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Observed positive vegetation-rainfall feedbacks in
the Sahel dominated by a moisture recycling
mechanism
Yan Yu 1,2, Michael Notaro1, Fuyao Wang1, Jiafu Mao 3, Xiaoying Shi3 & Yaxing Wei3

Classic, model-based theory of land-atmosphere interactions across the Sahel promote

positive vegetation-rainfall feedbacks dominated by surface albedo mechanism. However,

neither the proposed positive vegetation-rainfall feedback nor its underlying albedo

mechanism has been convincingly demonstrated using observational data. Here, we present

observational evidence for the region’s proposed positive vegetation-rainfall feedback on the

seasonal to interannual time scale, and find that it is associated with a moisture recycling

mechanism, rather than the classic albedo-based mechanism. Positive anomalies of remotely

sensed vegetation greenness across the Sahel during the late and post-monsoon periods

favor enhanced evapotranspiration, precipitable water, convective activity and rainfall, indi-

cative of amplified moisture recycling. The identified modest low-level cooling and anomalous

atmospheric subsidence in response to positive vegetation greenness anomalies are counter

to the responses expected through the classic vegetation-albedo feedback mechanism. The

observational analysis further reveals enhanced dust emissions in response to diminished

Sahel vegetation growth, potentially contributing to the positive vegetation-rainfall feedback.
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The Sahel is characterized by substantial interannual to
decadal variability in rainfall and high socio-economic
vulnerability to hydrologic extremes1. Attribution of this

pronounced rainfall variability to either oceanic3–5 or terrestrial6–
13 drivers has proven to be an elusive challenge. The Sahel
experienced one of the most extreme and prolonged droughts in
the global observational record during the 1970s-1990s2, 14, 15,
which was believed to be mainly driven by external forcing from
sea-surface temperature (SST) anomalies and amplified by local
feedbacks associated with land degradation and desertification
according to past modeling studies1, 5, 10, 12, 16–18. Despite vege-
tation’s apparent significant role in amplifying and extending this
drought episode10, 12, the current understanding of vegetation’s
impacts on climate across the Sahel, through proposed albedo,
moisture, and momentum feedbacks, originates from biased and
highly parameterized climate models, with land-atmosphere
interactions that remain insufficiently tested against observa-
tions. Charney6 first hypothesized a positive vegetation-rainfall
feedback regarding Sahel desertification, in which reduced
greenness leads to increased surface albedo, resulting in low-level
cooling, increased atmospheric stability, low-level subsidence, and
drying. Other modeling studies have also simulated this proposed
positive feedback but disagreed in terms of the relative dominance
of the albedo and moisture mechanisms10, 12, 13, likely due to the
exaggerated albedo forcing applied in the earlier modeling study6.

Most studies on biophysical vegetation feedbacks have been
restricted to running and analyzing coupled vegetation-climate
model simulations, which have several key limitations19. Simu-
lated feedbacks are model dependent, given that climate models
vary in terms of dynamical core, numerical schemes, para-
meterizations, and spatial resolution20. Many modeling studies
have applied extreme sensitivity experiments, such as complete,
instantaneous regional deforestation, which have limited real-
world relevance, as observed vegetation changes are typically
heterogeneous in space and transient in time. Owing to these
modeling study limitations, observational studies of vegetation
feedbacks are critically needed for testing the model-based
hypotheses21 but would have to address several key challenges.
First, observational records are generally short in duration and
marred by uncertainty from measurement errors. Second, it is
challenging to extract the observed signal of vegetation forcing on
the atmosphere from the large atmospheric internal noise, espe-
cially given that the atmospheric forcing on vegetation clearly
outweighs vegetation’s feedback to the atmosphere20, 22. Third,
regional climate is affected by variability in slowly-evolving for-
cings from both the oceans and vegetation, making it difficult to
distinctly separate their individual contributions through tradi-
tional regression-based analyses.

