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Abstract .  We cloned and sequenced the two actin- 
related proteins (Arps) present in the profilin-binding 
complex of Acanthamoeba (Machesky, L.M., S. J. At- 
kinson, C. Ampe, J. Vandekerckhove, and T. D. Pol- 
lard. 1994. J.Cell Biol. 127:107-115). The sequence of 
Arp2 is more similar to other Arp2s than to actin, while 
the sequence of Arp3 is more similar to other Arp3s 
than to actin. Phylogenetic analysis of all known Arps 
demonstrates that most group into three major families, 
which are likely to be shared across all eukaryotic 
phyla. Together with conventional actins, the Arps 
form a larger family distinct from structurally related 
ATPases such as Hsp70's and sugar kinases. Atomic 
models of the Arps based on their sequences and the 

structure of actin provide some clues about function. 
Both Arps have atoms appropriately placed to bind 
ATP and divalent cation. Arp2, but not Arp3, has a 
conserved profilin-binding site. Neither Arp has the 
residues required to copolymerize with actin, but an 
Arp heterodimer present in the profilin-binding com- 
plex might serve as a pointed end nucleus for actin po- 
lymerization. Both Acanthamoeba Arps are soluble in 
cell homogenates, and both are concentrated in the cor- 
tex of Acanthamoeba. The cellular concentrations are 
1.9 IxM Arp2 and 5.1 IxM Arp3, substoichiometric to 
actin (200 ~M) but comparable to many actin-binding 
proteins. 

T 
HE actin-related proteins actin-related protein (Arp)a2 
and Arp3 are conserved across eukaryotic phyla and 
are essential for yeast, but very little is known about 

their molecular interactions and functions. One clue is that 
they are present in equimolar amounts with several other 
proteins in a complex of proteins from Acanthamoeba cas- 
tellanii (Machesky et al., 1994) that binds to profilin. Profi- 
lin also binds polyphosphoinositides, poly-L-proline, and 
actin (for a review see Machesky and Pollard, 1993) and 
has multiple effects on actin polymerization (for a review 
see Theriot and Mitchison, 1993). As these molecules 
seem to play some vital role, characterization of the Arps 
present in the Acanthamoeba complex may provide gen- 
eral principles applicable to all eukaryotes. 

Actin-related proteins are broadly defined as proteins 
sharing significant (30-60%) amino acid identity with con- 
ventional actin isoforms, but not enough to be considered 
conventional actins, which are among the most highly con- 
served of known proteins (Hightower and Meagher, 1986). 
To date, genetic and molecular genetic studies have re- 
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1. Abbreviat ion used in this paper: Arp, actin-related protein. 

vealed three large classes of Arps as well as several outli- 
ers that may be founding members of other ubiquitous 
families (Frankel et al., 1994; Fyrberg et al., 1994; Harata 
et al., 1994). 

The Arpl class is the best characterized (for reviews see 
Clark and Meyer, 1993; Schroer, 1994). Arpl, also referred 
to as centractin, is a component of a multi-protein assem- 
bly that promotes dynein-based vesicle motility (Lees- 
Miller et al., 1992a; Paschal et al., 1993) and may be associ- 
ated with centrosomes (Clark and Meyer, 1992). Arpl 
binds nucleotide, cocycles with polymerized actin (Melki 
et al., 1993), and forms a short filament resembling fila- 
mentous actin in the dynactin complex (Schafer et al., 
1994). S. cerevisiae Arpl null mutants have defects similar 
to dynein mutants; mitotic spindle orientation and nuclear 
migration are impaired (Clark and Meyer, 1994; Muhua et 
al., 1994). Nuclear distribution is defective in N. crassa 
with a variety of Arpl mutations (Plamann et al., 1994). 
Arpl is present in C. elegans (Waterston et al., 1992) and 
D. melanogaster (Fyrberg et al., 1994) and humans have 
two closely related isoforms (Clark et al., 1994). 

Genes encoding Arp2 and Arp3 were discovered in 
yeast. The S. cerevisiae ACT2 gene encodes a 44-kD pro- 
tein now called Arp2 with 47% amino acid identity to ver- 
tebrate skeletal muscle a-actin (Schwob and Martin, 
1992). Null mutations are lethal. Since the cells arrested as 
a single cell with a large bud, the authors postulated a role 
of ACT2p in cell division or cytokinesis (Schwob and Mar- 
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tin, 1992). The S. pombe act2 gene, also essential, encodes 
a 47.4-kD protein now called Arp3 with 35--40% amino 
acid identity to conventional actin (Lees-Miller et al., 
1992b). The sequences of these two yeast Arps are as dif- 
ferent from each other as each is from actin. Genes encod- 
ing homologues of each Arp are found in C. elegans (Wa- 
terston et al., 1992), D. discoideurn (Murgia et al., 1995; 
Atkinson, S. J., unpublished), D. melanogaster (Fyrberg et 
al., 1994), G. gallus (Michaille et al., 1995), and B. taurus 
(Tanaka et al., 1992). Acanthamoeba Arp2 and Arp3 are 
present in a complex of proteins isolated by affinity chro- 
matography on profilin-agarose (Machesky et al., 1994). 

To learn more about the structures and functions of 
Arp2 and Arp3 ,we have cloned and sequenced cDNAs 
for both from Acanthamoeba. We analyzed the phyloge- 
netic relationships of all known Arps, built structural mod- 
els of Arp2 and Arp3 to establish their potantial for inter- 
actions with each other and other proteins, and determined 
their cellular concentrations and distributions. 

Materials and Methods 

cDNA Cloning and Sequencing 
We used the Pileup program in the GCG version 6.0 (Genetics Computer 
Group, University of Wisconsin, Madison, WI) analysis package to align 
the sequences of Acanthamoeba actin (Genbank accession number 
V00002), vertebrate skeletal muscle et-actin (J00805), human actin-RPV 
(Z14978), S. cerevisiae ACT2p (X61502), and S. pombe act2p (M81068). 
We chose regions of homology and designed oligonucleotides for amplifi- 
cation of actin-related DNAs from Acanthamoeba genomic DNA by de- 
generate oligonucleotide PCR (Sambrook et al., 1989). Reaction products 
included a 450-bp DNA that was predicted to encode partially a homo- 
logue of S. cerevisiae ACI2. We used this fragment to screen by hybridiza- 
tion an Acanthamoeba cDNA library constructed from poly-A+ RNA in 
Lambda Zap II (Zap-cDNA synthesis kit, Stratagene, La Jolla, CA) using 
established procedures (Sambrook et al., 1989). We obtained a full-length 
cDNA encoding a 44-kD Arp2. We obtained a full-length cDNA clone 
encoding a 48.6-kD Arp3 using a 54-mer synthetic oligonucleotide based 
on the sequence of the 47 k p22 peptide (Machesky et al., 1994) to screen 
the Acanthamoeba cDNA library. 

