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OBJECTIVE—Peripheral insulin resistance is linked to an in-
crease in reactive oxygen species (ROS), leading in part to the
production of reactive lipid aldehydes that modify the side chains
of protein amino acids in a reaction termed protein carbonyla-
tion. The primary enzymatic method for lipid aldehyde detoxifi-
cation is via glutathione S-transferase A4 (GSTA4) dependent
glutathionylation. The objective of this study was to evaluate the
expression of GSTA4 and the role(s) of protein carbonylation in
adipocyte function.

RESEARCH DESIGN AND METHODS—GSTA4-silenced
3T3-L1 adipocytes and GSTA4-null mice were evaluated for
metabolic processes, mitochondrial function, and reactive oxy-
gen species production. GSTA4 expression in human obesity was
evaluated using microarray analysis.

RESULTS—GSTA4 expression is selectively downregulated in
adipose tissue of obese insulin-resistant C57BL/6J mice and in
human obesity-linked insulin resistance. Tumor necrosis factor-�
treatment of 3T3-L1 adipocytes decreased GSTA4 expression,
and silencing GSTA4 mRNA in cultured adipocytes resulted in
increased protein carbonylation, increased mitochondrial ROS,
dysfunctional state 3 respiration, and altered glucose transport
and lipolysis. Mitochondrial function in adipocytes of lean or
obese GSTA4-null mice was significantly compromised com-
pared with wild-type controls and was accompanied by an
increase in superoxide anion.

CONCLUSIONS—These results indicate that downregulation of
GSTA4 in adipose tissue leads to increased protein carbonyla-
tion, ROS production, and mitochondrial dysfunction and may
contribute to the development of insulin resistance and type 2
diabetes. Diabetes 59:1132–1142, 2010

O
besity-linked type 2 diabetes and its associated
health complications are major human health
concerns (1), and recent studies have impli-
cated increased levels of reactive oxygen spe-

cies (ROS) such as superoxide anion, hydrogen peroxide,
peroxynitrite, and hydroxyl radicals as major contributing
factors (2–4). Excess ROS are causally linked to insulin
resistance in adipocytes (5) and alteration of adipokine
secretion in a manner that promotes insulin resistance in
peripheral tissues (2,6,7). As adipose metabolism plays a
substantial role in regulating whole-body insulin sensitiv-
ity (8), evaluating the conditions that lead to oxidative
stress in adipocytes is an important goal.

Whereas various ROS react with all cellular compo-
nents, the hydroxyl radical–mediated peroxidation of poly-
unsaturated acyl chains of glycerophospholipids is
particularly harmful as it results in the formation of lipid
peroxidation products considered second messengers of
oxidative stress (9). Peroxidated acyl chains are unstable
and undergo nonenzymatic Hock cleavage generating a
family of reactive �,�-unsaturated aldehydes (10). Such
reactive lipid aldehydes, including trans-4-hydroxy-2-non-
enal (4-HNE), covalently modify protein and DNA and
activate cellular stress-response systems (11) and the
transcription factors Nrf2 and Tfam (12,13). In the case of
protein modification, the process is generically termed
protein carbonylation and often results in loss of function
(14).

Using proteomic profiling, we have previously shown
that high-fat–fed obese, glucose-intolerant C57BL/6J mice
exhibit approximately twofold to threefold increased adi-
pose protein carbonylation compared with lean controls
(15). In addition, obese animals exhibited an approxi-
mately fourfold decrease in the abundance of glutathione
S-transferase A4 (GSTA4) in adipose tissue. GSTA4 cata-
lyzes the glutathionylation of �,�-unsaturated aldehydes to
produce a conjugation product that is transported from
the cell (16). Our studies here focus on the role of GSTA4
as an antioxidant enzyme linking protein carbonylation to
metabolic dysfunction. We reveal that GSTA4 is down-
regulated specifically in adipose tissue of obese mice,
insulin-resistant humans, and also in 3T3-L1 adipocytes
treated with tumor necrosis factor (TNF)-�. Mitochondria
from both GSTA4-silenced 3T3-L1 adipocytes and adipose
tissue of GSTA4-null or obese C57BL/6J mice accumulate
ROS and exhibit compromised respiration. Metabolically,
this results in impaired glucose and lipid homeostasis,
suggesting that TNF-�–induced downregulation of GSTA4
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is a major determinant linking inflammation with oxidative
stress and insulin resistance.

