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Vaporization, bioactive formulations
and a marine natural product: different
perspectives on antivirals
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Torien Beard

This article examines three aspects of antivirals, such as hydroxychloroquine, chloroquine, and

remdesvir, as they might relate to the treatment of a viral infection such as COVID-19: (i) the use of

vaporization for the delivery of antivirals, with the bulk constituents having mild antiviral efficacy; (ii)

the application of a marine natural product extract as opposed to a single molecule as an antiviral agent;

and (iii) a counter intuitive approach to formulation that is, in part, based on delivering multiple species

that fall into three categories: building blocks for the virus to accelerate replication; an energy source for

the infected cell to boost its immune response; and the species that antagonize or provide toxicity to the

virus.
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Introduction
Bioactive vapors composed of organic species

have the potential to deliver pharmaceutical

agents efficiently and economically [1,2]. This

article focuses on the vaporization and delivery

of hydroxychloroquine and bryostatin (two

compounds with antiviral activity), their bioac-

tive formulations and some details about the

applications of a marine natural product as an

antiviral agent. The administration of the drug is

matched with host-specific bioactive formula-

tions. We discuss why the marine natural

product bryostatin should be tested as a col-

lection of molecular species found in nature and

not a single active structure. Vaping for the

delivery of nicotine and species found in ‘vape

juice’ is a tremendous health risk; however, a

similar device could be tested for antiviral drug
956 www.drugdiscoverytoday.com
delivery, incorporating the same bulk solutions

for the treatment of viral infections.

Hydroxychloroquine and chloroquine, both

antimalarial agents, are being investigated as

potential treatments of COVID-19 [3]. The co-

ronavirus results in severe acute respiratory

syndrome (SARS) [4], indicating an inhalation

route using an aerosol or vapor might offer a

more effective treatment method compared

with a pill, i.v. or an implant, assuming the drugs

can be delivered at acceptable doses with little

or no side effects.

The Methodological Framework
A formulation that consists of three bulk con-

stituents: 50% propylene glycol, 25% glycerin

and 25% ethanol by volume (and 80% PG, 10%

glycerin, 10% ethanol), was tested as a method
to deliver a unique set of formulations with anti-

and pro-viral activities. Glycerin has been used

to fix viruses for decades, propylene glycol has

been shown to inactivate viruses and ethanol is

widely used as a viral disinfectant. Ethanol is also

added to increase the solubility of some of the

polar species. Ammonium chloride, which can

have a negative impact on the viral replication

rate, is included at low levels [5]. Fatty acids

including stearic, oleic, linoleic and/or arachi-

donic acids are included at <1% of the total

mass. The state (s, l) and solubility of the fatty

acids in the solvents must be considered. It has

been demonstrated that specific fatty acids can

impact the replication rate of the coronavirus

[6]. Human serum albumin provides a source of

amino acids for the virus. When suspended in

the solution, ethanol denatures the structure
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FIG. 1

The structure of bryostatin-1 has a bryophan ring and R1 (C8) and R2 (C2) functional groups.
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allowing it to decompose into its basic building

blocks with less effort. ssDNA is added for its

building blocks, which can be utilized by the

virus. The two macromolecules comprise no

more than 1% of the total mass. Fructose or

glucose are included as an energy source for the

infected cells, increasing their metabolic pro-

cesses along with the uptake rate of the drug

that attacks the viral population in an infected

cell at a mass <1%. Hydroxychloroquine was

tested at levels as high as 6% of the bulk solvent

mass. In a typical formulation, the hydroxy-

chloroquine or bryostatin extract was 2–4% of

the bulk solvent mass and the other species a

maximum of 3% of the solvent mass. Hydroxy-

chloroquine can be replaced wth chloroquine or

Remdesivir in the evaporation experiment.

In our experiments the bulk solvent contains

different mixtures of the proposed antiviral and

the bioactive ingredients are vaporized by a

commercially available vape device (<US$35).

The vapor is pulled through a 1 cm ID tube

�0.6 m in length to a 1 l flask. A vacuum was

pulled for �2 s and stopped, trapping the vapor

in the flask. The flask contained 50 ml of high

purity water and the static vapor was in contact

with the aqueous phase for �5 s before the

vacuum was applied again. This cycle was per-

formed five times and the water was removed

and analyzed by LC–MS. Each species was

confirmed using its parent ion and at least one

fragment.