Previous observational studies on vegetation feedbacks across
the Sahel are largely based on multiple linear regression and apply
a single observational or reanalysis product, leading to limited
credibility in their conclusions and no quantification of uncer-
tainty. Evidence of positive vegetation-rainfall feedbacks has been
found from previous observational studies using a statistical
vegetation index simulation23 and Granger causality analysis24–
26. However, these observational investigations, based on multiple
linear regression, do not fully tease out potential oceanic impacts
on the variability in both the vegetation and precipitation, either
due to the absence of oceanic predictors in their analysis or
limitations of the applied methodology itself, namely that mul-
tiple linear regression-based methods are unable to address highly
correlated predictors, thereby biasing the assessed terrestrial
impacts. Furthermore, their analyses are generally based on a
single observational or reanalysis product for each variable, e.g.,
precipitation from the Climatic Research Unit (CRU), which has
limited gauge coverage and thus limited reliability in the Sahel.

Moreover, none of the previous observational studies have
quantified the influence of observational uncertainty on the
identified vegetation-rainfall feedbacks. Therefore, both the
observed positive vegetation-rainfall feedback and the underlying
mechanisms need more sophisticated and comprehensive
investigations.

The apparent recovery from the multi-decadal drought during
the early 21st century and the underlying recovery mechanism
remain highly debated, partly due to increased interannual
variability in Sahel rainfall27. In particular, the recent interannual
variability in Sahel rainfall was not successfully predicted by the
SST forcings that explained the late 20th century decadal drought
in most state-of-the-art climate models, implying either recent
changes in oceanic drivers of the interannual Sahel rainfall
variability or elevated importance of other regulators, including
land surface feedbacks28. Despite this model-based hypothesis
regarding the change in oceanic regulations, there has never been
rigorous observational quantification of the relative contribution
from oceanic versus terrestrial drivers of the recent interannual
variability in Sahel rainfall. Although the multiple regression-
based study attempted to quantify the relative contribution of
variability in Atlantic SST and Sahel Normalized Difference
Vegetation Index (NDVI) to Sahel rainfall variability25, the results
are uncertain due to the limited reliability of multiple regression
in separating impacts from individual forcings and are not
directly comparable with previous modeling studies due to the
absence of remote oceanic impacts assessed in their study.

A multivariate, lagged covariance statistical method, the Gen-
eralized Equilibrium Feedback Assessment (GEFA) (Methods),
was developed to address the aforementioned challenges in the
observational analysis of the oceanic and terrestrial forcings on
the atmosphere19, 29, 30. GEFA’s reliability at extracting key
oceanic and terrestrial drivers on North African climate, even
with short data records, was successfully demonstrated through
dynamical experiments with modified regional SST or leaf area
index (LAI) using the National Center for Atmospheric Research
(NCAR) Community Earth System Model (CESM)31, 32. Fur-
thermore, it was shown that GEFA, when applied to assess land
surface feedbacks, captures the combined effects of coupled
vegetation and soil moisture anomalies32. In order to quantify
uncertainty in estimated observed terrestrial feedbacks, GEFA is
applied here to a spectrum of gridded observations, remote sen-
sing products, and reanalyses, while weighting different datasets
according to their estimated regional reliability across the Sahel in
order to minimize the impacts of measurement errors (Methods).
This multi-data set approach is particularly valuable over the
data-sparse Sahel.

On the basis of GEFA as applied to multiple observational data
sets, we identify positive vegetation-rainfall feedbacks across the
Sahel during the late to post-monsoon periods associated with a
moisture recycling mechanism. The classic albedo-based
mechanism is not supported by the observational data. We fur-
ther reveal that diminished vegetation growth and accompanying
dry soils lead to enhanced dust emissions across the Sahel, which
potentially contributes to the positive vegetation-rainfall
feedback.

Results
Terrestrial versus oceanic contributions to Sahel climate.
According to GEFA, oceanic forcings largely overwhelm terres-
trial forcings on the observed variability in the Sahel’s regional
precipitation and air temperature, with the exception of the post-
monsoon season (SON), when vegetation feedbacks on local
precipitation appear to dominate (Fig. 1). The multi-data set,
average percent variance of Sahel precipitation explained by
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oceanic forcings is 22% on the annual mean (mainly from tropical
Pacific and tropical Atlantic SSTs), ranging from 4% in
September–November (SON) to 44% in July–September (JAS).
Oceanic forcings impose a greater regulation on Sahel air tem-
perature, explaining 36% of the total variance on the annual mean
and ranging from 26% in SON to 53% in JAS. The explained
variance in precipitation by terrestrial forcings is 8% on the
annual mean and ranges from 0% in April-June (AMJ) to 18% in
August-October (ASO) and SON, which is comparable in mag-
nitude with their regulation of air temperature. SON is the only
season in which the land surface forcings dominate over oceanic
forcings, with land surface variability explaining 17.5–18.2%
among datasets of the total variance in precipitation. Indeed,
Sahel rainfall variability during SON of 1982–2010 is largely
successfully reconstructed by the GEFA-based prediction model
containing only terrestrial NDVI forcings, with a temporal cor-
relation of 0.79 between the multi-data set average predicted and
observed time series, compared with that of 0.81 using both SST
and NDVI forcings, and 0.56 using only SST forcings (Supple-
mentary Fig. 1b). In contrast to the late-to-post monsoon season
and consistent with previous model-based findings10, 12, the
monsoon rainfall over the Sahel during June–August is mostly
regulated by oceanic drivers with a temporal correlation between
the predicted and observed rainfall of 0.84 using only oceanic
forcings, compare with 0.88 using both oceanic and terrestrial
forcings (Supplementary Fig. 1a).