RESEARCH DESIGN AND METHODS

Animals. C57BL/6J mice were placed on a normal chow (�4% fat by weight;
Teklad) or a high-fat (�35% fat by weight, F3282; BioServ) diet at weaning
(17). Mice were housed on a 12-h light/dark cycle and fed ad libitum with
continual access to water. At 12–16 weeks of age, mice were killed by cervical
dislocation, and tissues were harvested, frozen in liquid nitrogen, and stored
at �80°C until further processing. Primary adipocytes were isolated from
fresh epididymal fat pads as described previously (18). Mixed-strain mice
B6;129S5-GSTa4Gt(neo) 619 Lex were purchased from the Mutant Mouse Re-
gional Resource Centers (University of California-Davis, Davis, CA). GSTA4
heterozygous mice were outbred to C57/BL6J mice, and the resulting heterozy-
gous progenies were interbred to generate GSTA4-null and wild-type mice.
The University of Minnesota Institutional Animal Care and Use Committee
approved all experiments.
Generation of GSTA4-silenced adipocytes. The 3T3-L1 fibroblasts were
transduced with lentivirus carrying short hairpin RNA (shRNA) as described
previously (19). shRNA sequences directed toward GSTA4 mRNA were
purchased from Ambion. Each oligo and the reverse complement were
synthesized and annealed, and the double-stranded DNA was ligated into
pENTR/U6 cloning vector (Invitrogen) according to manufacturer’s protocol.
Cell lines used for experiments contained the following shRNA sequences:
scrambled (Scr) control, AGTACTGCTTACGATACGGTGTGCTGTCCGTAT
CGTAAGCAGTACT; GSTAA4 knockdown, GGTATATAGATCCCAGGAGTGT
GCTGTCCTCCTGGGATCTATATACC.
Protein carbonylation. Protein carbonylation was detected using EZ-link
Biotin Hydrazide (Pierce) as described previously (15), with slight modifica-
tions. Polyvinylidene fluoride membranes (MilliPore, Billerica, MA) were
blocked in Odyssey Blocking Buffer (LI-COR, Lincoln, NE), and biotinylated
proteins were detected with DyLight 800–conjugated streptavidin (Pierce,
Rockford, IL) and visualized using an Odyssey Infrared Imager (LI-COR).
Mitochondrial isolation, respiration, and matrix superoxide. 3T3-L1
adipocytes were scraped and incubated for 20 min on ice in 20 mmol/l Tris (pH
6.8) and 1 mmol/l EDTA containing protease inhibitors. Cells were lysed with
40 strokes of a Dounce homogenizer, and the resulting homogenate was
supplemented with a final concentration of 220 mmol/l mannitol and 70
mmol/l sucrose. For mitochondrial isolation from adipose tissue, epididymal
fat pads were minced, washed in ice-cold Krebs-Ringer HEPES, and lysed with
1:5 wt/vol of isolation buffer (20 mmol/l Tris-HCl, 220 mmol/l mannitol, 70
mmol/l sucrose, 1 mmol/l EDTA, pH 7.4, supplemented with protease inhibi-
tors) by Dounce homogenization. Homogenates were centrifuged at 700g to
remove nuclei, unbroken cells, and the lipid cake. Mitochondria were recov-
ered by centrifugation at 12,000g.

Oxidative respiration was assessed in isolated mitochondria as described
previously (20) using a FOXY-R Oxygen Sensor (Ocean Optics, Dunedin, FL).
Isolated mitochondria were incubated at room temperature in 10 mmol/l
HEPES (pH 7.4), 125 mmol/l KCl, 5 mmol/l MgCl2, and 2 mmol/l K2HPO4

supplemented with 5 mmol/l pyruvate and 5 mmol/l malate to stimulate state
2 respiration. State 3 respiration was measured after the addition of 0.5 mmol/l
ADP, and oxygen consumption rate was normalized to mitochondrial protein.
TPP-HE was used to detect superoxide in isolated mitochondria as described
previously (21).
Analysis of human GSTA4 expression. Microarray analysis of human genes
expressed in omental and subcutaneous adipose tissue was reported by
MacLaren et al. (22). Dataset analysis was conducted using the Significant
Analysis of Microarrays procedure (23) version 3.02 available at http://www-
stat.stanford.edu/�tibs/SAM. Statistical analyses were conducted using the
statistical package SAS, version 9.1.3 (SAS Institute, Cary, NC).

