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The purpose of this study was to evaluate the performance of machine learning algorithms to predict 
trabeculectomy surgical outcomes. Preoperative systemic, demographic and ocular data from 
consecutive trabeculectomy surgeries from a single academic institution between January 2014 
and December 2018 were incorporated into models using random forest, support vector machine, 
artificial neural networks and multivariable logistic regression. Mean area under the receiver operating 
characteristic curve (AUC) and accuracy were used to evaluate the discrimination of each model 
to predict complete success of trabeculectomy surgery at 1 year. The top performing model was 
optimized using recursive feature selection and hyperparameter tuning. Calibration and net benefit 
of the final models were assessed. Among the 230 trabeculectomy surgeries performed on 184 
patients, 104 (45.2%) were classified as complete success. Random forest was found to be the top 
performing model with an accuracy of 0.68 and AUC of 0.74 using 5-fold cross-validation to evaluate 
the final optimized model. These results provide evidence that machine learning models offer value in 
predicting trabeculectomy outcomes in patients with refractory glaucoma.

Glaucomatous optic neuropathy is the leading cause of irreversible blindness  worldwide1. The mainstay of glau-
coma treatment is lowering intraocular pressure (IOP), which reduces its occurrence and  progression2–4. Lower-
ing IOP is achieved with ocular topical medications, laser therapy, or incisional surgeries. Incisional surgeries 
are often necessary for patients with refractory glaucoma who are at high risk for progressive vision loss. Tra-
beculectomy surgery remains one of the most commonly performed incisional glaucoma  surgeries5. However, 
its frequency has declined over the last decade secondary to a growing armamentarium of alternative incisional 
glaucoma procedures with potentially improved safety  profiles6–9. The ability to quantify a patient’s risk of failure 
for a given glaucoma procedure would supplement the shared decision-making process between the patient and 
physician when determining appropriate treatment plans.

Surgical outcome studies have applied machine learning modeling to predict surgical results for patients 
undergoing procedures such as corneal refractive surgery, joint replacement and a variety of neurosurgical 
 interventions10–12. Yoo et al. found machine learning algorithms statistically superior to classic clinical methods 
for predicting the complication of corneal ectasia following refractive  surgery10. Their random forest model had 
the highest prediction performance of the commonly used machine learning algorithms, with an area under the 
receiver operating characteristic curve (AUC) of 0.967 on an external validation set. Oermann et al. evaluated 
several machine learning algorithms to predict morbidity and mortality following stereotactic radiosurgery for 
cerebral arteriovenous  malformation11. Their logistic regression model (average AUC 0.71) outperformed exist-
ing clinical systems (average AUC 0.63) for predicting poor surgical outcomes at all post-operative time points 
out to 8 years. Merali et al. applied machine learning to predict quality of life metrics following surgery to treat 
degenerative cervical  myelopathy12. Their best performing model utilized a random forest algorithm incorpo-
rating neurological exam findings and systemic comorbidities to predict quality of life scores with an AUC of 
0.71 at 1 year. These studies highlight the objective of using machine learning to provide outcome predictions at 
an individual level and advance the field of precision medicine. Like most surgeries, failure of trabeculectomy 
procedures arises from a complex interaction between many factors. Machine learning may be best suited to 
model complex non-linear and conditional relationships while generating individual patient-level  predictions13,14. 
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The objective of this study was to evaluate machine learning models in their ability to predict real world trab-
eculectomy outcomes using readily available preoperative patient demographic, ocular and systemic health data.