The contribution from each oceanic and terrestrial forcing on
individual drought and pluvial cases can be decomposed by
GEFA. For example, during 1984 (Supplementary Fig. 2a, b),
which was the driest year in the Sahel during 1982–2011, an
anomalously dry monsoon was favored by the Atlantic and
Indian SST anomalies, as well as anomalously sparse vegetation
cover in the Sahel, West African monsoon region, and Horn of
Africa. This drought continued during the post-monsoon season,
mainly driven by the anomalies in Sahel vegetation cover. As
another example, during 1999 (Supplementary Fig. 2c, d), which

was one of the wettest years during the study period, an
anomalously wet Sahel monsoon was mainly supported by La
Niña conditions, and extended into the post-monsoon season,
when oceanic impacts largely diminished and terrestrial forcings
were allowed to dominate.

The relatively enhanced contribution from land-atmosphere
interactions in autumn is likely attributed to two factors. One
likely explanation is the reduced amplitude and broad-scale
atmospheric circulation impacts of key ocean-atmosphere tele-
connection patterns33, including El Niño-Southern Oscillation
(ENSO)34–36 and Atlantic Niño mode37 (Supplementary Fig. 3).
Another contributing factor involves seasonally wet soils38 and
consequential vegetation growth in response to the antecedent
monsoon that support significant evapotranspiration (ET) fluxes
(Fig. 2a). Indeed, the explained variance in Sahel ET associated
with terrestrial drivers peaks during SON at 51%, according to the
multi-data set average. Note that the apparent greater contribu-
tion from oceanic forcings is not an artifact of the imbalanced
number of oceanic versus terrestrial forcings, as confirmed by
additional sensitivity tests that modulate the number of either
type of forcing.

Similar to the prior observational study based on a statistical
vegetation index23, the combined oceanic and terrestrial drivers
considered here through GEFA explain only 20–52% and
35–75%, by month, of the total variance in observed Sahel
precipitation and air temperature, respectively. The residual
portion of the total variance in precipitation and air temperature
is comprised of the atmospheric internal variability (equation 1 in
Methods section), non-linear impacts of oceanic and terrestrial
forcings which are not detected by the linear GEFA statistical
method, and impacts from other oceanic (e.g., higher order SST
empirical orthogonal functions (EOFs) or SST EOFs from other
basins) or terrestrial (e.g., NDVI from other ecoregions) forcings
absent from the forcing matrix. Measurement errors, which have
been partly accounted for in the analysis, potentially contribute to
this residual explained variance as well. In contrast to the
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Fig. 2 Multi-data set observational moisture responses to positive local NDVI anomalies across the Sahel during 1982–2011. a evapotranspiration (ET),
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statistically significant (p< 0.1) multi-data set average responses, referring to the right y-axis; open circles represent the 10th and 90th percentiles of the
multi-data set responses, regardless of their statistical significance. In f, dots and open circles indicate significant and insignificant responses, respectively,
using daily station precipitation data. Dashed lines indicate a response of zero. Bars indicate the multi-data set mean climatology of the response variable,
referring to the left y-axis. σNDVI in the units of the response variables refers to one standard deviation in the Sahel NDVI anomaly. Labels on the
x-axis stand for 3-month seasons, e.g., JFM for January, February, and March. The statistical significance is determined based on Monte Carlo bootstrap
testing
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previous observational study based on Granger causality
analysis25, the current GEFA-based analysis includes both nearby
and remote oceanic forcings and considers multiple observational
datasets, thereby providing a more convincing quantification of
oceanic versus terrestrial contributions to Sahel rainfall varia-
bility. Furthermore, by considering both nearby and remote
oceanic impacts, the GEFA-based assessment of oceanic versus
terrestrial contributions is directly comparable with previous
modeling studies that modify global SSTs through dynamical
experiments10, 12.