We sequenced both strands of the cDNA clones using U.S. Biochemi- 
cal Company (Cleveland, OH) Sequenase 2,0 reagents and protocols with 
successive, synthetic oligonucleotide primers. Annealing reactions in- 
cluded 0.05 ~g/pA single strand-binding protein (U.S. Biochemical Com- 
pany) to reduce secondary structure artifacts. [35S]dATP was purchased 
from Dupont/New England Nuclear (Boston, MA). 

Phylogenetic Analysis 
Actin and Arp sequences were retrieved from Genbank and EMBL data- 
bases. Names and accession numbers or references are as follows: S. pombe 
act2p, M81068; D. discoideum 49-kD actin-related protein (Genbank ac- 
cession number Z46418 and Atkinson, S. J., unpublished observation); A. 
castellanii Arp3, U29610; C. elegans ACTD, (Waterston et al., 1992); bo- 
vine actin2, D12816; D. melanogaster Arp66B, X71789; S. cerevisiae ACT5p 
(X79811); N. crassa centractin, L31505; P. carinii actin II, L21184; C. ele- 
gans ActB (Waterston et al., 1992); D. melanogaster Arp87C, X78488; hu- 
man a-Arpl ,  Z14978 (human and canine eentractin, $45367, are identi- 
cal); human [3-Arpl, X82207; S. cerevisiae ACTlp, V01288; S. pombe 
actlp, Y00447; Acanthamoeba actin, V00002; G. gallus ACTL, X73971; D. 
melanogaster Arp79B, M18829 and J01064; C. elegans actin gene (1), 
X16796; vertebrate skeletal muscle c~-actin, J00805, K02172, and 022577; 
D. melanogaster Arp53D, X78487; D. melanogaster Arpl4D, X78486; C. 
elegans ActC, (Waterston et al., 1992); D. discoideum 44-kD Arp (Atkin- 
son, S. J., unpublished observation); A. castellanii Arp2, U29609; S. cerevi- 
siae ACT2p, X61502; D. melanogaster Arp13E, L25314. 

We used the program CLUSTAL V (Higgins et al., 1992) to create a 
multiple alignment of these sequences. For maximum parsimony analysis, 
the PHYLIP program SEQBOOT was used to create a bootstrapped data 

set (Felsenstein, 1985) of 50 random resamplings of the original data set 
from the CLUSTAL V alignment. The PHYLIP parsimony program 
PROTPARS was used to search for the most parsimonious tree from each 
random resampling, with five rounds of random order entry per data set 
to minimize loading order artifacts. The PHYLIP program CONSENSE 
was used to calculate the strict majority rule consensus tree from the out- 
put of the PROTPARS run. 

Bootstrapped distance matrix analysis was performed using CLUSTAL 
V with 100 bootstrap trials. This program uses the neighbor joining method 
of Saitoh and Nei (1987). 1,000 trials gave identical topologies and very 
similar statistics. Sequences conforming to a motif determined from align- 
ment of the three dimensional structures of actin, hexokinase, and Hsc70 
(Bork et al., 1992) were used to find homologous regions in the Arps. 
Bootstrapped distance matrix analysis as above was performed on the five 
part sequence pattern of this ATPase domain. 

Structural Model Building 
Three dimensional models of Acanthamoeba Arp2 and Arp3 were com- 
puted beginning with the aligned sequences and the coordinates of the 
corresponding residues of vertebrate skeletal et actin, PDB accession num- 
ber 1ATN (Kabsch et al., 1990). Models were built interactively in the 
program CHAIN running on a Silicon Graphics IRIS workstation. Resi- 
dues differing between actin and either Aria in the alignment were 
changed with the REPLACE or MUTATE commands. Side chain confor- 
mations were selected from a rotomer library to avoid obvious steric 
clashes. Insertions relative to actin were placed with the INSERT command 
at positions based upon the CLUSTAL alignment and modeled as loops. 
The CHAIN subroutine REGULARIZE was used to optimize bond 
lengths and angles in local regions after alteration. Initial structures were 
energy minimized with the program X-PLOR (Brtinger, 1992) using 120 
iterations of the MINIMIZE POWELL routine. Figures were generated 
from coordinates using the programs MOLSCRIPT (Kraulis, 1991) or 
SETOR (Evans, 1993). 

Recombinant Protein Expression 
We engineered full-length cDNAs encoding Arp2 and Arp3 into the T7- 
based expression vector pMW172 (Way et al., 1990) for expression in 
BL21(DE3) E. colL The bacteria sequestered the expressed proteins in in- 
clusion bodies. We isolated inclusion bodies (Nagai and Thegersen, 1987) 
and solubilized recombinant protein with 8 M urea in 20 mM Tris-HC1 
(pH 8) containing 20 mM 2-mercaptoethanol. 

Antibody Preparation and Purification 
We raised antibodies to recombinant Arp2 and Arp3 in New Zealand 
white rabbits (Bunnyville Farms, Littletown, PA) as described (Fujiwara 
and Pollard, 1976), immunizing at sites along the back. We immunized 
rabbit JH-46 with an SDS-PAGE gel band (Machesky et al., 1994) of 
rArp2 and boosted with partially purified rArp2 solubilized from inclu- 
sion bodies and dialyzed against H20. We immunized and boosted rabbit 
JH-47 with partially purified rArp3. We purified crude polyclonal antisera 
by incubation with either rArp2 or rArp3 on immunoblot strips (Pollard, 
1984). Preimmune antiserum was mock purified using blot strips identical 
to those used for immune antiserum. 