Results
Of the 296 consecutive trabeculectomy procedures performed, 230 were performed on 184 patients and included 
in our analysis based on our exclusion criteria. At 1 year, a total of 104 (45.2%) eyes were classified as com-
plete successes and 126 (54.78%) as surgical failures. A total of 35 preoperative parameters were collected for 
model input consisting of 3 demographic parameters, 15 parameters from systemic health data and 17 ocular 
parameters. Six dummy variables were used to transform preoperative IOP magnitude and number of topical 
glaucoma medications into grouped categorical features. Continuous features included age, body mass index 
(BMI), preoperative visual acuity (VA) and central corneal thickness (CCT). No feature was found to have a 
significant positive correlation with any other as shown in Fig. 1. The systemic, demographic and ocular (SDO) 
dataset consisted of 39 features and the demographic and ocular (DO) dataset 24 features. Tables 1, 2 and 3 
show baseline characteristics of both surgical success and failure groups. On univariate analysis, no statistically 
significant differences were observed in demographic and ocular features between the success and failure groups. 
A history of myocardial infarction (MI) was the only systemic health feature with a statistically significant dif-
ference between groups on univariate analysis (P = 0.045).

The performance of the four predictive models evaluated with 5-fold cross validation are shown in Table 4 for 
the DO dataset and Table 5 for the SDO dataset. Random forest (RF) provided the highest accuracy, with values 
of 0.64 and 0.65 for the DO and SDO datasets, respectively. The average receiver operating characteristic curves 

Figure 1.  Pairwise pearson correlation map of features. The feature number corresponds to its number as 
presented in Tables 1, 2 and 3.

Table 1.  Univariate analysis of demographic features recorded in the electronic health record system. n = 
number; SD = standard deviation. The threshold for statistical significance was P < .05.

Features Surgical failure (n = 126) Surgical success (n = 104) P value

(1) Age (Mean, SD) 69.24 (12.19) 68.08 (12.55) 0.479

(2) Gender 0.678

 Male (n, %) 76 (60.3) 59 (56.7)

 Female (n, %) 50 (39.7) 45 (43.3)

(3) Race 0.066

 White (n, %) 110 (87.3) 99 (95.2)

 Black (n, %) 16 (12.7) 5 (4.8)
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Table 2.  Univariate analysis of systemic features recorded in the electronic health record system. n = number; 
SD = standard deviation. The threshold for statistical significance was P < .05.

Features Surgical failure ( n = 126) Surgical success ( n = 104) P value

Systemic Meds:

   (4) Statins (n, %) 67 (53.2) 54 (51.9) 0.955

   (5) Angiotensin II receptor blockers (ARBs) (n, %) 22 (17.5) 27 (26.0) 0.160

   (6) Inhaled corticosteriods (n, %) 10 (7.9) 15 (14.4) 0.174

   (7) Nonsteroidal immunosuppressants (n, %) 10 (7.9) 6 (5.8) 0.702

Comorbid Conditions:

   (8) Asthma (n, %) 13 (10.3) 9 (8.7) 0.840

   (9) Chronic obstructive pulmonary disease (COPD) (n, %) 8 (6.3) 14 (13.5) 0.110

   (10) Congestive heart failure (CHF) (n, %) 9 (7.1) 4 (3.8) 0.429

   (11) Myocardial infarction (MI) (n, %) 17 (13.5) 5 (4.8) 0.045

   (12) Cerebrovascular accident (CVA) (n, %) 4 (3.2) 7 (6.7) 0.343

   (13) Hyperlipidemia (HLD) (n, %) 66 (52.4) 62 (59.6) 0.334

   (14) Hypertension (HTN) (n, %) 91 (72.2) 76 (73.1) 1.000

   (15) Obstructive sleep apnea (OSA) (n, %) 13 (10.3) 8 (7.7) 0.647

   (16) Body Mass Index (BMI) (Mean, SD) 29.1 (6.8) 28.9 (6.8) 0.858

   (17) Smoking history (n, %) 52 (41.3) 43 (41.3) 1.000

   (18) Active smoker (n, %) 13 (10.3) 12 (11.5) 0.934

Table 3.  Univariate analysis of ocular features recorded in the electronic health record system. 
n = number; SD = standard deviation. The threshold for statistical significance was P < .05.