When a coronavirus infects the lungs, spe-

cifically the primary alveolar epithelial cells,

there is a rapid response by the cell’s immune

system. The monosaccharides provide addi-

tional localized energy for the cell. The protein

and nucleic acids suspended in the solvent

provide building blocks for the viral replication

process. The goal is to maintain or accelerate

viral replication improving the efficacy of the

drug during this vulnerable phase. At the same

time, the fatty acids, ethanol and glycerin pro-

vide antagonistic activity toward the virus at the

molecular level. In the vaporization process,

droplets composed of glycerin and propylene

glycol can be in the tens to several hundreds of

nanometers diameter range [7]. These nano-

particles will rapidly release their bioactive

species in the lungs owing to the high surface-

area:volume ratio. The multitude of agents po-

tentially interacting with a virus in a short

timespan presents a unique conundrum for its

replication and survival. The inhalation ap-

proach enables lower doses to be administered.

The second pharmaceutical tested is the

marine natural product bryostatin. Bryostatin

has been shown to have various levels of efficacy
against different types of cancers [8,9], neuro-

logical diseases [10,11] and antiviral activity

[12,13]. A protein kinase C modulator in me-

dicinal applications, its limitations in large-scale

studies are cost and availability. Bryostatin is

naturally produced by marine bacteria having a

symbiotic relationship with the bryozoan Bugula

neritina. Bryostatin provides a chemical defense

against predators seeking the Bugula larvae [14].

Although the interaction between viral and

bacterial species in the world’s oceans is a de-

veloping field, it is estimated that marine viruses

outnumber marine bacteria by ratios that range

from 20:1 to 50:1. This suggests that marine

bacterium can interact with multiple viral spe-

cies and would need a broad-spectrum antiviral

defense to survive. Marine creatures such as

Beluga whales [15] and bottlenose dolphins [16]

are infected with coronaviruses and their de-

fense systems could involve symbiotic bacteri-

um that produce a small molecule(s) with

antiviral properties.

The bryostatin group is characterized by a

bryophan ring with two R groups (Fig. 1). There

have been 20 bryostatin structures isolated from

Bugula and published that have different R1 and

R2 constituents. There are probably many more

variations of the bryophan ring in nature. In
analysis of marine extracts, there is a complex

mix of structures that can be correlated with the

bryophan ring having differences in the R1 and

R2 structures. Simple marine creatures, such as

fire coral, use complex poisons for different

survival tasks [17]. This mixture has been noted

in the literature by several groups [18,19]. The

complex mixtures extracted from Bugula sug-

gest the bacterial defense system is a multi-

pronged system and not a single structure.

QSAR calculations of bryostatin-1 and its

substructures (Bryo-1: R1 = C8, R2 = C2; R1 = OH,

R2 = C2; R1 = OH, R2 = OH; R1 = H, R2 = OH; R1 = H,

R2 = H) give a range of physical values (Lipinski’s

rules: logP, TPSA, H-bonds possible, etc.) and

biological activities: G-protein-coupled receptor

(GPCR) ligand, ion channel modulator, kinase

inhibitor, nuclear receptor ligand, protease in-

hibitor and enzyme inhibitor. Typically, many

natural product chemists isolate and focus on a

single molecule with medicinal activity.

In some of our vaporization experiments we

replaced hydroxychloroquine with bryostatin

extracts and found the species with a higher

water solubility appeared in the aqueous phase

(R1 = OH, R2 = OH; R1 = H, R2 = OH; R1 = H, R2 = H).

The ester bonds that link R1 and R2 to the

bryophan ring are exposed to numerous
www.drugdiscoverytoday.com 957
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naturally occurring carboxylates in the marine

environment.

We completed preliminary work with a stan-

dard ‘vape’ instrument that is used worldwide

for the delivery of nicotine in a vapor form. This

indicates the technology is available on a large

and economical scale and the conditions under

which it works are well understood. It typically

uses two primary fluids in the vaporization

process: glycerin or glycerol (C3H8O3) and pro-

pylene glycol (C3H8O2), which are used in this

study. At this preliminary stage, the goal was to

show the vaping equipment could be used to

transport various species, as a vapor, to the flask.

Despite a minimum exposure time, the various

species were measured in the aqueous phase.

Concluding remarks
Our group has developed a complex for treating

different forms of tuberculosis. First- and sec-

ond-line antibiotics were repurposed attacking

the microbe with an additional antagonist

[Cu(II)] and accelerating its cellular processes

with an energy source [20,21]. We have used a

similar repurposing approach with cancer drugs

using sucrose and glucose to provide additional

energy to the cancer cells, copper to increase

the concentration of a limiting nutrient in the

angiogenesis process and the inclusion of fatty

acids and proteins to provide nutrients and

increase the serum lifetime [22–24]. We have

also been exploring an ocean-centered syn-

thesis of bryostatin and explored many of the

chemical reactions possible in this environment

[25–27]. These interdisciplinary activities en-

abled us to explore nontraditional approaches

that were economical and often efficient in

independent in vitro studies.
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