I m m u n o f l u o r e s c e n c e  

Acanthamoeba were maintained and fixed as in Yonemura and Pollard 
(1992). Cells were fixed in 1% formaldehyde in methanol for 5 min at 
-20°C, rehydrated in PBS (0.15 M NaCI, 0.01% NaN 3, 10 mM sodium 
phosphate, pH 7.4) and incubated for 15 rain in 1% BSA (bovine serum 
albumin, Sigma Chem. Co., St. Louis, MO) in PBS to block nonspecific 
binding. We incubated cells with affinity purified primary antiserum in 
1% BSA in PBS for 1 h and washed in 1% BSA in PBS for 15 min. Preab- 
sorbed (Yonemura and Pollard, 1992) rhodamine-conjugated goat anti- 
rabbit IgG secondary antibody (Molecular Probes, Eugene, OR) was ap- 
plied for 30 min. Double staining for filamentous acfin and Arp2 was 
accomplished by simultaneous incubation with secondary antibodies and 
BODIPY-FL phallicidin (Molecular Probes). Cells were washed in 1% 
BSA in PBS for 15 min and mounted in 50% glycerol containing 20 mM 
DTT and 5.6 mM p-phenylenediamine. We observed and photographed 
labeled cells using both phase contrast and fluorescence microscopy as de- 
scribed previously (Fujiwara and Pollard, 1976). 
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Gel Electrophoresis and Immunoblots 

Log phase cells from liquid culture were washed once in 50 mM NaCI and 
homogenized in a Dounce homogenizer at 0°C in 3 vol of sucrose extrac- 
tion buffer (10% sucrose, 20 mM imidazole-HCl, pH 7.5, 1 mM ATP, 1 
mM EGTA, 1 mM DTT, 0.1 mM PMSF, and 1 p.g/ml each of clostripain, 
leupeptin, pepstatin A, benzamidine, and soy trypsin inhibitor). Lysis was 
monitored by observation with phase contrast microscopy and typically 
required 40 passes. These homogenates were fractionated by successive 
centrifugation at 4°C at 6,100 g, 9,200 g, and 100,000 g. Samples of the ho- 
mogenate and each supernatant fraction were added to 4 vol boiling SDS 
sample buffer (Laemmli, 1970), boiled 2 min and immediately frozen in 
liquid nitrogen. At the time of electrophoresis, samples were boiled for 
2 min. 

Polypeptides were separated by SDS-PAGE (Laemmli, 1970), trans- 
ferred to nitrocellulose and reacted with antibodies (Towbin et al., 1979) 
using high stringency wash conditions (2 M urea, 100 mM glycine 1% Tri- 
ton X-100). Bound antibodies were detected with [nSI]protein A and au- 
toradiography or by chemiluminescence (Amersham Corp., Arlington 
Heights, IL). 

Quantitation 

Concentrations of purified rARPs were determined by comparison with 
rabbit skeletal muscle actin standards on gels stained with Coomassie blue 
and digitized using Collage software (Fotodyne, New Berlin, WI) on a 
Macintosh computer. The concentration of Arps in homogenates was de- 
termined on immunoblots by comparison of homogenates with a dilution 
series of rArp2 or rArp3. Proteins were transferred to nitrocellulose mem- 
branes and reacted with specific antibodies, followed by washing and de- 
tection of bound antibodies using freshly prepared [125I]protein A (kind 
gift of W. C. Earnshaw). The intensities of the Arp2 and Arp3 bands in 
the homogenate were compared with the standards by densitometry of au- 
toradiograms. The concentration of Arp2 and Arp3 in Acanthamoeba was 
calculated assuming that one gram of pelleted amoebas occupies one mil- 
liliter. 

Resu l t s  

Comparison of  Arp Sequences 

We obtained a full-length Acanthamoeba cDNA clone en- 
coding a 388-amino acid protein with a predicted mass of 
44 kD. The protein contains peptide sequences found by 
Machesky et al. (1994) in a 44-kD actin-related protein 
present in a profilin-binding complex. This protein sequence 

is 50% identical (69% similar) to both Acanthamoeba ac- 
tin and vertebrate skeletal muscle a actin. The predicted 
isoelectric point is 7.6. Those of Acanthamoeba actin and 
vertebrate skeletal alpha actin are 5.4 and 5.2. This 44-kD 
protein shows higher homology to members of the Arp2 
family (Muhua et al., 1994; Schroer et al., 1994) than to ac- 
tins or other Arps, so we named it Acanthamoeba Arp2. It 
is 66% identical (77% similar) to S. cerevisiae ACT2, 68% 
identical (82% similar) to C. elegans ActC, and 69% iden- 
tical (84% similar) to D. melanogaster Arpl4D. 

Using a degenerate oligonucleotide based upon a pep- 
tide sequence from an Acanthamoeba Arp (Machesky et 
al., 1994), we obtained a full-length Acanthamoeba cDNA 
clone encoding a 427-amino acid protein of 48.6 kD with a 
predicted isoelectric point of 7.0. This sequence is 38% 
identical (61% similar) to both Acanthamoeba actin and 
vertebrate skeletal muscle a actin, but more homologous 
to several members of the Arp3 family (Muhua et al., 
1994; Schroer et al., 1994), so we have named the protein 
Acanthamoeba Arp3. It is 63% identical (78% similar) to 
S. pombe act2, 66% identical (78% similar) to C. elegans 
ActD, and 71% identical (81% similar) to both bovine ac- 
tin 2 and D. melanogaster Arp66B. 

Both cDNAs have a high frequency of G or C in the 
third position of codons. This is similar to other Acan- 
thamoeba genes, which also show a high G/C codon bias 
(Hammer et al., 1987). 