Vegetation-climate feedbacks in the Sahel. The observational
analysis verifies the proposed positive vegetation-rainfall feedback
across the Sahel from prior modeling studies6, 10, 12, 13 and
regression-based observational studies23–26. However, the feed-
back is seemingly confined to the post-monsoon autumn season
and largely due to a moisture recycling mechanism (Fig. 2).
Positive NDVI anomalies favor enhanced ET, precipitable water,
convective activity [reduced outgoing longwave radiation (OLR)],
and total precipitation amount, indicative of amplified moisture
recycling. The positive vegetation-rainfall feedback in the Sahel is
confirmed with station rainfall observations (Supplementary
Fig. 4a) and regional downscaling of global reanalysis (Supple-
mentary Note 1, Supplementary Fig. 5a). The ET and precipita-
tion responses are of comparable magnitude in SON, namely
+0.43 (0.40–0.44 among data sets) cm month−1 per standard
deviation of NDVI anomalies (σ−1NDVI) and +0.49 (0.48–0.50
among data sets) cm month−1 σ−1NDVI, respectively, implying the
dominance of the moisture recycling mechanism underlying the
positive vegetation-rainfall feedback in the post-monsoon season
across the Sahel (Fig. 2a, e). Vegetation imposes a greater influ-
ence on the frequency, rather than intensity, of convective activity
across the Sahel, consistent with previous observational findings
regarding enhanced probability of afternoon precipitation in
eastern United States and Mexico by high evaporation39. Speci-
fically, the increase in precipitation amount of +7.7 (7.5–7.9

among data sets) % σ−1NDVI during SON is largely due to a +7.8%
σ−1NDVI increase in precipitation frequency, with minimal
response in precipitation event intensity to NDVI anomalies
(Fig. 2e, f). A likely explanation for the differential response in
precipitation frequency versus intensity is that the surface tur-
bulent flux partitioning, associated with the vegetation and soil
moisture anomalies, shifts the local atmosphere from a non-
convective to convective state, while other broad-scale controls,
such as free tropospheric moisture content or large-scale moisture
convergence, largely determine the rainfall intensity40. Further-
more, positive NDVI anomalies favor a higher frequency of
moderately low OLR days in the Sahel (not shown), implying that
anomalously enhanced vegetation growth supports an increased
chance of moderate-intensity convective events. Although the
GEFA-based analysis agrees with previous regression-based
analyses on the existence of a positive vegetation-rainfall feed-
back in the Sahel, the statistical vegetation index analysis con-
cluded that the vegetation feedback peaks during the monsoon
season23, rather than the post-monsoon season as identified by
GEFA. A potential reason for this inconsistent conclusion is that
the regression-based analysis failed to account for the oceanic
impacts, which peak during the monsoon season (Fig. 1) and
likely bias the estimated vegetation impacts. The identified posi-
tive vegetation-rainfall feedback in the Sahel during the late-to-
post monsoon season suggests that an anomalous wet monsoon
tends to persist longer, since enhanced vegetation growth and wet
soil associated with anomalously abundant rainfall likely cause an
extended monsoon season over the Sahel. This proposed link
between an anomalously wet and extended monsoon season is
supported by a temporal correlation of 0.58 between the observed
detrended JJA rainfall and September rainfall anomalies over the
Sahel during 1901–2014.