Statistical analysis. All values are expressed as mean � SEM. Statistical
significance was determined using the two-tailed Student t test assuming
unequal variances or, where appropriate, a two-way ANOVA with Bonferroni
or Holm-Sidak post hoc analysis. P values � 0.05 are considered significant (*)
with an increased significance of P value � 0.01 indicated (**).

RESULTS

To evaluate the expression of genes linked to oxidative
stress and 4-HNE metabolism, quantitative RT-PCR
(qPCR) (supplementary Table 1, available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/content/
full/db09-1105/DC1) was performed on mRNA isolated from
gonadal white adipose tissue of lean or obese male
C57BL/6J mice (Fig. 1A). Adipose tissue from obese ani-

mals exhibited increased expression of p40 phox subunit
of NADPH oxidase and heme oxygenase (HO-1) and trends
toward increased expression of superoxide dismutase 1
(SOD-1), glutathione peroxidase 1 (GPX-1), and peroxyre-
doxin 1 (PRDX-1), all consistent with an antioxidant stress
response (2). In contrast, the expression of multiple iso-
forms of the GST family (A4, A3, M2) was decreased in
obese mice compared with lean controls. Most notably,
the expression of GSTA4 decreased approximately three-
fold to fourfold, consistent with microarray analysis of
lean and obese C57BL/6J mice in which GSTA4 expression
was profiled among the most highly regulated tran-
scripts (24). The expression of other 4-HNE metaboliz-
ing enzymes including several aldehyde dehydrogenases
(ALDH1A 1/7, ALDH2, and FALDH) was not significantly
altered with obesity (Fig. 1A). GSTA3 and GSTA4 expres-
sion was also decreased in obese female mice (Fig. 1B)
relative to lean controls. Interestingly, the basal GSTA4
expression in adipose tissue of lean female mice was
approximately twofold greater than in lean male mice, such
that obese female mice express GSTA4 at levels comparable
with that expressed by lean male animals (Fig. 1B).

To determine the tissue specificity of GSTA4 downregu-
lation, qPCR was performed on mRNA isolated from
epididymal white adipose tissue (EWAT), subcutaneous
white adipose tissue, brown adipose tissue, liver, and
gastrocnemius muscle of lean and obese male mice (Fig.
1C). Whereas decreased GSTA4 expression was observed
in both visceral and subcutaneous white adipose tissue, no
significant change was observed in other insulin-respon-
sive tissues analyzed. Because adipose tissue contains
multiple cell types, adipocytes were separated from
stroma in EWAT by collagenase digestion and exhibited an
�95% decrease in GSTA4 expression in the adipocyte
fraction. Reduced expression of GSTA4 was not limited to
high-fat–fed C57BL/6J mice. GSTA4 mRNA expression was
also significantly decreased in adipose tissue from ob/ob
animals (Fig. 1D), and GSTA4 expression is downregu-
lated �10-fold in adipose tissue of genetically obese BTBR
mice (http://www.diabetes.wisc.edu; [25]), indicating that the
expression of GSTA4 is markedly reduced in a variety of
metabolic and genetic models of obesity and insulin
resistance.

GSTA4 expression in murine and human systems.
To investigate the mechanism underlying reduced GSTA4
expression in insulin-resistant adipocytes, we assessed
GSTA4 mRNA expression in response to a variety of
hormones and metabolites using the 3T3-L1 cell culture
system. Treatment of 3T3-L1 adipocytes with the proin-
flammatory cytokine TNF-� resulted in a time- and con-
centration-dependent decrease in GSTA4 expression.
After 24-h treatment, GSTA4 mRNA expression was re-
duced 40% with 100 pmol/l TNF-� and 80% with 1 nmol/l
TNF-� (Fig. 2A). No further reduction of GSTA4 expres-
sion was obtained with 10 nmol/l TNF-� (data not shown).
The reduced GSTA4 expression was observed as early as
8 h with 1 nmol/l TNF-� treatment (Fig. 2B).