Features Surgical failure ( n = 126) Surgical success ( n = 104) P value

(19) History of angle surgery (n, %) 11 (8.7) 9 (8.7) 1.000

(20) History of selective laser trabeculoplasty (SLT) (n, %) 44 (34.9) 33 (31.7) 0.712

(21) History of previous trabeculectomy (n, %) 5 (4.0) 5 (4.8) 1.000

(22) Pseudophakia (n, %) 43 (34.1) 36 (34.6) 1.000

(23) Diabetes mellitus (DM) (n, %) 36 (28.6) 35 (33.7) 0.492

(24) Study eye 1.000

   Left (n, %) 63 (50.0) 52 (50.0)

   Right (n, %) 63 (50.0) 52 (50.0)

Number of pre-operative topical glaucoma medications

(25) (0, 1) (n, %) 7 (5.6) 10 (9.6) 0.359

(26) (2, 3) (n, %) 82 (65.1) 71 (68.3) 0.712

(27) (4, 5) (n, %) 37 (29.4) 23 (22.1) 0.273

(28) Topical beta blocker (n, %) 92 (73.0) 74 (71.2) 0.868

(29) Topical prostaglandin analogue (PGA) (n, %) 103 (81.7) 73 (70.2) 0.057

(30) Topical alpha-agonist (n, %) 62 (49.2) 53 (51.0) 0.895

(31) Topical carbonic anhydrase inhibitor (CAI) (n, %) 67 (53.2) 51 (49.0) 0.623

(32) Oral CAI (n, %) 17 (13.5) 10 (9.6) 0.482

(33) Angle anatomy 0.647

   Open angle glaucoma (OAG) (n, %) 113 (89.7) 96 (92.3)

   Angle closure glaucoma (ACG) (n, %) 13 (10.3) 8 (7.7)

(34) Pre-operative visual acuity (VA) (Mean, SD) 0.49 (0.6) 0.46 (0.7) 0.720

Pre-operative IOP

(35) < 18 mmHg (n, %) 42 (33.3) 30 (28.8) 0.557

(36) >= 18 and <= 25 (n,%) 40 (31.7) 34 (32.7) 0.991

(37) > 25 (n,%) 44 (34.9) 40 (38.5) 0.676

(38) Surgery-trabeculectomy with cataract extraction (n, %) 21 (16.7) 13 (12.5) 0.484

(39) Central corneal thickness (CCT) (Mean, SD) 554.9 (48.3) 548.8 (45.2) 0.326



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2473  | https://doi.org/10.1038/s41598-022-06438-7

www.nature.com/scientificreports/

for each model are shown in Figure 2 for both DO and SDO datasets. Random forest also showed the highest 
mean area under receiver operating characteristic curve (AUC), with values of 0.64 and 0.68 for the DO and 
SDO datasets, respectively. The RF model had the lowest sensitivity and highest specificity compared to support 
vector machine (SVM), logistic regression (LR) and the artificial neural network (ANN).

Table 6 lists the relative contribution of various predictor features from the SDO dataset for the LR model. 
Features associated with significantly increased risk of trabeculectomy failure in the LR model were use of pre-
operative statin therapy (OR = 0.74, P = 0.045), preoperative topical prostaglandin analogue (PGA) therapy (OR 

Table 4.  Comparison of predictive models trained using the the demographic and ocular (DO) dataset. AUC 
= area under the receiver operating characteristic curve.

Predictive model Accuracy Sensitivity Specificity AUC 

Random forest 0.64 0.52 0.77 0.64

Logistic regression 0.54 0.55 0.53 0.50

Artificial neural network 0.56 0.60 0.51 0.47

Support vector machine 0.59 0.57 0.62 0.57

Table 5.  Comparison of predictive models trained using the systemic, demographic and ocular (SDO) dataset. 
AUC = area under the receiver operating characteristic curve.

Predictive model Accuracy Sensitivity Specificity AUC 

Random forest 0.65 0.44 0.86 0.68

Logistic regression 0.59 0.58 0.57 0.55

Artificial neural network 0.53 0.49 0.59 0.51

Support vector machine 0.62 0.48 0.76 0.64

Table 6.  Relative contribution of various features in the multivariate logistic regression model predicting 
outcomes of trabeculectomy surgical intervention. The threshold for statistical significance was P < .05.