The observational analysis here, focused on the seasonal to
interannual time scale, challenges the proposed classic albedo-
based mechanism6 for Sahel vegetation feedbacks. Low-level
cooling (due to increased ET and latent heat flux and thus
decreased Bowen ratio), weakened lapse rate (Fig. 3a), higher
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surface pressure, and anomalous lower-tropospheric to mid-
tropospheric subsidence (Supplementary Fig. 6) in response to
positive NDVI anomalies support an active stability mechanism,
consistent with findings in the regional modeling study regarding
the impacts of vegetation cover on heat and moisture fluxes over
the Sahel and West African monsoon region41. The increased
atmospheric stability in response to positive NDVI anomalies,
although swamped by the moisture recycling mechanism, is
counter to the dynamic responses expected through the classic
vegetation-albedo feedback mechanism. During autumn, positive
NDVI anomalies trigger modest declines in surface albedo,
confined to the savanna, woody savanna, and broadleaf evergreen
forest portions of the Sahel (Fig. 3b), consistent with previous
model-based findings42. However, the magnitudes of the albedo
anomalies, on the order of 0.01–0.02 σ−1NDVI, are too small,
compared with the imposed change in surface albedo of 0.21
applied in the pioneering experiments of Charney6, to trigger the
instability responses necessary for the albedo-based positive
vegetation-rainfall feedback. The albedo responses are trivial over
the more widespread grasslands or shrublands of the Sahel,
probably because the seasonal to interannual time scale is too
short for the grass-desert or shrub-desert conversions proposed
by Charney6. There is observed evidence of a weak vegetation
roughness mechanism43, with slightly diminished 10-m wind
speed on the order of −0.05 (−0.04 to −0.08 among data sets) m s
−1 σ−1NDVI during July–September, in response to positive NDVI
anomalies (Supplementary Fig. 6a). The lack of anomalous
ascending motion in response to enhanced vegetation abundance
(Supplementary Fig. 6c), however, suggests that both the albedo
and roughness mechanisms are swamped by the dominant
moisture recycling feedback mechanism in the Sahel on seasonal
to interannual time scales. However, at long time scales associated
with land use change, the albedo impact might be significantly
more important if pronounced grass–desert conversion or soil
degradation occurs. The surface cooling and weakened surface
wind speed associated with positive NDVI anomalies are
confirmed with station observations (Supplementary Fig. 4b, c)
and regional downscaling of global reanalysis (Supplementary
Note 1, Supplementary Fig. 5b–d) in terms of both sign and
magnitude.

The observational GEFA analysis further verifies that dimin-
ished vegetation growth and accompanying dry soils across the
Sahel lead to enhanced dust emissions and dust storm activity
during the mid- to post-monsoon season (Fig. 4a), as suggested
by previous correlation-based observational studies44. In addition,
the current observational analysis reveals the remote impacts of
Sahel vegetation and soil moisture on dust concentration over the
tropical Atlantic Ocean. The enhancement in dust emissions is
most pronounced across the southern boundary of North Africa’s
major dust source regions within the Sahel, including the Bodélé
Depression45, where dust emissions increase by more than 60%
during SON in response to a negative NDVI anomaly on the
order of one standard deviation (Fig. 4b). These enhanced
emissions across the Sahel support increased southwestward dust
transport and thus elevated surface and column dust concentra-
tions, as well as greater frequency of dust days according to
station observations (defined in Methods section), across tropical
and subtropical North Africa and the eastern tropical Atlantic
Ocean (Fig. 4b). This observed vegetation-dust feedback acts as a
potential secondary mechanism for the positive vegetation-
rainfall feedback in the Sahel, as proposed by previous modeling
studies46, 47, given the direct effects of dust aerosols that cause
low-level cooling and atmospheric stabilization, and the indirect
radiative effects of dust aerosols that increase the number of cloud
condensation nuclei and inhibit precipitation efficiency.

The current study presents the first convincing observational
evidence for the model-hypothesized positive vegetation-rainfall
feedbacks in the Sahel, by successfully isolating terrestrial
feedbacks from oceanic drivers and systematically examining
multiple observational datasets in order to quantify observational
uncertainty in feedback response estimates. The identification of
key oceanic and terrestrial drivers will aid in successful seasonal
predictions of regional climate in Sahel, a region that is highly
vulnerable to hydrological extremes.

Future projections of Sahel rainfall, in response to the
anthropogenically enhanced greenhouse effect, remain highly
uncertain in terms of both sign and magnitude within phases
three and five of the Coupled Model Intercomparison Project
(CMIP3 and CMIP5)1, 14, 15, 48, 49. Indeed, the Sahel is one of the
most uncertain regions for rainfall projections worldwide. In
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further studies, the GEFA-based assessment of the key observed
oceanic and terrestrial drivers of North African regional climate
will serve as an observational benchmark for evaluating the
representation of ocean-land-atmosphere interactions within
state-of-the-art climate models as applied by the Intergovern-
mental Panel on Climate Change. This innovative approach will
foster model evaluation and development, along with the
formulation of process-based model performance metrics for
weighting future climate projections for the Sahel and reducing
associated uncertainty.