To assess the expression of GSTA4 in human obesity
and insulin resistance, we evaluated GSTA4 expression in
omental and subcutaneous adipose from obese diabetic
subjects and nondiabetic subjects and compared it with
lean counterparts using microarray analysis (22). Interest-
ingly, GSTA4 expression in adipose tissue of humans was
decreased in the obese insulin-resistant population rela-
tive to lean and obese insulin-sensitive individuals (Fig.
3A) and was verified using real-time PCR (results not
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shown). Moreover, the decrease in GSTA4 mRNA was
evident in both the subcutaneous and omental fat depots.
There was no correlation between GSTA4 expression and
BMI (Fig. 3B), but there was a statistically significant
negative correlation between GSTA4 levels and homeo-
static model assessment of insulin resistance (HOMA-IR)
(Fig. 3C). Evaluation of GSTA3 expression revealed no
relationship to HOMA-IR or BMI (results not shown).

Generation of GSTA4-silenced adipocytes. Because
GSTA4 is central to 4-HNE detoxification and metabolism

and carbonylation is increased with obesity (15,26), we
evaluated whether decreased GSTA4 expression leads
directly to increased protein carbonylation. To that end,
3T3-L1 fibroblasts were transduced with shRNA directed
against GSTA4 mRNA or nonspecific scrambled control
sequence to establish GSTA4 knockdown and Scr cell
lines. Although several distinct shRNA sequences were
analyzed for GSTA4 silencing, one line with �60–70%
decrease in GSTA4, comparable with that observed in the
animal system, was chosen for detailed assessment (Fig.
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4A); some measures were confirmed in other silenced cell
lines. Although GSTA3 was not expressed in the preadipo-
cytes at an appreciable level, its expression increased
during preadipocyte differentiation (data not shown) and
was upregulated approximately twofold in GSTA4 knock-
down adipocytes compared with Scr adipocytes (Fig. 4A).

GSTA4 knockdown 3T3-L1 cells differentiated normally
and expressed adipocyte marker proteins peroxisome
proliferator–activated receptor-� (PPAR�), CCAAT/en-
hancer binding protein � (CEBP�), adipocyte fatty acid–
binding protein (A-FABP/aP2), �-actin, and lipoprotein
lipase (LPL) to the same extent as Scr cells. Interestingly,
expression of the fatty acid translocase CD36 was upregu-
lated approximately twofold in the GSTA4 knockdown
adipocytes (Figs. 4B).

Protein carbonylation in GSTA4 knockdown and Scr
control cells was assessed by biotin hydrazide modifica-
tion (Fig. 4C) (15). Adipocytes exhibited an approximately
threefold to fourfold increase (P � 0.01) in total protein
carbonylation relative to preadipocytes for both GSTA4
knockdown and Scr cell lines (n � 4). Increased carbony-
lation of specific proteins was noted in GSTA4 knockdown
relative to Scr control adipocytes. The prominent band
near �15 kDa in adipocytes has previously been identified
as the adipocyte fatty acid–binding protein (aP2) (15).

Another protein at �145 kDa (**) exhibited an approxi-
mately twofold to threefold increase (P � 0.01) in car-
bonylation in the GSTA4 knockdown cells. This band was
excised from the gel and digested with trypsin, and the
peptides were sequenced by liquid chromatography–elec-
trospray ionization tandem mass spectrometry. The result-
ant peptides (nine unique peptides representing 8%
sequence coverage) identified the protein as xanthine
dehydrogenase (supplementary Table 2).