Features Odds ratio (95% confidence interval) P value

Male gender 0.31 (0.10, 0.79) 0.023

Topical prostaglandin analogue (PGA) 0.52 (0.28, 0.97) 0.041

Myocardial infarction (MI) 0.32 (0.10, 0.85) 0.032

Systemic Meds: Statins 0.74 (0.54, 0.99) 0.045

White race 2.88 (1.08, 9.06) 0.046

Figure 2.  Average receiver operating characteristic curves for the 4 predictive models trained on (left) 
demographic and ocular (DO) dataset and (right) systemic, demographic and ocular (SDO) dataset.
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= 0.52, P = 0.041), a history of MI (OR = 0.32, P = 0.032) and male gender (OR = 0.31, P = 0.023). White race 
(OR = 2.88, P = 0.046) was significantly associated with trabeculectomy success in the LR model.

The random forest model was chosen for further optimization secondary to its greater accuracy and AUC 
on initial evaluation of the models. Feature selection using recursive feature elimination was applied to all 39 
features from the SDO dataset and all 24 features from the DO dataset. This process resulted in 19 features for 
the DO dataset and 20 features for SDO dataset as shown in Fig. 3. After feature selection, hyperparameter tun-
ing was performed on the RF model using a grid search scheme varying “mtry” and “number of trees”. The final 
optimized random forest model had 500 trees with a “mtry” of 2.

The performance of the optimized RF model was evaluated using 5-fold cross validation on the DO and SDO 
datasets. The model predicted trabeculectomy surgical outcomes with an accuracy of 0.67 and 0.68 and with a 
mean AUC of 0.68 and 0.74 for the DO and SDO datasets, respectively. Additional discrimination metrics such 
as sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the two models 
are listed in Table 7. The calibration curves for the DO and SDO random forest models are shown in Fig. 4 with 
corresponding slopes and intercepts. The decision curve analysis (DCA) plots for the final DO and SDO random 
forest models are shown in Fig. 5. Figure 6 shows the most important predictive features of the optimized RF 
model from the SDO dataset.

Figure 3.  Results of recursive feature elimination algorithm applied to the random forest model using the (left) 
demographic and ocular (DO) dataset and (right) systemic, demographic and ocular (SDO) dataset.

Table 7.  Comparison of the optimized random forest models trained on the demographic and ocular (DO) 
features and systemic, demographic and ocular (SDO) features. AUC = area under the receiver operating 
characteristic curve; PPV = positive predictive value; NPV = negative predictive value.

Case study Accuracy Sensitivity Specificity AUC PPV NPV

DO features 0.67 0.49 0.86 0.68 0.71 0.64

SDO features 0.68 0.60 0.76 0.74 0.69 0.65

Figure 4.  Calibration curves for the optimized random forest models using the (left) demographic and 
ocular (DO) and (right) systemic, demographic and ocular (SDO) datasets. The flexible curve with pointwise 
confidence intervals (gray area) was based on local regression (loess). The bottom of the graph shows histograms 
of the predicted risks for eyes with complete success (1) and failure (0) at 1 year.
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Discussion
To our knowledge, this is the first study to leverage the use of machine learning algorithms to predict trabeculec-
tomy outcomes. In this retrospective study, we developed and compared different machine learning models 
utilizing preoperative patient data available in electronic health records (EHR) to predict 1 year complete suc-
cess of consecutive trabeculectomy surgeries. The datasets included features from traditional ocular and demo-
graphic variables in addition to readily accessible systemic health data. The RF model marginally outperformed 
LR, ANN and SVM models using AUC and accuracy as evaluation metrics. Models trained with the full SDO 
dataset moderately outperformed models trained with the DO dataset in discrimination and net benefit. The 
performance of our models supports the hypothesis that machine learning models using preoperative features, 
including systemic health data, has the potential to aid physicians and patients in surgical decision making.