Methods
GEFA and stepwise selection. In the current study, a multivariate statistical
method, GEFA, is used to study the oceanic and terrestrial regulators of the Sahel’s
climate. The statistical GEFA approach extracts the forcing of a slowly-evolving
environmental variable, such as SST or NDVI, on the rapidly-evolving atmosphere,
either in climate model output or observational data. The GEFA methodology29,
based on stochastic climate theory50, addresses the local and non-local feedbacks
simultaneously, which is critical given that vegetation and SST anomalies can affect
atmospheric conditions both locally and remotely19, 50, 51. GEFA can largely
separate the individual impacts of different ocean basins and vegetated regions on
climate in select regions. For example, GEFA’s capability of extracting the oceanic
and terrestrial impacts on North American regional climate was previously
demonstrated using the NCAR Community Climate System Model Version 3.519,
30. In particular, GEFA’s reliability in isolating the oceanic and land surface
feedbacks on the North African climate was successfully demonstrated by com-
paring the statistical assessments with dynamical experiments in CESM31, 32. In the
GEFA validation regarding the assessed terrestrial impacts on North African cli-
mate, the statistically assessed atmospheric responses were evaluated against those
assessed from two ensembles of dynamical experiments developed for the Sahel or
West African Monsoon (WAM) region, i.e., EXPLAI, in which regional leaf area
index (LAI) was modified, and EXPSOIL, in which regional LAI and soil moisture
were modified together during winter-spring, motivated by the strong soil
moisture-LAI coupling across the Sahel and the WAM region in CESM.

At time scales longer than the atmospheric memory (about 1 week), the
atmospheric variable (e.g. precipitation) at time t, A(t), can be expressed as the sum
of feedback responses to an array of slowly-evolving variables (e.g. SST, NDVI),
O(t), and the atmospheric internal noise, N(t)29:

A tð Þ ¼ B �O tð Þ þ NðtÞ; ð1Þ

where B is the feedback matrix. Right multiplying OT(t-τ) on both sides of equation
(1) and applying the covariance yield:

CAO τð Þ ¼ B � COO τð Þ þ CNOðτÞ; ð2Þ

where τ is the time scale, exceeding the atmospheric adjustment time, and C(τ)
represents a covariance matrix at lag τ. Given the time series’ length L of the
atmospheric and oceanic variables, the lagged covariance matrices are estimated as:

CAO τð Þ ¼ 1
L
A tð ÞOT t � τð Þ;COO τð Þ ¼ 1

L
O tð ÞOT t � τð Þ;CNO τð Þ ¼ 1

L
N tð ÞOT t � τð Þ:

ð3Þ

The superscript T indicates a transposed matrix. Since oceanic or terrestrial
variability cannot be forced by an atmospheric internal noise at a later time, and
the atmospheric internal noise is not affected by oceanic or terrestrial variability by
definition in equation (1), CNO(τ) = 0, which results in an estimate of the feedback
matrix as:

B ¼ CAOðτÞ � C�1
OOðτÞ: ð4Þ

The estimated feedback matrix represents the instantaneous influence of slowly-
evolving oceanic and terrestrial variables on an atmospheric variable. In theory, the
estimate of B does not depend on τ, but due to insufficient L, the sampling error
always increases with greater τ, resulting in unrealistic estimates of the magnitude
of the feedback response at large τ. On the basis of the GEFA evaluation work
within CESM31, 32, larger τ leads to deteriorating magnitude estimates of the
oceanic and terrestrial feedbacks compared to the dynamical experiments,
especially with shorter data records that are comparable in length with most
observational data sets. Therefore, τ is assigned to be one month in the current
observational analysis.

