113,139] [79] [81] [83,105]

Real-time farm monitoring also needs to reflect the spatio-temporal dynamics that
exist on the farm and that can only be met with advanced computational algorithms,
such as using AI. The work by [100] is a good example in this context. The authors
developed an agricultural prediction system, capable of generating future complications
based on sensor-derived time-series data processed with the auto-regressive integrated
moving average (ARIMA) model. This model deploys probabilistic analysis of time-series
properties of parameters of interest. The forecasted information is verified against pre-
loaded information to generate decision support information. Threshold values change
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on the basis of forecasts, and when the farmer makes adjustments such lead to periodical
updates of thresholds. New computing paradigms such as integration of AI and IoT (AIoT)
are expected to revolutionize the data acquisition and processing in IoT applications. Future
research shall assess how such innovations can be effectively utilized in agriculture domain.

Among the reviewed works, 31 papers reported on their computing environment with
70%, 21% and 9% in cloud, private and edge computing, respectively. Mostly some cloud
environment is used as a persistent data repository and/or data visualization platform.
About 30% of the 70% projects involving cloud computing utilized SaaS and IaaS such
as The Things Network or Things Speak. Web-based data presentation is the preferred
mode in these works (57%), while 26% and 17% utilized mobile applications and SMS data
presentation, respectively.

The use of low-cost sensors creates a need to calibrate sensor readings, following
specific implementation requirements. Only some projects were found to report on calibra-
tion issues [87,94]. Since most projects were experimental, sensors were used as provided
by vendors, in off-the-shelf mode. Implementations that use sensor readings for actual
decision-making, however, shall take appropriate test and calibration measures before
deployment and production. Humans are indispensable in the process of sensor parameter
interpretation but none of the projects that we reviewed appeared to have considered the
human skills component. We recommend that any platform should integrate humans with
sensors for inclusive perception and validation.

We also observed that soil chemical composition and nutrient sensing is almost nonex-
istent in reviewed work. Research and industry communities need to collaborate to fill
such gaps and produce sensors for the unaddressed essential farming factors.

7. Challenges

Any innovation or technological intervention comes with challenges and opportuni-
ties. Especially when the application is in a remote or resource-constrained location where
literacy and awareness are minimal, various limitations may prevent successful implemen-
tation. This requires a thorough study and analysis of these factors. The following are some
of these challenges that our analysis reveals.

• High investment costs: The investments needed to produce and deploy a WSN and
IoT system are significant, which may not be affordable by most projects. Hardware
costs are those for gateway and sensor nodes, recurring IoT connection, and power
provision, while open source tools exist, realistic deployments may need commercial
cloud applications such as SAAS, which are a substantial cost factor.

• Little awareness: Stakeholders in the agri-chain typically have limited knowledge of
recent technological innovations. This is a cause of resistance against acceptance of
IoT and sensor technology.

• Low availability of tools and skilled personnel: Most IoT and WSN equipment are
not produced in the developing countries. Operation and maintenance of devices may
require considerable knowledge, language and professional skills. Such are often thin
on the ground and this hinders full deployment and utilization.

• Regulatory and policy gaps: Telecommunications of many developing world coun-
tries have no clear regulatory arrangement of WSN and IoT implementations. The al-
lowed Industrial Scientific and Medical (ISM) radio frequency range for WSN com-
munication is not set yet and no other rules exist governing the use of frequency
bandwidth. As a result, investments are risky because node communication may
become blocked or interrupted.

• Poor interoperability: IoT and WSN have evolved rapidly over the past five years.
A number of tools and platforms exist that can be used for the realization of the
technology. There is however no standard yet that guarantees their interoperability.

• Low data quality: WSN deployment often comes with exposure to extreme physical
conditions. This may cause reading faults and poor data quality. Sensor data reliability
may also be compromised by deployment errors. Incorrect calibration, inconsistent
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power supply and unreliable communications can result in data errors such as outliers,
drifts and missing values.

8. Conclusions

Most smallholder farms are known to be resource-constrained and remotely located
which causes sincere challenges in in situ data collection. Consequently, farm-related
data are unavailable or is only found in small quantity, often fragmented or outdated.
This leads to uninformed farming practices, and consequently poor production and low
yields. IoT and WSN may prove to be an assisting tool in addressing information needs.
Monitoring crops and soil at farm-scale and in (near) real-time with reasonable cost may
help to determine the investments needed to upscale productivity.

The objective of this study is to investigate the potential for actual use of IoT and WSN
in more data-intensive approaches to smallholder farm practices. We focus on how the
technology can acquire farm-specific and (near) real-time data. The kinds of collected data,
the different application domains and the alignment of research needs are also assessed.
Design and implementation considerations in smallholder applications are explored as well.

IoT and WSN have been put in practice in large-scale commercial farms but seldomly
in smallholder farming, in spite of general agreement on its adaptability with reasonable
cost [130,143,144]. Some promising demonstrations of this have been published. Existing
works are mostly experimental and may still lack robustness for actual implementation.
Actual implementation requires trust in and robustness given that failure may come with
unacceptable economic consequences. As a result, investments should be kept in check,
and the usability of free and existing communication platforms shall be explored with more
case studies and real applications.