Altered glucose and lipid metabolism in GSTA4-

silenced adipocytes. To determine the influence of in-
creased protein carbonylation on adipocyte function, we
examined a variety of metabolic parameters linked to
glucose and lipid metabolism. GSTA4 knockdown adipo-
cytes exhibited a significant increase in basal glucose
transport, resulting in a net decrease in insulin-stimulated
hexose uptake (Fig. 5A and B). Western analysis indicated
increased expression of the basal GLUT, GLUT1 (Fig. 5C),
but not the insulin-responsive GLUT, GLUT4. Consistent
with increased hexose metabolism, analysis of reduced
coenzyme levels revealed that the ratio of NAD	/NADH
was significantly lower in GSTA4 knockdown cells (Fig.
5D) and the culture medium of GSTA4 knockdown cells
was slightly acidic (results not shown) due to a 65–70%
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increased level of L(	)-lactate compared with scrambled
control cells (Fig. 5E).

Because tricarboxylic acid cycle (TCA) enzymes are
targets of protein carbonylation and are inactivated by the
addition of 4-HNE (27,28), GSTA4 knockdown and Scr
adipocytes were assayed for small organic acids by direct
injection tandem mass spectrometry (29). GSTA4 knock-
down adipocytes had significantly increased (P � 0.01)
levels of intracellular lactate, pyruvate, succinate, and
citrate (Fig. 5F). The ratio of lactate to pyruvate was also
significantly decreased in GSTA4 knockdown adipocytes
relative to Scr control cells, and in sum suggested that
multiple steps in the tricarboxylic acid cycle may be
compromised because of silencing of GSTA4 and in-
creased protein carbonylation.

To profile lipid metabolism in GSTA4-silenced 3T3-L1
adipocytes, we evaluated 14C-acetate incorporation into
lipid pools as a measure of de novo lipogenesis. GSTA4
knockdown adipocytes exhibited no difference in de novo
lipogenesis under basal or insulin-stimulated conditions
relative to scrambled control cells (results not shown).
However, consistent with elevated CD36 expression (Fig.
4B), fatty acid uptake measured by 3H-palmitate influx was
slightly, but significantly, increased under basal (but not
insulin-stimulated) conditions in GSTA4 knockdown adi-
pocytes (results not shown). Although both basal glucose
and fatty acid transport are increased in GSTA4 knock-
down cells, total lipid storage was unchanged. We there-
fore analyzed lipolysis of nonesterified fatty acids from
GSTA4 knockdown and Scr adipocytes. Silencing GSTA4
led to an �50% increase in basal lipolysis, even in the

presence of insulin (Fig. 5G). Insulin suppression of fors-
kolin-stimulated lipolysis was slightly blunted in GSTA4
knockdown adipocytes (Fig. 5H). These results were
confirmed in separate GSTA4 knockdown 3T3-L1 cell lines
generated from different shRNA sequences (data not
shown).

To assess mitochondrial �-oxidation, the conversion of
radiolabeled palmitate to CO2 and soluble metabolites was
evaluated (30). GSTA4 knockdown adipocytes exhibited
decreased oxidation of [1-14C]-palmitate as determined by
the production of 14C-labeled CO2 (complete oxidation)
and 14C-labeled acid-soluble metabolites (incomplete oxi-
dation) (Fig. 5I). Mass spectrometry–based analyses were
used to detect changes in the acyl-carnitine profile of
GSTA4-silenced adipocytes (supplementary Fig. 1) and
revealed that acetyl-carnitine (C2) and several other long-
chain acyl-carnitine species were elevated in GSTA4
knockdown cells.

Silencing of GSTA4 expression leads to impaired
respiration. Given the altered glucose metabolism and
TCA cycle intermediates, we assessed mitochondrial res-
piration in GSTA4 knockdown and control cells. Mito-
chondria were isolated from GSTA4 knockdown and Scr
adipocytes, and oxygen consumption was evaluated.
GSTA4 silencing had a significant effect (P � 0.017) on
oxygen consumption rate as assessed by two-way ANOVA
with Bonferroni post hoc analysis. Whereas control 3T3-L1
adipocytes exhibited robust state 2 respiration and an
increase in state 3 respiration after addition of ADP,
GSTA4 knockdown mitochondria displayed approximately
twofold decrease in state 2 respiration and no increase in
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oxygen consumption after addition of ADP (Fig. 6A–C). As
mitochondrial dysfunction is often coupled with increased
reactive oxygen species generation, we evaluated super-
oxide anion production in isolated mitochondria (21).
Silencing GSTA4 resulted in an approximately threefold
increase in superoxide production in the mitochondrial
matrix (Fig. 6D). However, whole-cell ROS evaluated by
the fluorescent probe chloromethyl 2
,7
-dichlorodihy-
drofluorescein diacetate (H2DCFDA) was not changed in
GSTA4 knockdown compared with Scr control cells (data
not shown), suggesting that increased oxidative stress is
centered on the mitochondrion and not a property of the
entire cell.