Several studies have investigated the influence of patient and ocular features on trabeculectomy surgical 
 outcomes15–21. These studies have found younger age, black race, previous ophthalmic procedures, worse pre-
operative VA, preoperative IOP magnitude, greater number of preoperative IOP lowering topical medications 
and a history of diabetes mellitus as risk factors for trabeculectomy failure. In our logistic regression model, 
male gender, the use of preoperative PGA drops, history of MI and use of statin therapy were associated with a 
significantly increased risk of trabeculectomy failure while white race was associated with trabeculectomy success 
at 1 year. Although more difficult to interpret compared to LR models, our RF model showed age, preoperative 
VA, use of angiotensin II receptor blockers (ARBs), history of MI, CCT and BMI as the most important features 

Figure 5.  Decision curve analysis (DCA) for the optimized random forest models. The model trained on the 
SDO dataset trended towards greater net benefit compared to the DO trained model. Both models provided a 
greater net benefit compared to the decision of performing surgery on all or no patients across a wide range of 
threshold probabilities.

Figure 6.  Importance of top features from the systemic, demographic and ocular (SDO) dataset based on (left) 
MDA (right) MDI.
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in predicting trabeculectomy surgical outcomes using MDA. Using MDI, CCT, age, BMI, and preoperative VA 
were the most important features. The RF model provides new insights into potential factors that may influence 
trabeculectomy outcomes.

Our optimized RF model had an accuracy of 0.68 and AUC of 0.74 using the SDO dataset. We considered this 
a reasonable outcome given the complexity of the physiology and smaller sample size. Using machine learning 
algorithms to predict complications in deep brain stimulation surgery, a gradient boosting algorithm predicted 
surgical complications with an accuracy of 0.66 and AUC of 0.58 when the model was applied to their original 
 dataset22. Lei et al applied machine learning to predict acute kidney injury after aortic arch surgery with an AUC 
of 0.71 using a RF  model23. Rahman et al predicted recurrence after esophageal cancer with an AUC of 0.805 
using a RF  model24. Our classes were relatively balanced (complete success class was 45.2% of total sample) 
compared to other surgical outcome studies using machine learning to predict more rare surgical outcome 
 events22,24–26. It is important to note that we chose a clinically stringent definition of surgical failure to maintain 
more balanced classes. Our qualified success rate, which includes complete successes and eyes which met the 
definition of complete success but were also on supplemental medical therapy to lower IOP, was 71.3%. Another 
strength of the current study was the complete feature data for each patient, obviating the common practice of 
generating synthetic values for missing  data27,28.

The RF model moderately outperformed SVM, LR and ANNs models. Other studies have shown similar 
performance results for classification tasks using machine learning models on healthcare  datasets12,29. This is 
likely due to the intrinsic nature of these models to learn non-linear complex relationships that may be missed 
by LR models. The poorer performance of ANNs is suspected to be related to the small sample size available to 
train the ANN, since ANNs usually require larger training datasets than RF or SVM. The improved accuracy and 
AUC of RF compared to SVM is likely due to the ability of RF models to avoid over-fitting on datasets with low 
sample to feature  ratios12. Our dataset has approximately 5:1 sample to feature ratio, which can limit the conver-
gence of SVM to a local minimum. A low sample to feature ratio is a common barrier of machine learning in the 
medical field and thus RF can be a good choice for classification tasks such as the one considered in this paper.

We evaluated the ’weak calibration’ of the final DO and SDO random forest  models30. The slopes of the 
calibration curves were 1.20 and 0.89 for the SDO and DO random forest models, respectively. The calibration 
slope evaluates the spread of the estimated risks, indicating that the DO model risk estimates are slightly extreme 
(i.e., too high for eyes that are high risk and too low for eyes at low risk) and SDO estimates more moderate. 
The intercepts of the calibration curves were − 0.12 and − 0.13 for the SDO and DO models, respectively. The 
calibration intercepts of the models, which assesses calibration-in-the-large, suggest that the both the SDO and 
DO models overestimate risk somewhat. The DCA provides complimentary model information which may help 
in the decision making process of whether to proceed with trabeculectomy surgery or try alternative treatment 
strategies. The DCA of the SDO trained model showed a positive net benefit compared to treat-all or treat-no 
eyes schemes across a threshold probability range from 0.06 to 0.89.