In the current study, the GEFA forcing matrix is comprised of the leading two
SST EOF modes from eight non-overlapping basins, area-average Mediterranean
SSTs (Supplementary Fig. 7), and time series of area-average NDVI across the Sahel
(12˚ N–17˚ N, 20˚ W–40˚ E), WAM region (5˚ N–12˚ N, 20˚ W–30˚ E), and Horn
of Africa (HOA) (5˚ S–10˚ N, 30˚ E–52˚ E) (Supplementary Fig. 8). Higher order
SST EOF modes are less important, as evidenced by the trivial increase in total
explained variance by adding the third to fifth EOF modes of basin SSTs to the

forcing matrix. The purpose of performing GEFA in truncated SST EOF space is to
reduce the sampling error from highly correlated forcing fields51, 52. Past studies
have suggested the potential impacts of SST variability across a vast multitude of
ocean basins, including the tropical Pacific (TP)3, 53, North Pacific (NP), tropical
Atlantic (TA)5, 53–55, tropical Indian (TI)53, 56, North Atlantic (NA)1, 54, South
Pacific (SP)3, South Indian (SI)3, South Atlantic (SA)3, and Mediterranean Sea57,
on Sahel rainfall. Moreover, for most basins, the leading two EOF modes have clear
physical meanings, such as ENSO, Indian Ocean Basin Mode, and Atlantic Niño
mode. In terms of terrestrial forcings, the Sahel, WAM region, and HOA represent
unique North African landscapes, i.e. mainly savanna and grasslands across the
Sahel, savanna and woody savanna across the WAM region, and shrubs and bare
ground across the HOA. In order to obtain reliable estimates of vegetation
feedbacks in the Sahel, land forcings that are moderately-to-highly correlated with
NDVI in the Sahel, such as NDVI in the WAM and HOA, also need to be included
in the forcing matrix32. The geographic extent of the three ecoregions is
determined through rotated EOF analysis of detrended monthly remotely sensed
NDVI anomalies. Regional average responses are obtained by applying GEFA to
the atmospheric fields averaged across the Sahel (12˚ N–17˚ N, 20˚ W–40˚ E). The
analysis is performed for 1982–2011. Before applying GEFA, the seasonal cycle and
linear trend are removed from all forcing and response fields. The statistical
significance of GEFA feedback matrices is assessed using the Monte Carlo
bootstrap method with 1000 random iterations in which the time series of the
response variable is scrambled30. In order to achieve sufficient length of data and
obtain reliable estimates of the feedback matrices (explained later), seasonal
feedbacks are estimated by aggregating data from the consecutive three months so
that the effective sample size is three times the number of years, or 90 months.

The short duration of the remotely sensed NDVI record, covering about three
decades, remains a challenge to the application of GEFA to understand land-
atmosphere feedbacks, especially when simultaneously considering numerous
potential forcings. In order to obtain reliable seasonal estimates of the feedback
matrix (B) in terms of about 20 forcings (17 SST fields and 3 NDVI fields) for the
Sahel, at least 100 years of data is needed for most response variables so that GEFA
can accurately capture the seasonal cycle of area-average seasonal responses with a
temporal correlation of 0.8 or greater (N = 12 months) with the dynamical
experiments, which are regarded as the truth and provide a benchmark for GEFA
evaluation32. In order to minimize the sampling error associated with relatively
short datasets, it is necessary to reduce the number of forcings under consideration
before estimating the feedback matrix. Here negligible forcings for the Sahel are
eliminated using a backward-selection stepwise method58, which compares the
relative contribution from each forcing to the atmospheric variability and retains
the truly important ones as predictors through an automated procedure. Stepwise
selection has been widely applied to predictor selection in developing linear
prediction models for the climate or ecosystems59, 60. Akaike information criterion
(AIC)61, which measures the relative quality of a statistical model by estimating the
goodness of fit and penalizing the complexity of the model (number of predictors),
is used as the criterion in the stepwise selection.

AIC ¼ 2 ´Nf � 2 ´ ln L̂
� �

; ð5Þ

L̂ ¼ � L
2
ln

XL

t¼1

Â tð Þ � A tð Þ� �2
=L

 !

þ C1; ð6Þ

ÂðtÞ ¼ B �OðtÞ: ð7Þ

In equation (5), Nf represents the number of forcings in the forcing matrix, and
L̂ stands for the maximized likelihood function of the statistical model in (1), which
represents the goodness of fit of the statistical model in (1) with the B matrix
obtained from equation (4) and is estimated by equations (6) and (7), based on the
linear theory62. In equation (6), L is the length of the data record, and C1 is a
constant independent of the statistical model. In equation (7), ÂðtÞ stands for the
predicted atmospheric condition at time t, based on equation (1). If AIC does not
increase after removing a select forcing, then this forcing has negligible
contribution to the variability of the atmospheric variable and can subsequently
remain excluded from the forcing matrix. In this way, the number of forcings to be
assessed by GEFA decreases, thereby allowing more reliable estimates of the
feedbacks associated with the remaining, significant forcings. The length of data
needed to obtain reliable seasonal estimates of the feedback matrix (B), such that
GEFA can capture the seasonal cycle of area-average responses for most variables,
including ET, surface air temperature, planetary boundary layer height, surface
specific humidity, surface wind, and rainfall32, with a temporal correlation of at
least 0.8 (N = 12 months) with the dynamical experiments, is reduced to about 30
years by applying this stepwise selection procedure32.