Sequence-based phylogenetic analysis using boot- 
strapped distance matrix methods groups conventional ac- 
tins in one family, with Arp sequences from a wide spec- 
trum of eukaryotes clustered in three other families (Fig. 2 
A). Bootstrapped maximum parsimony analysis gives a 
tree with identical topology (not shown). The Arp l  family 
is the closest to actin, the Arp2 family is next, and the 
Arp3 family is the most divergent of the major families. 
Several Arps do not fall into any of these groups. D. mela- 
nogaster Arp53D is more closely related to the conven- 
tional actins than any of the other Arps, but is different 
enough to be excluded from the actin family. D. melano- 
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Figure 1. Alignment of trans- 
lated Acanthamoeba Arp2 
and Arp3 cDNA sequences 
with vertebrate skeletal 
muscle c~-actin and human 
~-Arpl. Numbers refer to ac- 
tin, with tick marks every 10 
residues. Letters below the 
alignment mark the follow- 
ing: n, nucleotide binding; a, 
actin subunit contacts in the 
Lorenz et al. (1993) model of 
filamentous actin; P, profilin 
contacts in subdomain 1; p, 
profilin contacts in subdo- 
main 3; 4, both actin and sub- 
domain 1 profilin contacts. 
The cDNA sequences are 
available from GenBank/ 
EMBL/DDBJ under acces- 
sion number U29609 (Arp2) 
and U29610 (Arp3). 
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Figure 2. Bootstrapped phylogenetic trees. 
Bootstrapped distance matrix analysis was per- 
formed using CLUSTAL V. Numbers refer to 
the percentage of trials in which a given pairing 
appears. (A) Bootstrapped distance matrix tree 
of all known Arps. The S. cerevisiae ACT3p se- 
quence was used as the outgroup for display 
purposes, but the tree is unrooted. (B) Boot- 
strapped distance matrix analysis of a five part 
sequence motif based on a structurally defined 
ATPase domain common to actin, Hsc70, and 
hexokinase (Bork et al., 1992) and homologous 
sequences from all Arps. 
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gaster Arp13E and S. cerevisiae ACT3p are the most diver- 
gent Arps, falling far from the other groups. 

Phylogenetic analysis of a five part sequence motif de- 
scribing a shared ATPase domain determined from opti- 
mal alignment of the three dimensional structures of actin, 
Hsc70, and hexokinase (Bork et al., 1992) groups the three 
major Arp families together with actin in a cluster with a 
common root. This group then joins all other sequences 
sharing this motif at approximately the same distance (Fig. 
2 B). D. melanogaster Arp13E falls far from all other Arps 
in this analysis and may not be an Arp at all. Distances be- 
tween the common root of the actin/Arp superfamily and 
many of the other sequences in the tree, as well as dis- 
tances between sequences at the bottom of the tree are 
very likely gross underestimates due to multiple mutations 
at single positions not being taken into account in the anal- 
ysis. A variation of this distance matrix method developed 
by Kimura (1983) which accounts for multiple substitu- 
tions through evolution predicts much larger values, with 
many values reported as infinite (not shown). The abso- 
lute topology of the lower part of the tree must therefore 
be regarded as approximate. 

Atomic Models of  Arp2 and Arp3 

Our model of Acanthamoeba Arp2 (Fig. 4 A) is based 
upon alignment of its primary sequence with that of verte- 
brate skeletal (x actin (Fig. 1), superimposition of this 

alignment on the three dimensional structure of actin (Fig. 
3 A) (Kabsch et al., 1990), and energy minimization using 
the program X-PLOR (Br~inger, 1992). After this refine- 
ment the rms deviation of the backbone of the Arp2 
model from actin was only 0.55 * except for one major 
and one minor insertion (Fig. 4 A). For simplicity, residue 
numbers given in Fig. 1 and the following descriptions are 
those in the actin sequence but refer to homologous resi- 
dues in the model structures. Eleven amino acids are in- 
serted in the loop between amino acids 320 and 328 in the 
actin structure. Two amino acids are inserted in the 
DNAse I binding loop, between residues 38 and 39. 

We built and refined our model of Acanthamoeba Arp3 
(Fig. 4 B) in the same way as the Arp2 model. It contains a 
number of insertions relative to actin, but the rms devia- 
tion of the backbone of the other residues from actin is 
only 0.24/k. Three of the insertions can be accommodated 
in loops at the surface of the protein. Fourteen amino ac- 
ids are inserted between residues 42 and 43 in the DNAse 
I binding loop, eight amino acids are inserted in the loop 
between residues 145 and 150, and sixteen amino acids are 
inserted in the loop connecting amino acids 320 and 328 in 
subdomain three. An extra six residues are present at the 
carboxyl terminus of Arp3. Six amino acids were inserted 
between residues 231 and 232 in a turn connecting c~ helix 
7 with 13 strand 13 in subdomain four. Although the re- 
gions flanking actin residues 227 to 250 are homologous 
between actin and Arp3, within this region none of the 30 
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residues of Arp3 are identical to the 24 actin residues. The 
insertion in the Arp3 structure could have been placed in a 
number of locations in this interval, but the turn between 
residues 230 and 238 was chosen to minimize disruption of 
the overall structure. 

Insertions in Arp2 and Arp3 relative to actin were mod- 
eled as extended loops. Energy minimization constrained 
these loops to occupy allowed peptide backbone geome- 
tries, but they are otherwise unconstrained by any data. 
We have no basis for imposing any particular structure on 
these regions in the models, so we chose this simple repre- 
sentation to convey where the extra residues are in space. 

The three dimensional distribution of conserved and 
nonconserved (with respect to actin) residues within the 
hydrophobic core of each Arp seems random, with ap- 
proximately the same overall ratio of conserved to non- 
conserved residues as the entire protein. Arp2 is 50% 
identical to actin; residues in the hydrophobic core of 
Arp2 are ~50% conserved. Arp3 is 38% identical to actin; 
residues in the hydrophobic core are 0o40% conserved. 

In contrast, conserved amino acids occur in clusters on 
the surfaces of Arp2 and Arp3; the Arps display subsets of 
the three dimensional surface features present in actin. 
Consistent with their overall levels of conservation, Arp2 
has more actin-like surface patches than Arp3. Arp2 has 
clusters of conserved residues on surface faces of ~x helices 
and [3 sheets in subdomains 1 and 2, in loops at both the 
barbed and pointed ends and along the back face of the 
molecule (Fig. 4 C). In Arp3, there is one large conserved 
face on the right side of subdomain 1 in the standard view 
and several smaller clusters of conserved residues at the 
barbed end and along the back face of the molecule 
(Fig. 4 D). 