Moreover, as most smallholder farms are nestled in poor infrastructural conditions,
fit-for-all solutions do not typically work. Future work shall consider the poor infrastruc-
ture and limited solution space that needs to be contextualized. The limited or specific
parameters being monitored in most existing projects also imply that there is considerable
room to integrate additional physical and chemical sensors. They may monitor weather,
soil, crop, pests, or provide other data on farm inputs, their integration is essential. WSNs
and related technological interventions shall be implemented to set an acceptable stan-
dard of smart smallholder agriculture. Diverse and affordable sensors relevant to farm
productivity, and applied in mass, may become essential.

Security is a topic mostly overlooked and in its early stage of research in IoT and WSN
application to agriculture [145,146]. Particularly, no work is found that addresses this issue
among the reviewed projects. The need to integrate various communication standards,
devices and data as well as data accuracy and availability need in smart agriculture makes
security a challenge. Some of the security issues specific to agriculture and discussed in
Section 5.6 exacerbate the severity of the security challenge in this domain. Security threats
exist at different levels of the IoT ecosystem and encompass both physical and logical
issues. Data integrity, reliability, accuracy and availability are qualities expected of a smart
agriculture system. All these create extra demands and opportunities for a rigorous and
in-depth researches addressing the matter. The constrained nature of IoT and WSN devices
is a setback to practice complex and promising security solutions and this needs to be
addressed while proposing security measures.

As most of the reviewed projects are rooted in the prototype stage, no discussion on
how such security concerns are addressed is found. Most anomaly detection algorithms
rely on some well-defined data and compare current situation against this to detect any
deviation or changes. This requires a spatially and temporally detailed and reliable data.
However, the absence or sparsity of farm-level information to use as a reference is a concern
when it comes to smallholder farms. The fact that anomalies and other security problems
potentially inculcate to unreliable decision support system urges for more attention to the
domain. Hence, it is necessary to know the existing security vulnerabilities and create
mechanisms to mitigate the effects of incidents. Equal emphasis shall be given to security



Sensors 2022, 22, 3273 25 of 31

measures as to the deployment of the agriculture system. Selection of appropriate commu-
nication standards, layer/s of security measures implementation, level of security need
and appropriate security measures identification shall be executed parallel to the system’s
functionality development. The usability of existing security and anomaly management
techniques for IoT and WSN in agriculture is an open challenge yet to be investigated.

Interoperability and data abstraction are two functionalities a data curation operation
in agriculture application needs to offer. Seamless integration of all data coming from
various sources and data conversion shall be handled on this phase. Open standards such
as the ones by Open Geospatial Consortium (OGC) provide common languages known
as sensor model language (SML) to define sensors and their processes, semantically and
reduce the syntactic heterogeneity of data representations [147]. Such open standards
support efficient machine-to-machine communication and provide seamless integration of
heterogeneous devices. It also allows users to interact or access both raw and processed
data and reduce latency time. We believe relying on such standard for any WSN setup
helps in avoiding and early identification of data anomalies. Such tools shall be explored
more and adopted to incorporate these functionality to the data curation phase which is
missing in all the reviewed works. The work by [93] is an exception which reports on
utilizing the OGC sensor web enablement (SWE) platform for their WSN setup.

Cost and quality are important factors that influence such implementations and
projects must focus on affordability and efficiency of technological innovations. The in-
tegration of human and electronic sensors can be one way to achieve these requirements.
A data acquisition platform that utilizes the most abundantly found and precise sensors
within the smallholder community, humans, along with artificial sensors is effective for
a whole-sided and inclusive perception. Humans’ read data can also be used to validate
the accuracy of sensors’ read data. Geo-referencing sensing nodes is important to obtain
location-specific data and monitor farm-level spatial variability which is relevant in most
agricultural applications such as PA. Most applications reviewed, however, lack such
capability and this remains a research gap to be filled.

One must note the inherent limitations of IoT and WSN, which include limited spatial
coverage and data quality. These need to be recognized and addressed. Consequently,
there is a need to augment with other data acquisition approaches [63,66,84,148]. Such a
data infrastructure must address required spatial and temporal scales. This can be done
with complimentary approaches. The use of RS and participatory tools alongside IoT and
WSNs is of particular importance [66,149,150].

Citizens’ abundance and capacity to generate as well as validate sensors’ acquired
data could play a critical role at all stages of the farm data generation: from collection to
logical decision making and interpretations. Human observations can be integrated with
WSNs to elevate the limited spatial coverage and enrich the data basket. Some community
members can also be used to communicate a rather complex findings to farmers in a simple
and usable forms [151]. These open doors to incorporate citizens in any technological
interventions to bring about fully-fledged, reliable, sustainable and consumable product.

Soil characteristics specifically are important factors for improved farm yields and
are must-have determinants for any intervention. The spatial and temporal variability of
soil attributes needs to be understood, both before and during the crop season, to help
farmers take appropriate measures. Based on the findings of this paper, the authors are
undertaking soil physical and chemical properties monitoring and data collection research
through sensors deployment in two districts located in northern Ethiopia. An experimental
investigation result of the work is to be communicated soon.
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