There were several limitations to the current study. First, the small sample size with a white to black ratio 
of approximately 10 to 1 collected from a single tertiary teaching hospital in a retrospective manner limits the 
generalization of the model to other populations. Prospective evaluation of the model on other datasets are 
necessary to determine if the model translates into benefits for future patients. Second, 21.9% of patients were 
lost to follow up at 1 year which likely introduces bias into this retrospective cohort. As many of these patients 
were referred back to their local eye care provider, it is quite possible that the drop out population had a higher 
complete success rate if not referred back to our institution for further management. This may partially explain 
the relatively lower percentage of complete success (45.21%) in our cohort compared to previous trabeculectomy 
outcome studies, in addition to our liberal inclusion of eyes with all glaucoma subtypes, previous ocular surgery, 
and the high proportion with a preoperative IOP less than 18 mmHg (31.3%)6. Third, our model was designed 
for single layer prediction of success or failure with no ability to predict the cause of failure (i.e., hypotony vs 
lack of sufficient IOP lowering). Future work will evaluate the ability of stacking machine learning approaches 
to further predict the cause of trabeculectomy  failure31. Finally, our study included 230 trabeculectomy surgeries 
performed on 184 patients, with 46 patients receiving bilateral trabeculectomies, which may have lead to some 
data leakage. We also analyzed the performance of the optimized RF model by considering only one trabeculec-
tomy surgery from each patient. The accuracy and AUC for the SDO features in this subset was 0.66 and 0.70, 
respectively, with a small reduction in accuracy and AUC as compared to the full dataset.

Despite these limitations, we believe this study is an important initial step in evaluating machine learning 
models to predict glaucoma surgical outcomes. We have shown that machine learning models offer value in pre-
dicting trabeculectomy success and the integration of systemic health data in additional to standard ophthalmic 
and demographic data can improve model performance. As surgical options in glaucoma expand, predictive 
models have the potential to improve patient care and aid in the surgical decision making process. Future work 
will focus on utilizing these algorithms with a larger dataset, such as those that can be provided by the Sight 
Outcomes Research Collaborative (SOURCE) Ophthalmology Data  Repository32.

Methods
Patient population. Patient data was obtained retrospectively from consecutive adult patients undergo-
ing trabeculectomy or trabeculectomy and cataract extraction with intraocular lens implantation from January 
2014 to January 2018 at the West Virginia University (WVU) Eye Institute. Approval from the WVU Institu-
tional Review Board through the office of human research protections to collect patient data with a waiver of 
informed consent was obtained prior to data collection. All research adhered to the tenets of the Declaration of 
Helsinki and was compliant with the Health Insurance Portability and Accountability Act. Data was collected 
for each patient via chart review from the hospital electronic health record EPIC (Epic Systems, Verona, WI) 
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by fellowship trained glaucoma surgeons (JP, SG, and BM). The features and outcomes data were then reviewed 
for completeness and accuracy (JP), and organized within a secure tabular data sheet. No outliers were removed 
from the dataset and no missing-value management was required. Data collected included preoperative systemic 
health data, preoperative and postoperative ocular data and demographic data. All patients were 18 years or 
older with primary open-angle, pseudoexfoliation, pigment dispersion, juvenile and chronic primary angle clo-
sure glaucoma. Exclusion criteria included patients under 18 years of age, those that received an Express shunt 
(Alcon, Forth Worth, Texas, USA) and patient with less than 1 year of follow up at our institution.

