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   Abstract: System biology problems such as whole-genome network construction from large-scale 
gene expression data are sophisticated and time-consuming. Therefore, using sequential algorithms 
are not feasible to obtain a solution in an acceptable amount of time. Today, by using massive-
ly parallel computing, it is possible to infer large-scale gene regulatory networks. Recently, estab-
lishing gene regulatory networks from large-scale datasets have drawn the noticeable attention of 
researchers in the field of parallel computing and system biology. In this paper, we attempt to 
provide a more detailed overview of the recent parallel algorithms for constructing gene regulatory 
networks. Firstly, fundamentals of gene regulatory networks inference and large-scale datasets chal-
lenges are given. Secondly, a detailed description of the four parallel frameworks and libraries in-
cluding CUDA, OpenMP, MPI, and Hadoop is discussed. Thirdly, parallel algorithms are reviewed. 
Finally, some conclusions and guidelines for parallel reverse engineering are described. 
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1. INTRODUCTION 

 Each cell consists of thousands of genes. In each cell, 
the only small percentage of genes is expressed. Genes that 
are expressed interact with each other through mRNAs 
(messenger RNAs), proteins, or other types of molecules 
and managed cellular phenotypes and functions. Differences 
in gene expression are responsible for both morphological 
and phenotypic differences which indicate cellular reactions 
to environmental disturbances or hormonal stimuli [1]. 
There are several methods available for measuring gene ex-
pression level. Sequential Analysis of Gene Expression 
(SAGE) [2], DNA microarrays [3], Tiling arrays [4] and 
RNA-Seq [5] are the most used and important methods. 
The output of these methods is the expression profiles of 
genes that can be used in bioinformatics applications. 

 One of the main objectives of bioinformatics researchers 
is deciphering the gene-gene interactions which are known 
as constructing a Gene Regulatory Network (GRN) or re-
verse engineering from gene expression profiles. A GRN is a 
graphical representation that demonstrates associations be-
tween a set of genes. In this model, edges represent regulato-
ry influence or co-expression relationships in the regulatory 
network or co-expression network, respectively, and nodes 
represent molecular entities like genes [6]. The knowledge 
regarding the gene network not only shed light on the 
biological processes such as cellular differentiation, division, 
 

*Address correspondence to this author at the Department of Electrical and 
Computer Engineering, University of Zanjan, Zanjan, Iran; Tel: (+98) 24 
33052604; Fax: (+98) 24 33052604; E-mail: khanteymoori@znu.ac.ir 