Nucleotide Binding 

Residues which bind nucleotide in the cleft of actin (Figs. 3 
A and 5 A) are present in similar three dimensional ar- 
rangements in both Arp2 and Arp3 (Fig. 5). The pocket 
surrounding the adenosine base is conserved. T303 is re- 
placed in both structures by a serine which fits well within 
the space available. Y306 and K336 are conservatively re- 
placed in Arp3 by phenylalanine and arginine, respec- 
tively. The atoms which hydrogen bond with the ribose hy- 
droxyls and the phosphates of ATP are conserved, with 
eight identical contacts and two substitutions. Threonine 
replaces $14 in both Arps and maintains similar contacts 
with the gamma phosphate of ATP. Actin L16 is replaced 
by phenylalanine in Arp2 and by tyrosine in Arp3, but the 
side chain fits within the structure in each case and points 
away from the nucleotide binding site, while the backbone 
NH remains in position to ligate the beta phosphate of ATP. 

Profilin Binding 

A comparison (Fig. 3, D and E; Fig. 4, C and D) of the ac- 
tin residues in contact with profilin in cocrystals (Schutt et 
al., 1993) with the Arp models suggests that Arp2 but not 
Arp3 binds profilin. These residues are located at the base 
of subdomains 1 and 3 (Fig. 3, D and E). In Arp2 (Fig. 4 
C), ten of the eleven subdomain three contact residues are 
identical, and one is conservatively substituted (Y169F). 
Five of the ten contact residues in subdomain 1 are identi- 

cal in Arp2. The substitution of side chain contact K l l 3 L  
does not create an obvious steric problem, but a favorable 
charge interaction with E82 of profilin is lost. Two other 
replaced side chain contacts may be favorable; M355F may 
place the substituted phenylalanine ring in position to in- 
teract with the ring of Hl19 of profilin, while the side 
chain of I369R may fold to create an electrostatic interac- 
tion with E129 of profilin while minimizing steric prob- 
lems. The remaining Arp2 substitutions, Q354A and 
H371L, are for residues making primarily backbone con- 
tacts with profilin; no side chain steric clash is evident for 
either. In Arp3 (Fig. 4 D), five of the eleven subdomain 3 
contacts are identical while one is conservatively substi- 
tuted for L171I. Several substitutions change interacting 
side chains but do not create steric problems; P172G may 
be accomodated, Y166A lacks several favorable hydro- 
phobic interactions and H173S fits but lacks a favorable 
interaction with F59 of profilin. K284S is a backbone con- 
tact with no steric problems from substitution. It is unclear 
if D286P creates steric clashes. Only two of ten subdomain 
i contact residues are present in Arp3 and two are conser- 
vatively substituted for. No obvious steric problems arise 
from the remaining substitutions, although several favor- 
able interactions with profilin are lost. The presence of six 
additional COOH-terminal amino acids in Arp3 vs actin 
may cause significant steric clashes with profilin. Due to 
this insertion, major rearrangements of both profilin and 
Arp3 would be necessary to allow contacts similar to those 
in the profilin:actin-binding site. 

Actin Polymerization 

Examination of the residues in each Arp corresponding to 
those making contact between actin subunits in the Lorenz 
et al. (1993) model of filamentous actin provides valuable 
clues about the capacity of the Arps to assemble. Along 
the two start actin filament helix residues at the pointed 
end of one actin subunit, at the top of subdomains 2 and 4 
(in the standard view shown in Fig. 3), interact with resi- 
dues at the barbed end of a second subunit at the bottom 
of subdomains 1 and 3. Residues predicted to make con- 
tacts between subunits in the Lorenz et al. (1993) model 
are depicted in black in the Van der Waals representations 
of actin in Fig. 3, B and C to allow comparisons with the 
Arp models in Fig. 4, C and D. Although both Arp2 and 
Arp 3 have insertions in the loop between 320 and 328 at 
the bottom of subdomain 3, these extra residues would not 
preclude interaction with the pointed end of an actin sub- 
unit in a filament. 

Many residues that are in contact along the 2 start helix 
are conserved at the barbed (286-288, I289T, 166-169, 375) 
and pointed (203-204, E205D, 243-245) ends of Arp2. 
However, the pointed end substitution T202R may steri- 
cally interfere with both the backbone and side chain of 
D286 at the barbed end of an adjacent actin subunit and 
preclude polymerization. The Arp2 barbed end substitu- 
tion K291A does not create a steric clash but lacks a po- 
tential H-bond to an adjacent subunit. 

Many of the side chain contacts along the 2 start actin 
filament helix are conserved at the barbed end of Arp3 but 
none is conserved at the pointed end. At the barbed end 
residues 287-288 and 167-169 are identical. The substitu- 
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tions I289T and K291R are conservative. The two noncon- 
servative substitutions D286P and Y166A do not preclude 
binding to the pointed end of an adjacent subunit although 
D286P may create a minor steric problem with T202 of the 
next actin subunit. The six additional COOH-terminal 
amino acids in Arp3 may not interfere sterically with its 
ability to make barbed end contacts like those present in 
the 2 start actin filament helix. In contrast, all of the sub- 
unit-subunit contact residues at the pointed end of Arp3 
differ from actin. P243K and A204E could create signifi- 
cant steric clashes with many residues at the barbed end of 
an adjacent actin subunit and interfere with polymerization. 

The major interaction along the actin filament genetic 
helix in the Lorentz et al. (1993) model features a three- 
bodied contact in which a loop of hydrophobic residues 
(F266, 1267, G268, and M269) from one actin subunit in- 
serts into a hydrophobic pocket formed by residues in sub- 
domain 3 of a second subunit (Y166 and Y169) and subdo- 
main 2 of a third subunit (I64, T66 and P38) across the 
genetic helix. The postulated loop would be LVDQ in 
Arp2 and IFSS in Arp3. The subdomain 3 residues are 

Figure 3. Stereo pair ribbon 
diagram (A and E) and Van 
der Waals surface represen- 
tations (B, C, and D) of three 
dimensional crystal structure 
of rabbit skeletal muscle 
ct-actin (Kabsch et al., 1990). 
(A) Actin with nucleotide- 
binding site in ball and stick 
representation to orient Fig. 
5. (B) Actin with residues 
making contacts between 
subunits in the Lorenz et al. 
(1993) model of the actin fil- 
ament shown in black. Im- 
ages are successive ninety de- 
gree rotations showing, from 
left to right, front (view in 
A), right side, back, and left 
side of molecule. (C) Pointed 
end (left) and barbed end 
views with residues shaded as 
in B. (D) Barbed end view 
with residues contacting pro- 
filin in black. (E) Barbed end 
view with residues contacting 
profilin as balls and sticks. 

conserved in both Arps. P38K in Arp3 and T66Q in both 
Arps may cause steric problems at the subdomain 2 contact. 