Trabeculectomy surgical technique. All patient surgeries were completed by or with the guidance of 
a fellowship trained glaucoma surgeon at our institution’s outpatient surgical center. All trabeculectomies were 
performed in a similar manner. A subconjunctival injection of 1% lidocaine mixed with 40 mcg of mitomycin 
C (0.2 mg/mL) was injected superior prior to conjunctival incision. A fornix-based conjunctival flap, partial 
thickness rectangular scleral flap and sclerostomy were created. A peripheral iridectomy was performed in all 
phakic eyes and in pseudophakic eyes with any iris prolapse. The scleral flap was closed tight with interrupted 
10-0 nylon sutures to allow flow only with supraphysiologic IOP. The conjunctiva was reapposed with 8-0 pol-
yglactin interrupted wing sutures. All patients received antibiotic drop prophylaxis for 1 week and steroid drops 
for a minimum of 4 weeks postoperatively. Selective laser suture lysis was performed in the postoperative period 
for IOP titration.

Baseline features, outcome classification and class balancing. Criteria for selecting input features 
for the models included existing evidence in the literature suggesting a relationship between the feature and 
the surgical outcome, clinical domain knowledge and availability of the feature in the dataset. Baseline features 
included patient demographic and systemic health data (e.g., co-morbidities, chronic medications, smoking 
status, etc.). Preoperative ocular data included prior ocular history, current glaucoma drops and relevant exam 
data at the appointment in which the decision was made to proceed with trabeculectomy surgery. A full list of 
preoperative features are shown in Tables 1, 2 and 3. The primary outcome classification was surgical failure of 
trabeculectomy at the 1 year postoperative visit. Surgical failure was defined as IOP > 21 mmHg or < 5 mmHg 
at two consecutive visits after 3 months, less than a 20% IOP reduction at two consecutive visits after 3 months, 
a need for reoperation for glaucoma or loss of light perception vision. Eyes which had not failed by the above 
criteria and were not receiving supplemental medical therapy to lower IOP were considered complete success 
and the remaining eyes considered failures. Postoperative manipulations of the trabeculectomy site (e.g., nee-
dling revisions) were allowed in the success class if the patient did not require a return to the operating room. 
Postoperative manipulations were not included as features given the goal of the model to aid in preoperative 
surgical decision making. For predictive modeling, balanced outcome classes (labels) are important to avoid 
biased learning by the models. To handle class imbalance, up-sampling was carried out to equalize the frequency 
of the underrepresented  class33.

Data pre-processing and predictive modeling. Following data collection, continuous features were 
normalized with zero mean and unit standard deviation. Additional dummy variables were created when appro-
priate to obtain grouped categorical features. Visual acuity values were converted into logarithm of the minimum 
angle of resolution (logMAR). To remove redundancy, pairwise pearson correlation of features was carried out 
with a threshold of 0.60. For predictive modeling, we exploited random forest, support vector machine, logistic 
regression and artificial neural network models. We considered two scenarios to determine if the addition of 
systemic health data improves the predictive outcomes of the models. In the first scenario, systemic health data, 
demographic and ocular features were considered and in the second scenario, demographic and ocular features 
were considered. The data were exported into R (version: 3.5.1) for analysis. Summary statistics were gener-
ated to describe both success and failure cohorts. Univariate analysis was performed to investigate potential 
associations between demographic, systemic health and ocular features individually with the primary outcome. 
Figure 7 depicts the overall workflow for data collection, data processing, model construction and evaluation.

Random forest predicts outcomes by relying on the outcomes of an ensemble of individual decision trees, 
which are trained on subsets of the data. Each decision tree uses multiple thresholds to simplify the complex 
decision process into a collection of decision boundaries. The learning process initiates at each internal node 
where feature observations result in two sub-branches depending on the outcome of a decision rule. This learning 
process recursively splits observations set into two subsets, following the decision rule, eventually resulting in 
a terminal node that represents the corresponding class of the  observation34. Features are randomly selected as 
candidates for the split at each node, where the number for these features is much smaller than the total number 
for available features. Random forest formed this way, with random input selection is called Forest-RI35. Random 
forest predictive model reduces the risk of over-fitting by averaging over the decisions of multiple decision trees. 
We utilized the ‘randomForest’ package from R to implement this model using 500 trees (“ntree”), the number of 
variables randomly sampled at each split (“mtry”) set to the default of the square root of the number of features, 
and the minimum size of of terminal nodes (“nodesize”) set to  one36.