and signaling, but also can provide valuable information for 
drug discovery, molecular biology, cancer-related, and medi-
cal-related research [7, 8]. For example, Imoto et al. [9] and 
di Bernardo et al. [10] studies are prominent works that used 
gene regulatory networks in drug discovery. 
 According to conventional wisdom, reverse engineering 
is a difficult problem, particularly in dealing with large-
scale data. Considerable sequential algorithms have been 
developed to derive GRN model and meaningful infor-
mation from experimental data. These algorithms can be 
categorized into seven main groups, namely; Boolean net-
works [11], Statistical methods like Partial-least-squares 
[12, 13], Differential equation systems [14], Bayesian net-
works [15, 16], Graphical Gaussian Models [17], Evolution-
ary approaches [18], and Information theory-based approach-
es [19]. Though there are various sequential algorithms for 
reverse engineering, they will not construct high dimension-
al gene networks and demonstrate valuable information like 
hub nodes, master-regulators, and some important regulated 
genes [20]. Furthermore, by increasing the size of data, the 
quality of the constructed network based on sequential algo-
rithms is reduced (e.g. large number of false-positive edges 
in huge network). 
 Even with recent progress in reverse engineering, in order 
to construct an appropriate network from large-scale data, the 
use of new machine learning methods and high-performance 
computing are important and challenging at the same time [7, 
21]. Recently, parallel and distributed reverse engineering 
algorithms have received significant attention. Therefore, most 
of the proposed algorithms are scalable and reasonably accu-
rate for reconstruction of GRNs from large-scale datasets. In 
practice, parallel and distributed algorithms can considerably 
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reduce the execution time and provide scalability without los-
ing quality. In the past, one of the main difficulties in the im-
plementation of parallel and distributed algorithms was lack of 
an efficient framework for developing parallel algorithms. 
Furthermore, parallel programming required a level of exper-
tise that few researchers and biologists have. Today, the use 
parallel frameworks such as CUDA (Compute Unified Device 
Architecture), MPI (Message Passing Interface), OpenMP, 
and Hadoop can considerably ease the work of researchers 
when they need to implement the efficient parallel algorithms. 
 There are outstanding review papers covering the field of 
GRN inference. Some of the well-structured overviews of the 
general idea behind GRN inference and common mathemati-
cal modeling can be found in [19, 22-28]. Bansal et al. [22], 
Chai et al. [23], Lee and Tzou [24], and Schlitt et al. [25] pre-
pared review papers on the computational approaches and a 
brief mathematical formulation for GRNs reconstruction. Si-
ma et al. [26] reviewed dynamic methods that inferred GRN 
from time-series experiment data. Biswas et al. [27] reviewed 
evolutionary approach for GRN inference and Sirbu et al. [28] 
analyzed several evolutionary algorithms. 
 Based on our knowledge, no work has been carried out 
to review the parallel algorithms for GRN inference. 
Therefore, we want to highlight two major issues: algo-
rithms and tools which have been implemented in parallel 
frameworks and different parallel frameworks that can be 
used in learning gene networks. 
 The paper is organized as follows: Section 2 introduces 
a brief overview of parallelism and parallel frameworks such 
as CUDA, MPI, OpenMP, and Hadoop. In Section 3, we 
review recent parallel algorithms in reverse engineering. 
Section 4 draws conclusion and prepares some directions 
for future research on parallel GRN inference. 

2. PARALLEL FRAMEWORKS 

 In order to achieve the promise of GRN inference on 
large-scale datasets, it is necessary for existing GRN al-
gorithms to be executed in parallel. Parallel program-
ming is concerned with the distribution of a program 
among a set of processors and defines how they interact in 
order to make the results. One of the most important as-
pects of parallelism is its relation to the hardware and 
programming frameworks. There are several frameworks 
for parallel programming. CUDA, MPI, OpenMP, and Ha-
doop are the most popular frameworks for parallel and dis-
tributed programming. CUDA proposed by Nvidia is a par-
allel programming framework for Nvidia GPUs (Graphical 
Processing Unit). It is an extension to the C and C++ 
that provide a set of libraries for exploiting GPUs as gen-
eral purpose processors. MPI (Message Passing Interface) 
and OpenMP (Open Multiprocessing) are the set of stand-
ard libraries for parallel programming in distributed and 
shared memory space environments, respectively. MPI uses 
message passing among the processes in clustered systems 
where it generally shared nothing. OpenMP is used for 
parallel programming in multi-core fashion which is gen-
erally based on shared memory architecture. Also, MPI 
can be used to distribute the algorithm when using mul-
tiple GPUs. Hadoop is a software framework that enables 
us to run applications and store big datasets in the distrib-
uted environments. In this section, we briefly introduce 
the organization of CUDA, MPI, OpenMP, and Hadoop. 