In the Lorenz et al. (1993) model, other interactions 
along the genetic helix occur between residues 110-112 
and 176, 177 and 179 of one subunit and residues 191,195- 
197, 199, 201 and 206 of a second subunit. These residues 
were not predicted to form hydrogen bonds, but are within 
10 A of each other. Many of these residues are conserved 
in the Arps and the substitutions do not appear to create 
steric clashes. 

Cellular Concentrations and Localization of Arp2 
and Arp3 

Rabbit polyclonal antisera against bacterially expressed 
Acanthamoeba Arp2 and Arp3 each reacts with single ma- 
jor bands on Western blots of whole Acanthamoeba lysate 
(Fig. 6, A and B; Fig. 7). Lower molecular weight species 
in the homogenate sample in Fig. '6 A are Arp2 break 
down products that accumulate over time or upon re- 
peated boiling of the sample as the major band disappears. 
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Figure 4. Ribbon diagrams (A and B) and Van der Waals surface representations (C and D) of model structures of Acanthamoeba Arp2 
(A and C) and Arp3 (B and D). Images in C and D are successive ninety degree rotations showing, from left to right, standard view (as 
in A and B), right side, back, and left side of molecules. Pointed end (top) and barbed end (bottom) are depicted at far right. Color code: 
residues identical to actin are blue; conservative substitutions are green; non-conservative substitutions are yellow; and insertions 
are red. 
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Neither Arp antiserum reacts with Acanthamoeba actin or 
with the other Arp. 

By quantitative Western blots both Arp2 and Arp3 re- 
main in the supernatant fraction after centrifugation at 
100,000 g for 90 min (Fig. 7). Arp2 may be slightly de- 
pleted from the 100,000 g supernatant (one experiment of 
three, shown in Fig. 7). This may be due to its sedimenta- 
tion with the profilin-binding complex of Acanthamoeba, 
which has a Stokes' radius of 5.8 nm (Machesky et al., 
1994). Arp3 does not seem depleted from the 100,000 g su- 
pernatant. There is an excess of Arp3 over Arp2, and an 
excess of each over other members of the profilin-binding 
complex (Machesky et al., 1994). The Arp2 concentration 
is 1.9 tzM and the Arp3 concentration is 5.1 IzM in packed 
pellets of Acanthamoeba. 

By indirect immunofluorescence Arp2 is concentrated 
in the cell cortex (Fig. 8). Pseudopods and cell processes 
stain intensely. Staining is evident in spikes and lamellae 
(Fig. 8 D). Amoebastomes, cuplike projections of the cell 
surface which extend and retract on a minute time scale 
(Doberstein, S. K., I. C. Baines, E. D. Korn, T. D. Pollard, 
manuscript submitted for publication), label particularly 
intensely (Fig. 8 J). The diffuse labeling of the cytoplasm 
does not seem to correspond to any subcellular structure. 
Staining is excluded from the nucleus and other organelles 
in all cells examined. Faint staining in regions surrounding 
some, but not all, vacuoles is present in less than 10% of 
cells examined (Fig. 8 H). Mock purified preimmune anti- 
serum does not label fixed amoebas (not shown). 

Figure 5. Stereo pairs of the nucleotide-binding site 
of actin and the Arp2 and Arp3 model structures 
viewed as in Fig. 3 A. ATP and calcium are docked 
into the model structures using the ATP and Ca 2÷ 
coordinates from the actin crystal structure. Side 
chains and ATP are drawn in ball-and-stick style. 
Bonds in ATP are gray. (A) Rabbit skeletal muscle 
a-actin, showing the residues in contact with ATP. 
(B) Acanthamoeba Arp2 model with nonidentical 
residues in black bonds. (C) Acanthamoeba Arp3, 
showing residues depicted as in B. The side chain 
for L16F, which is in an identical conformation to 
L16Y in Arp2, has been omitted to allow visualiza- 
tion of the backbone NH interaction with the B-phos- 
phate of ATP. 

The distribution of Arp2 is very similar to that of fila- 
mentous actin stained with BODIPY-FL phallicidin (Fig. 
9). Both strongly label an amoebastome in the upper cell 
pictured in Fig. 9, B and C. There is no overlap of the 
rhodamine and fluorescein channels using our filter sets 
and suppression filters (not shown). Arp3 localization in 
amoebastomes and the rest of the cell cortex is similar to 
that of Arp2 and filamentous actin (Fig. 10). Discrete spots 
of Arp3 staining are evident in the cytoplasm within lamel- 
lae. It is not known what structures these correspond to. 

Discussion 

The determined phylogeny of the Arps and actin is robust 
based on independent analysis by two different methods. 
Bootstrapping within each analysis gives a measure of re- 
producibility. In each case, the placement of the Arps into 
the groupings shown is well supported by the data. Ambi- 
guities occurred primarily within the actin family, where 
the degree of identity between pairs of sequences is quite 
high. The emerging picture based on these phylogenetic 
analyses (Fyrberg et al., 1994; Michaille et al., 1995; Mu- 
hua et al., 1994; Schroer et al., 1994) is that the three major 
Arp families and conventional actin define a larger class 
proteins distinct from structurally related ATPases includ- 
ing hexokinase, 70-kD heat shock proteins, and bacterial 
cell cycle proteins (Bork et al., 1992; Flaherty et al., 1991; 
Kabsch and Holmes, 1995; S~inchez et al., 1994). 