Multivariable logistic regression is a commonly used model for outcome predictive modeling. It determines 
the outcome of the observation by multiplying each feature with a constant, adding a bias term and applying a 
logistic  function37. The outcome of the model is rounded to 1 if it is above 0.5 and considers 0 if below 0.5. The 
value of the bias terms is estimated to fit the data using the maximum likelihood method. With that estimate, 
the probability is calculated for new data point to classify it based on the threshold. We used accuracy to add 
or remove variables from the model starting from an empty (null) model. We adopted a bidirectional variable 
selection using the ‘caret’ package from R for this  model38.
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Artificial neural networks (ANN) leverage input features that are connected with a neuron which multiplies 
them with a weight, adds an intercept and applies a subsequent function to generate the output. It imitates neural 
tissues by sequentially transforming the features and passing them on to the next layer. The final layer of the 
network combines the output by extracting the information from these neurons. We compared different neural 
network architectures, varying number of layers and neurons in each layer, and found no considerable difference 
in terms of performance. For each neural network architecture, the maximum iteration variable was set to 100 
epochs. Eventually, we utilized the default neural network architecture from the package ‘neuralnet’ in R with one 
intrinsic layer and one neuron, since further optimization was not in consideration during model selection phase.

Support vector machine (SVM) uses support vectors to identify hyperplanes with maximum separable margin 
to further predict the class of the observation. A non-linear mapping transforms original observations into high 
dimensional space observations using a kernel function. Such multi-dimensional mapping helps in finding a 
linear or non-linear decision boundary (hyperplanes) in the transformed observation space while maximizing 
the margin of separability between different classes. The structure of the hyperplanes depends on the type of 
kernel function. A decision function then distinguishes transformed high dimensional observation by defining 
optimal separable hyperplanes. We used the ‘e1071’ package from R to implement our SVM model, using a radial 
kernel function with a default gamma of 1/(number of features), C-constant (cost) of 1, and epsilon of 0.139.

Validation and performance analysis of predictive models. Cross validation is primarily used to 
estimate the performance of the predictive models and to avoid over fitting. We used a k-fold cross-validation 
scheme with k = 540,41. The validation data set is divided into k folds or groups of approximately equal size data 
sets. Folds of k − 1 are used to train the predictive model and the trained model is tested on the remaining 1 
fold. This procedure is repeated k times allowing for each fold to be tested against the remaining k − 1 folds. 
The overall predictive performance is determined by aggregating the performance of all validation fold groups. 
We evaluated four metrics to analyze predictive performance: accuracy, sensitivity, specificity and AUC. The 
model with the best performance was selected for further recursive feature selection and hyper-parameter tun-
ing. Improvement in surgical outcome prediction accuracy was used as a measure to select the optimal features 
from each dataset scenario. The set of features that produced the highest accuracy was selected for model train-
ing/testing and the remaining features were eliminated. Following feature selection, the best performing model 

Figure 7.  Flow chart of the presented method.
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in terms of accuracy was chosen from the entire grid of generated models. Calibration of the final SDO and DO 
random forest models were analyzed using a calibration  plot30. The calibration slope, with an optimal value of 1, 
was calculated to assess whether predictions were precise or too extreme. Calibration-in-the-large, or y-intercept 
of the calibration plot, indicating the degree to which predictions are systematically too low or high, was calcu-
lated, having an optical value of 0. A decision curve analysis (DCA) was used to evaluate the clinical usefulness of 
the final SDO and DO random forest models by calculating their net benefit across a range of clinical threshold 
 probabilities42,43. An advantage of DCA is that it incorporates preferences (patient and physician), represented 
as threshold probability of choosing or opting out of a treatment, across a range of probabilities. Ranked fea-
ture importance using the mean decrease in accuracy (MDA) and mean decrease in importance (MDI or Gini 
Importance) methods was performed on this final model. All source code is available for public use on Github 
at https:// github. com/ Hasan ulban naR/ ML_ Trab. git.
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