In the muscle, insulin resistance is characterized by not
only loss of mitochondrial function but also mitochondria
protein and DNA, leading to reduced levels of functional
organelles (31,32). As such, we evaluated markers of
mitochondrial biogenesis at the mRNA, protein, and DNA
level. The expression of the key transcription factors Nrf1

and Tfam as well as the central cofactor peroxisome
proliferator–activated � coactivator-1� (PGC-1�) are all
reduced in GSTA4-silenced adipocytes as well as the
expression of mitochondrial proteins cyclooxygenase IV
(COX IV) and cytochrome c (Fig. 7A and B). Interestingly,
expression of manganese SOD (Mn-SOD) and uncoupling
protein 2 (UCP2) was not affected by GSTA4 silencing. In
the GSTA4 knockdown cells, endothelial NO synthase
(eNOS) expression was downregulated �50%, suggesting
that increased protein carbonylation initiates a cascade of
events that links to the entire mitochondrial biogenesis
pathway (32). Consistent with this, the abundance of the
COX II and cytochrome b (mitochondrial) genes relative to
UCP2 (nuclear) gene was significantly reduced (Fig. 7C).
Paralleling the reduction in state 3 respiration, Fig. 7D
shows that the activity of ATP synthase was reduced 50%
in the GSTA4-silenced adipocytes.

To determine whether mitochondrial dysfunction in the
GSTA4-silenced 3T3-L1 cells was also exhibited in animal
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systems, respiration was evaluated in mitochondria iso-
lated from male GSTA4-null (�/�) mice and wild-type
(	/	) littermates maintained on standard chow (lean) or
high-fat (obese) diet. Lean or obese GSTA4-null mice
exhibited no significant difference in body weight relative
to wild-type controls (34.2 � 3.3 g vs. 38.6 � 4.0, chow diet;
45.6 � 6.9 and 49.2 � 9.0, high-fat diet). No changes in
fasting glucose or insulin levels were found between
wild-type and GSTA4-null mice (supplementary Fig. 2B).
Figure 8A and B show that in wild-type C57BL/6J mice, the
lean to obese transition results in little change in state 2
respiration but a decrease in state 3 respiration, coincident
with the downregulation of GSTA4. Interestingly, GSTA4-
null mice exhibited a trend toward increased state 2
respiration relative to wild-type animals. The state 3
oxygen consumption rate of mitochondria from lean
GSTA4-null mice was comparable with wild type; how-
ever, similar to mitochondria from GSTA4-silenced adipo-
cytes, mitochondria from obese GSTA4-null mice
displayed no increase in oxygen consumption in response
to ADP.

Accompanying the changes in respiration, adipocyte
mitochondria from wild-type mice produced twofold to
threefold more matrix superoxide in the obese state
compared with lean controls. Adipocyte mitochondria
from GSTA4-null mice exhibited markedly increased ma-
trix superoxide in the lean state compared with wild-type

controls and an even greater level of superoxide in the
obese state (Fig. 8C). These findings are consistent with
published reports that defects in oxidative phosphoryla-
tion lead to increased matrix superoxide (33) and are
likely a consequence of elevated protein carbonylation in
the mitochondria of EWAT from GSTA4-null mice (Fig.
8D). Unlike the GSTA3 upregulation in GSTA4 knockdown
3T3-L1 cell culture model, there was no significant change
in expression of GSTA3 or other glutathione S-transferases
or dehydrogenases linked to 4-HNE metabolism in the
GSTA4-null mice (supplementary Fig. 2A).