The Journal of Cell Biology, Volume 131, 1995 392 



Figure 6. SDS-PAGE of recombinant Arps, Acanthamoeba lysate 
and crude Acanthamoeba actin stained with Coomassie blue or 
Western blotted with polyclonal antiserum against either Arp2 or 
Arp3. Conditions: proteins were resolved by 10% acrylamide 
SDS-PAGE. Duplicate gels were either stained with Coomassie 
blue or transferred to nitrocellulose and reacted with JH-46 anti- 
serum for Arp2 or JH-47 antiserum for Arp3. (A) Samples re- 
acted with Arp2 antiserum. The first lane is recombinant Arp2 
loaded at the same concentration as in subsequent lanes and sil- 
ver stained to allow visualization. (B) Samples reacted with Arp3 
antiserum. Tick marks at left in A and B indicate molecular 
weight standards of 200, 95, 68, 60, 43, 40, and 29 kD. 

The Arpl,  Arp2, and Arp3 families are all represented 
in and conserved across a wide cross section of eukaryotic 
species, strongly implying common origins early in eukary- 
otes and unique biochemical functions for which each has 
been maintained through evolution. The relationships within 
the myosin (Goodson and Spudich, 1993 ) and kinesin su- 
perfamilies (Goodson et al., 1994) are similar. Each of 
these has a unifying set of structural properties, but is sub- 
divided into conserved families with presumed functional 
differences. 

Schwob and Martin (1992) noted the presence of a po- 
tential site in ACT2p (residues 49-52, TPLK) for phospho- 
rylation by the mitotic Cdc28/cyclin protein kinase, and 
postulated that this might contribute to cell cycle control 
of cytokinesis. However, S. cerevisiae ACT2p is the most 
divergent Arp2 and this sequence is not present in any of 
the other four Arp2s, which have the sequence I/V E I/V 
K at the equivalent positions. While we cannot rule out the 
possibility that this sequence is phosphorylated in yeast 
ACT2p, this cannot be a general mechanism for the con- 
trol of Arp2 interactions. 

Our method for constructing the structural models given 
here is intentionally simplistic, essentially overlaying the 
Arp sequences onto the actin three dimensional structure. 
Refinement of the models altered the backbone very little. 
This conservative modeling approach seemed reasonable 
based upon the pairwise two dimensional alignments of 
each Arp with actin and highlights many important struc- 
tural features. The resulting structures should be regarded 
as models to guide future work. Clearly, the actual struc- 
tures of these molecules must differ from the models. The 
insertions, modeled here as loops only constrained by al- 
lowed peptide geometry and steric considerations, are 

Figure 7. Fractionation of Arp2 and Arp3 during differential cen- 
trifugation of Acanthamoeba homogenates. The homogenate was 
centrifuged at 6,100 g for 10 min, 9,200 g for 20 min and 100,00 g 
for 90 min and the supernatants were run on SDS-PAGE, stained 
with Coomassie blue or Western blotted with polyclonal antise- 
rum against either Arp2 or Arp3. Conditions: proteins were re- 
solved on 10% acrylamide SDS-PAGE. Duplicate gels were ei- 
ther stained with Coomassie blue or transferred to nitrocellulose 
and reacted with JH-46 antiserum for Arp2 or JH-47 antiserum 
for Arp3. Detection is by autoradiography with [x25I]protein A. 
Tick marks at left in A indicate molecular weight standards of 
200, 95, 68, 60, 43, 40, 29, and 18 kD. 

likely to fold more compactly than shown in the models, 
but there is no basis for modeling them differently at 
present. The regions where insertions occur in the struc- 
tures may take on new conformations. This seems likely to 
be the case in subdomain 4 of Arp3, which has an insertion 
within a region with little homology to actin. 

The model structures clearly show that both Arp2 and 
Arp3 are likely to bind nucleotide and divalent cation. The 
regions comprising the nucleotide-binding pocket in actin 
are virtually superimposable on the two model structures. 
Atoms that ligate calcium, as well as those interacting with 
the ribose hydroxyls and the phosphates of ATP are all 
present in geometries nearly identical to actin, and the en- 
vironment surrounding the adenine moiety is quite similar 
in actin and both Arp models. Where the residues are not 
identical, either the change is minor or the backbone NH 
or CO form the important contacts with the nucleotide. 

A complex of proteins containing Arp2 and Arp3 binds 
profilin (Machesky et al., 1994) so profilin may bind di- 
rectly to one of the Arps in this complex. The structural 
models show that Arp2 is much more likely to bind to pro- 
filin than Arp3. 

The stoichiometry of Arp2 to Arp3 in the profilin-bind- 
ing complex is 1:1, thus it is possible that the two form a 
heterodimer within this complex. We compared the Arp 
models to actin subunits in the Lorenz et al. (1993) model 
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Figure 8. Fluorescence and phase contrast micrographs of Acanthamoeba stained with affinity purified polyclonal antiserum to Arp2. 
(A, C, E, G, and/) Phase contrast micrographs. (B, D, F, H, and J) Indirect immunofluorescent labeling of Arp2. Scale in A and B is 20 
i~m. Scale in C-J is 10 I~m. Arrow in I points to an amoebastome. 

of filamentous actin to explore possible orientations in an 
Arp2 :Arp3  heterodimer. Of the four dimer geometries 
(Fig. 11), three seem possible from the Arp atomic models. 
Side chains making long pitch helix interactions are con- 
served at the barbed ends of both Arp2 and Arp3, par- 
tially conserved at the pointed end of Arp2 and absent at 
the pointed end of Arp3. Therefore, a long pitch dimer 
with Arp3 at the pointed end and Arp2 at the barbed end 
(Fig. 11 B) is possible, while one with Arp3 at the barbed 
end is unlikely. Residues which interact across the genetic 
helix are reasonably conserved in both Arp2 and Arp3; ei- 
ther genetic helix dimer (Fig. 11, C and D) seems possible. 
The differences in the Arp2 plug relative to actin may in- 
volve interaction with an Arp3 hydrophobic pocket, favor- 
ing the genetic helix dimer in Fig. 11, C or D. 