According to GEFA, the percent variance in a select response variable, as
explained by either an oceanic or terrestrial forcing, is calculated similarly
to the analysis of variance (ANOVA) approach in multiple linear regression62.
For example, the percentage of explained variance by oceanic forcings, VO, is
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calculated by

VO ¼ CAOA=VA; ð8Þ

where CAOA is the covariance between the observed atmospheric time series (A)
and predicted atmospheric time series by oceanic forcings (AO), and VA is the
variance of the atmospheric time series. The predicted atmospheric time series is
reconstructed by

AO ¼ BO �O; ð9Þ

where BO is the GEFA feedback matrix when only oceanic forcings are included
in the forcing matrix, and O is the forcing matrix containing the oceanic forcings.
The percentage of explained variance by terrestrial forcings is calculated similarly.

Multi-data set bootstrapping method. Multiple observational, remote sensing,
and reanalysis datasets (Supplementary Table 1) are analyzed for the Sahel in the
GEFA framework. By applying the Monte Carlo bootstrapping approach63, the
potential impacts of observational measurement errors across data-limited North
Africa on estimated GEFA response fields are reduced. Furthermore, this approach
facilitates a reliable estimation of the multi-data set mean and quantification of
observational uncertainty in the GEFA-based atmospheric responses to oceanic
and terrestrial forcings. The GEFA-based response is first obtained from each data
set, and then a probability distribution function (PDF) of the weighted-average
response of all datasets is generated by the Monte Carlo bootstrap approach with
1000 random iterations. With each iteration, weights are randomly generated from
a uniform distribution and assigned to the datasets in the order of their regional
reliability, with the highest weight assigned to the most reliable data set. On the
basis of the multi-data set PDF of the 1000 weighted averages, the multi-data set
average and uncertainty range of the responses to oceanic and terrestrial forcings
are obtained. The regional reliability of each observational data set across the Sahel
is evaluated based on the criteria outlined in Supplementary Tables 2–6, leading to
a practical ranking of all data sets, specifically for the Sahel, to be applied in the
Monte Carlo bootstrap approach7.

Station dust observations and MERRA-2 dust reanalysis. Dust observations are
retrieved from the National Climatic Data Center (NCDC) hourly global and U.S.
Integrated Surface hourly data set for 1982–2011 at 502 stations across North
Africa. At each station, a dust day is defined as a day in which either dust/sand
storm or severe dust/sand storm is reported at least once, or dust suspension is
reported for at least a quarter of the total number of observations during the
daytime60, 64. Therefore, the dust day metric is a combined measure of the fre-
quency and intensity of dust activity.

Station observations are first gridded to a spatial resolution of 0.25˚ × 0.25˚. In
each grid cell, a regional dust day is defined if at least one station within that grid
cell indicates a dust day. Monthly dust frequency in each grid cell is calculated
when dust observations are available on more than half of the days during that
month, or otherwise left as a missing value.

In addition to station dust observations, dust aerosol reanalysis from MERRA-2
is also analyzed. The MERRA-2 reanalysis of aerosols includes assimilation of bias
corrected Aerosol Optical Depth (AOD) from Advanced Very High Resolution
Radiometer (AVHRR) over ocean, Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites, Multi-
angle Imaging SpectroRadiometer (MISR) over bright surfaces and Aerosol Robotic
Network (AERONET) data. The vertical structure of MERRA-2 aerosol reanalysis
has been successfully validated using Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP) data over a number of regions, including North Africa
during 200865. Furthermore, the MERRA-2 surface dust concentration reanalysis
exhibits similar seasonal cycle and interannual variability with the station dust
frequency across the Sahel (not shown).

Data availability. The data that support the findings of this study are available
from the corresponding authors upon request.
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