2.1. GPU and CUDA 

 In the last decade, the clock speed of processors has re-
mained constant. Therefore, processor designers came to the 
conclusion that complex multi-core processor is not the 
most efficient for massively parallel computing. Current-
ly, processor designing trend is going to many-core ap-
proach such as GPUs or co-processors (such as the Xeon 
Phi) instead of complex multi-core processors [29]. This 
kind of architecture provides heterogeneous computing and 
achievable performance for SIMD (Single Instruction Mul-
tiple Data) programs. It describes programs with one in-
struction that performs the same operations on multiple 
data points simultaneously. This change of designing par-
adigm has had (and will have) a significant impact on 
the designing parallel algorithm [30]. 
 Each GPU consists of a series of streaming multiproces-
sor (SM, or SMX in the latest architectures) which within 
each SM, a number of streaming processors (SP), known as 
cores, are placed in arrays and execute arithmetic and logi-
cal operations in parallel. Furthermore, each SM has a 
number of registers and a private per-block shared memory 
to transfer data between concurrent threads. According to 
the programming model, threads and thread blocks are 
distributed along SPs and SMs. There is another memory 
called global memory that is used to share data between 
th e  grid of SMs. A grid is a set of SMs that work inde-
pendently and thus may be executed asynchronously in 
parallel [31]. 
 In 2007, Nvidia released CUDA framework which is 
an extension to the C and C++ and makes available using 
the GPU as general purpose GPUs [30]. CUDA provides 
three features for programmers: 1) Threads management, 
2) Memories management, and 3) Synchronization fea-
tures. These fine-grained features help us to divide the pro-
gram into subprograms that can be executed in parallel and 
then integrate them. The written codes in CUDA contain 
one or more functions that are called kernels which are 
loaded to the GPUs and replicated in many threads. The 
programmer determines the number of threads for each ker-
nel and manages the available memory spaces visible to the 
kernel functions [31, 32]. One of the main tasks in 
CUDA based parallel algorithms is to determine the 
threads, blocks, grids, and managing memory allocation, 
which is the source of differences in the performance of 
algorithms. In spite of the remarkable advantages in pro-
gramming, GPU-based programming is different from 
CPU-based programming. Nevertheless, several packages 
were released whose users without any knowledge of GPU 
programming can also access the high-performance com-
puting power of GPUs. OpenCL is another framework for 
cross-platform GPU programming maintained by the 
Khronos group, which can be run on different hardware 
platforms. Recently, Nobile et al. [33] studied some com-
putational tools in bioinformatics that exploit GPUs as a 
processing engine.  

2.2. MPI 

 MPI is the most used de-facto standard libraries for 
parallel programming based on message passing para-
digm. It is a collection of libraries to send messages be-
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tween computers or processes on the distributed memory 
environment. In MPI programming model, nodes have 
their own memory space, own processors, and communi-
cate with each other to access memory space [34]. In ad-
dition, programmers must divide the tasks among the 
nodes with separate memory spaces and define the nodes 
communications and synchronize them. To facilitate par-
allel programming, MPI provides various libraries and 
functions to communicate, coordinate, and synchronize 
between distributed nodes. Most of the current bioinfor-
matics code could be parallelized under the MPI models 
such as mpiBLAST [35] (Basic Local Alignment Search 
Tool), parallel version of the BLAST sequence alignment, 
and MPI-CMS [36], parallel implementation of the Cross 
Motif Search algorithm. 

2.3. OpenMP 

 OpenMP is a set of high-level APIs (Application Pro-
gramming Interfaces) which provides shared-memory based 
parallelism and multi-threading paradigm in multi-core envi-
ronments. It consists of a set of compiler directives, libraries, 
and predefined interfaces that can be used in programming 
languages such as C/C++, Java, Python, and many other lan-
guages. After compiling OpenMP programs, threads negoti-
ate with each other through shared memory space and hence 
increase the performance of the program. Similar to CUDA, 
OpenMP provides three feature for programmers: 1) control-
ling features that alter the flow in a program, 2) synchroniza-
tion features for coordinating the execution of threads, and 3) 
data environment features for communicating between 
threads [37]. OpenMP provides a high-level abstraction that 
makes it well suited for high-performance computing pro-
grammers in shared memory environment. Therefore, one 
of the main advantages of OpenMP is that it does not re-
quire major changes for converting a sequential code to 
parallel one. 