DISCUSSION

The work described here profiles the systemic metabolic
events associated with downregulation of GSTA4 that
initiate with carbonylation of cellular proteins. Protein
carbonylation is a chemical event with multiple protein
targets alkylated under conditions of increased oxidative
stress, and the biological outcomes in a cell or tissue are
not likely to be based solely on one specific protein
modification event (34). As such, a systems-wide approach
is needed to characterize functional consequences of
carbonylation. Our previous work characterized carbony-
lated polypeptides in adipose tissue using proteomic meth-
ods (15), and this report extends those findings to
metabolic outcomes. The results presented identify
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GSTA4 as a key determinant of adipocyte protein carbony-
lation and mitochondrial function and suggest that its
activity may be a protective factor against metabolic
dysfunction.

In humans, GSTA4 is downregulated in omental and
subcutaneous depots of obese, insulin-resistant but not
obese, insulin-sensitive individuals (Fig. 3). Similarly,
GSTA4 is downregulated specifically in adipose tissue
from obese, insulin-resistant C57BL/6J mice (15,24), in
ob/ob animals (Fig. 1D), or in TNF-�–treated 3T3-L1 adi-
pocytes (Fig. 2). Previous work by Awasthi et al. (11) and
Engle et al. (35) has shown GSTA4-null mice have in-
creased levels of 4-HNE, reduced antioxidant capacity,
and increased apoptosis. Although GSTA4 expression was
downregulated in obese female mice, its basal expression
was more robust than in males (Fig. 1B), raising the
possibility that increased levels of GSTA4 protect female
mice from the harmful effects of lipid peroxidation prod-
ucts and may contribute to the attenuated insulin resis-
tance characteristics observed in female C57BL/6J mice
(36).

Although silencing GSTA4 in adipocytes also led to
overall increased protein carbonylation, one protein target
identified was xanthine dehydrogenase (Fig. 3D). In vitro,
xanthine dehydrogenase is converted from its dehydroge-
nase form to its oxidoreductase form by modification of
cysteine residues (37). Such modification of xanthine
dehydrogenase by 4-HNE or other lipid aldehydes could
lead to an increased oxidoreductase activity of the enzyme
and the production of superoxide anion, amplifying oxida-
tive stress signaling. Interestingly, xanthine dehydroge-
nase is known to be converted to xanthine oxidoreductase

in response to mitochondrial damage in vivo (38), provid-
ing a link between mitochondrial dysfunction and oxida-
tive stress.

Consistent with elevated lactate, the increased basal
glucose transport by GSTA4 knockdown adipocytes could
be a compensatory response to diminished mitochondrial
function. In muscle cells, mitochondrial dysfunction has
previously been linked to increased basal glucose trans-
port (39), and obese human type 2 diabetic patients also
exhibit increased basal 2-deoxyglucose transport in skel-
etal muscle cells (20,40). Increased GLUT1 expression in
GSTA4 knockdown adipocytes (Fig. 5C) is consistent with
previous reports of increased glucose transport via GLUT1
during treatment of epithelial cells with inhibitors of
mitochondrial oxidative phosphorylation (41) as well as
reports of oxidative stress–induced increases in basal
glucose transport in adipocytes (3). Increased basal glu-
cose transport may provide sufficient ATP for metabolism
and signaling because the levels of total and phospho–
AMP-activated protein kinase were not altered in the
GSTA4-silenced adipocytes (data not shown).

Insulin resistance is correlated with increased basal
lipolysis (42), and GSTA4 knockdown adipocytes exhib-
ited �50% increased basal lipolysis in the presence or
absence of insulin (Fig. 5G). Surprisingly, GSTA4 knock-
down adipocytes had no change in total triglyceride accu-
mulation (results not shown), potentially because of
increased fatty acid uptake. Consistent with this, the
expression of CD36 protein, a plasma membrane fatty acid
transporter whose expression is induced by the 4-HNE–
responsive transcription factor Nrf2 (43), was significantly
increased in the GSTA4 knockdown adipocytes (Fig. 4B).
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The increase in key organic anion intermediates sug-
gests that the flux through the tricarboxylic acid cycle is
attenuated. Previous proteomic data have identified mul-
tiple TCA cycle enzymes as well as complexes I–IV of the
oxidative phosphorylation machinery as targets of car-
bonylation (34). The decrease in [1-14C]-palmitate oxida-