These dimers may be able to interact with actin mono- 
mers. Both Arp2 and Arp3 have hydrophobic patches in 
subdomain 3 which could contribute to a stabilizing hydro- 
phobic pocket like that found in actin. Both Arp2 and 
Arp3 could potentially provide a hydrophobic plug, al- 
though the presence of an aspartic acid in the Arp2 plug 
may destabilize this interaction. The long pitch Arp dimer 
with Arp3 at the pointed end has the necessary ligands on 
Arp2 and Arp3 to bind an actin monomer across the ge- 
netic helix and on Arp2 to bind another monomer along 
the long pitch helix at the barbed end. Actin monomers 
could bind to the barbed end of this assembly, allowing po- 
lymerization in the barbed end direction (Fig. 11 B). Ei- 
ther genetic helix Arp dimer has long pitch and genetic he- 
lix ligands for actin monomers to bind at the barbed end 
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Figure 9. Fluorescence and phase contrast microcrographs of Acanthamoeba stained with affinity purified antiserum to Arp2 and 
BODIPY-FL phallicidin to visualize filamentous actin. (A and D) Phase contrast micrographs. (B and E) Indirect immunofluorescent 
labeling of Arp2. (C and F) BODIPY-FL phallicidin labeling of filamentous actin. Scale in A-F is 10 txm. Arrow in A points to an amoe- 
bastome. 

(Fig. 11, C and D). The differences at the pointed end of 
Arp3 relative to actin seem to rule out the possibility of ac- 
tin filaments nucleating from the pointed end of any of the 
three likely dimers due to steric interference. An Arp2: 
Arp3 heterodimer could interact with actin monomers to 
nucleate barbed end polymerization. One or more of the 
other polypeptides present in the profilin-binding complex 
may modulate this interaction. 

Yeast actin with the hydrophobic plug mutation L266D, 
which may be comparable to the Arp2 substitution 
G267D, displays a cold sensitive polymerization defect, 
possibly in filament nucleation (Chen et al., 1993). The 
substitution of a charged residue in the hydrophobic plug 
of Arp2 may destabilize the interaction with an actin fila- 
ment growing from an Arp2:Arp3 barbed end nucleus, al- 
lowing dissociation of this nucleus once filament polymer- 
ization has entered a rapid phase. This might allow an 
Arp2:Arp3 nucleus to act catalytically. 

Other proteins which bind actin may interact with Arp2 
or Arp3 at conserved faces. Barbed end interacting pro- 
teins of the gelsolin family may be able to bind Arp2 but 
their binding to Arp3 seems less likely. Pointed end-bind- 

ing proteins may possibly bind Arp2, but it seems unlikely; 
they almost certainly do not interact with Arp3. 

Given the 40-100-fold excess of actin, Arp2 and Arp3 
cannot interact stoichiometrically with actin, but their cel- 
lular concentrations (Arp2 = 1.9 IxM, Arp3 = 5.1 txM) are 
comparable to those of other Acanthamoeba actin-binding 
proteins: a-actinin = 4 IxM [Pollard et al., 1986]; actophorin 
= 20 txM [Cooper et al., 1986]; capping protein = ~1.3 
ixM [Cooper et al., 1984a]; and myosin-II = ~1 IxM [Kie- 
hart and Pollard, 1984]). The concentration of profilin in 
Acanthamoeba is 100 IxM (Tseng et al., 1984). 

Arp3 was recently reported to be associated with mito- 
chondria in D. discoideum (Murgia et al., 1995). We do not 
see localization of Arp3 in mitochondria in Acanthamoeba 
with our antibodies nor do we see depletion of significant 
amounts of Arp3 upon removing mitochondria by centrif- 
ugation. 

Both Arp2 and Arp3 are strongly enriched in the cortex 
of Acanthamoeba, as observed for filamentous actin in this 
and previous studies (Yonemura and Pollard, 1992). Sev- 
eral models of amoeboid motility feature dynamic actin 
filaments in the cortex, with rapid turnover of the G- and 
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Figure  10. Fluo re scence  and  phase  mi c rog raphs  o f  A c a n t h a m o e b a  

s t a ined  wi th  affini ty pur i f ied  polyc lonal  a n t i s e r u m  to Arp3 .  (A 
and  C) Phase  con t ras t  mic rographs .  (B and  D)  Indirect  i m m u n o -  
f luorescen t  label ing o f  Arp3.  Scale in A - D  is 10 ixm. A r r o w  in C 
poin t s  to an  a m o e b a s t o m e .  

73 

A [3 

Figure  11. Schemat i c  r ep r e sen t a t i on  of  poss ible  A r p 2 : A r p 3  
d imers  and  the i r  po tent ia l  in te rac t ions  with actin m o n o m e r s .  
A r p 2  is l abe led  2. A r p 3  is labe led  3. Ac t i n  is labe led  A.  D i m e r s  
are  s h o w n  at the  top  o f  each  co lumn,  in te rac t ions  wi th  actin a re  
below. T h e  po in t ed  end  is t oward  the  top  o f  the  page.  T h e  ba rbed  
end  is t oward  the  b o t t o m  of  the  page.  A r r o w s  in B - D  indicate  ac- 
t in f i l amen t  po lymer iza t ion .  

F -  a c t i n  p o o l s ,  p o l y m e r i z a t i o n  a t  t h e  l e a d i n g  e d g e ,  a n d  d e -  

p o l y m e r i z a t i o n  e l s e w h e r e  ( C o n d e e l i s ,  1993;  C o o p e r ,  1991;  

T h e r i o t  a n d  M i t c h i s o n ,  1991) .  N u c l e a t i o n  o f  a c t i n  f i la -  

m e n t s  f r o m  f r e e  m o n o m e r s  is  t h e  r a t e  l i m i t i n g  s t e p  i n  

s p o n t a n e o u s  a c t i n  p o l y m e r i z a t i o n  ( P o l l a r d  a n d  C o o p e r ,  

1986) .  T h e  s t r u c t u r e  o f  A r p 2  a n d  A r p 3  a n d  t h e i r  c o e x i s t -  

e n c e  i n  a s t a b l e  c o m p l e x  c o n c e n t r a t e d  in  t h e  c o r t e x  s u g -  

g e s t s  t h a t  t h e s e  A r p s  m a y  p l a y  s o m e  r o l e  in  t h e  a c t i n  d y -  

n a m i c s  in  t h i s  r e g i o n ,  p e r h a p s  as  a n u c l e u s  in  t h e  c o n t e x t  

o f  t h e  p r o f i l i n - b i n d i n g  c o m p l e x ,  p r o m o t i n g  f i l a m e n t  a s -  

s e m b l y  in  t h e  b a r b e d  e n d  d i r e c t i o n .  
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