2.4. Hadoop 

 Before introducing Hadoop, Map-Reduce paradigm 
should be introduced. In this paradigm, data is divided into 
subsets, and then these subsets are assigned to the different 
machines for parallel processing. Finally, it brings together 
separate processes and returns the end result. The stage of 
division and allocation of data to machines is called Map, 
and bringing together and presenting the result is called 
reduce stage. Map-Reduce paradigm is suitable for big data 
analyzing due to its ability to execute the program in parallel 
over the cluster of computers data without loading the whole 
data into memory. 
 Hadoop is a Java-based framework that allows parallel 
and distributed programming across the distributed envi-
ronment using Map-Reduce paradigm. It has two main 
components: YARN (Yet Another Resource Negotiator) 
and HDFS (Hadoop Distributed File System). YARN 
manages computational resources needed for distributed 
executions. HDFS prepares scalable and robust distributed 
file system for big data. Apart from the Hadoop, there are 
numerous software frameworks (such as Pig, Spark, Ma-
hout etc.) that provide specific features whose users with 
no knowledge of distributed programming can also pro-

cess large amounts of data on the specific domain [38]. 
Additionally, there are many bioinformatics tools which 
have been developed based on Hadoop such as Cloud-
BLAST [39], distributed version of the BLAST2 algo-
rithm using Hadoop framework, Eoulsan [40], a frame-
work for RNA sequence data analysis, and Seqpig [41] 
and BioPig [42], for analyzing large-scale sequencing 
data. 
 Unfortunately, there is no “silver bullet” for parallel pro-
gramming. Indeed, based on framework selection, parallel 
programming is more complex and different than sequential 
programming. Efficient distribution of tasks on the pro-
cessing units, avoiding inefficient data replication, and un-
necessary communication among the processing units are 
the vital factors that affect parallel programming perfor-
mance. Each of the mentioned frameworks provides a 
different paradigm of parallel programming and have their 
own strong and weak points. The use of OpenMP for paral-
lel programming is easier than other frameworks, but it runs 
on the shared-memory environment. MPI runs on shared and 
distributed memory but requires more changes in the sequen-
tial algorithm. Hadoop provides highly scalable and faults 
tolerant environment, but it is not always straightforward to 
implement sequential algorithms as a Map-Reduce program. 
Although exploiting CUDA leads to higher performance 
compared to using CPU in data-level parallel programming, 
but CUDA programming is more difficult than CPU pro-
gramming and programmers need an in-depth understanding 
of the GPU architecture. Table 1 summarizes the characteris-
tics of the frameworks based on usability, complexity, and 
scalability.  
 There are many reasons to integrate the two or more par-
allel programming frameworks. For example, CUDA-aware 
MPI programs, accelerate an existing single-GPU applica-
tion to scale across multi-GPU application by using MPI. 
Apart from the above frameworks, several other projects 
which provide specific features have been developed. 
 Table 2 summarizes some important libraries and tools 
for programmers to efficiently exploit and integrate parallel 
frameworks. These libraries aim to develop more efficient 
parallel programs and provide high level abstraction for re-
searchers with low experience in parallel and distributed 
programming. 

3. PARALLEL ALGORITHMS 

 The crucial step in GRN inference is selecting the model. 
In this review, we focus only on the approaches that the 
modeling algorithms are parallel. Based on their mathemati-
cal models, in the next subsections, we will review parallel 
algorithms. 

3.1. Bayesian Network Based Models 

 Modeling gene regulatory networks based on Probabilis-
tic Bayesian Networks (PBN) have become popular in the 
bioinformatics community. The main advantages of PBN are 
the ability to represent the uncertainty in models, exibility, 
and integrating prior knowledge (e.g. biological knowledge) 
with experimental data. In 1999, for the first time, Murphy et 
al. [16] used the Bayesian network for GRN inference and 
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thereafter, significant efforts focused on reverse engineering 
by PBNs. According to Pearl and Russell [43], PBN is a Di-
rected Acyclic Graph (DAG) ! = (!,!), where ! =
{!!,!!,⋯ ,!!}, the set of nodes, represents random varia-
bles, and !  is the set of directed edges, which represents 
cause-and-effect relationships such as regulation influence 
among the genes. A directional edge !! → !! indicates that 
!! is parent of !! or gene !! regulates the gene !! in GRN 
context. Mathematically, PBN encodes the Markov assump-
tion that given its parents, each variable !! is conditionally 
independent of its non-descendants. Based on this assump-
tion, PBN compacts the joint probability distribution as fol-
low: 