tion (Fig. 5I) indicates that multiple steps in lipid
oxidation and/or metabolism of acetyl-CoA are reduced in
the GSTA4-silenced cells. This is supported by mass
spectrometry data that show elevated levels of several
acyl-carnitine species (supplementary Fig. 1), and in-
creased acetyl-carnitine suggests that acetyl-CoA is accu-
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mulating. As such, increased protein carbonylation in the
mitochondrion is likely to lead to decreased functions
such as tricarboxylic acid cycle and fatty acid oxidation
(27,44).

A major finding of this study is that respiration is
markedly altered in GSTA4 knockdown adipocytes (Fig. 6)
and in adipocytes of both lean and obese GSTA4-null mice
(Fig. 8). In the cell culture system, silencing of GSTA4 led
to diminished oxygen consumption (Fig. 6C) and in-
creased NADH levels (Fig. 5D), suggesting electron trans-
fer through the electron transport chain is impaired.
Moreover, there was no increase in oxygen consumption
in response to ADP in mitochondria from the GSTA4-
silenced adipocytes. Consistent with this, the activity of
ATP synthase was decreased �50% in the GSTA4-silenced
adipocytes. These observations may be due to a combina-
tion of factors, including increased proton leakage across
the inner mitochondrial membrane, carbonylation of com-
plex V proteins affecting the ability to couple the proton
gradient to ATP production, the carbonylation of the
adenine nucleotide translocator, or carbonylation-depen-
dent changes in the abundance of critical proteins linked
to state 3 respiration. Indeed, under certain conditions
4-HNE can facilitate proton leak in other cell types
through adenine nucleotide translocator or uncoupling
proteins (45,46).

In the GSTA4-null adipocytes, changes in both state 2
and state 3 respiration were similar but not identical to the
3T3-L1 GSTA4 knockdown system. In the animal model,
mitochondria from lean wild-type C57BL/6J mice exhibit
robust state 2 respiration that increased with the addition
of ADP. Obese C57BL/6J mice exhibited no change in state
2 respiration relative to lean counterparts but had attenu-
ated ADP-coupled oxygen consumption, potentially due to
the downregulation of GSTA4. In GSTA4-null animals,
mitochondria from lean and obese mice exhibited a trend
toward increased state 2 respiration compared with the
wild-type animals, possibly due to increased proton leak-
age. Indeed, previous studies by Echtay et al. (45) have
suggested that carbonylation of uncoupling proteins may,
under certain circumstances, lead to increased proton
leak, thereby providing for increased state 2 respiration.
Similar to the GSTA4-silenced cells, mitochondria from
obese GSTA4-null mice exhibited virtually no increase in
respiration with ADP (Fig. 8A and B).

Associated with downregulation of GSTA4 is decreased
expression of eNOS, Nrf1, PGC-1�, and Tfam, critical
regulators of mitochondrial biogenesis (Fig. 7). Indeed,
GSTA4-silencing resulted in loss of mitochondrial DNA
and decreased expression of COX II and cytochrome c.
Work by Nisoli and colleagues has focused on eNOS as the
key regulator of TNF-� action (32) and determined that if
eNOS activity is lost from adipocytes, the entire program
of mitochondrial activation and biogenesis is affected (47).
These data suggest that downregulation of GSTA4 is
upstream of eNOS regulation and may be mechanistically
regulated by protein carbonylation.

In sum, the results presented here focus on the role of
GSTA4 as an antioxidant enzyme responsible primarily for
elimination of reactive electrophiles from adipocytes. The
results here suggest a model whereby downregulation of
GSTA4 by proinflammatory cytokines results in increased
protein carbonylation, altered glucose and lipid metabo-
lism, decreased mitochondrial �-oxidation, TCA cycle
activity, electron transport, and respiration. Thus, protein
carbonylation in white adipose tissue may provide a

molecular mechanism linking increased oxidative stress to
metabolic dysfunction associated with insulin resistance.
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