!(!!,⋯ ,!!) =   !
!!! !(!!|!"(!!))         (1) 

where !"(!!) is the set of parents of !!   in the DAG. 
 For Bayesian network learning, many outstanding algo-
rithms have been developed. Well-structured review of the 
Bayesian network learning is presented in [44]. In essence, 
learning PBNs from data consists of both parameter and 
structure learning (or model selection). Estimating the local 
conditional probabilities for each node is parameter learning 
and establishing the network as a candidate DAG is structure 
learning. Structure learning is more important than parameter 
learning in GRN inference because cause-and-effect interac-
tions among the genes are determined at this step. Finding an 
exact network that fits on data, is NP-hard problem because 
the number of DAGs grows super-exponentially with the 
number of variables. This implies that exact algorithms can 
become a computationally intractable task and currently 
there is no polynomial time algorithm that can solve an NP-
hard problem of large or even moderate input size. One way 
to tackle NP-hard problems is to design heuristic or parallel 
algorithms that reduce the computational time. 
 There are three generic approaches to structure learning: 
score-based, constraint-based, and hybrid learning methods 
[45]. The first approach assigns a score to the candidate 
DAG by scoring functions and tries to optimize scoring cri-
teria with a heuristic algorithm such as greedy search. Select-
ing an appropriate scoring function is very important since it 
is the key ingredient to reconstruct high-quality GRN by 
PBNs. These methods work well on small datasets with not 
too many variables. Constraint-based methods efficiently 
restrict the search space. Therefore, they can often work well 
on large datasets. Sparse Candidate Algorithm (SCA) [46] is 

one of the prominent constraint-based algorithms where each 
variable constrained to have at most ! parents. Finally, hy-
brid methods are combinations of the score-based and con-
straint-based approaches. 
 Nikolov and Aluru [47] developed a parallel hybrid 
Bayesian structure learning for reverse engineering. They 
demonstrated that the main cause of error in SCA based ap-
proaches is misselected optimal parents (OP) from candidate 
parent (CP) set. To address this issue, inspired by parallel 
pairwise mutual information [48], authors created a mutual 
information based network to identify CP set for each node. 
They then developed a parallel exact algorithm for selecting 
OPs from CPs set. In order to do this, they checked all sub-
sets of CP and elicited the OPs for each node by scoring 
function and eventually, OP sets were used to create an ini-
tial network. Note that obtained graph may contain cycles, 
which are detected and eliminated by exponentiation of adja-
cency matrix based on cycle length (shorter cycles before 
longer ones). The authors implement the proposed method in 
the Cray system with AMD many-core processors by using 
C++ and MPI library. In their evaluation of performance on 
data of size 500 genes and 100 observations, in the best case, 
the method inferred GRN in less than 2 minutes in the Cray 
AMD cluster with 1024 cores. 
 In the algorithm developed by Misra et al. [49], a mas-
sively parallel heuristic PBN structure learning was estab-
lished to whole-genome network reverse engineering by ex-
ploiting Tianhe-2 and Stampede high-end heterogeneous 
supercomputers. The proposed method is similar to [47] 
based on differences in the scoring function for network 
evaluation, limited size of the CP set to reduce the computa-
tional complexity, and implementation techniques to achieve 
performance, scalability, and efficient load balancing. In 
order to efficiently distribute the work between the pro-
cessing units, they performed hierarchical dynamic work 
distribution that first divides tasks across the cluster nodes, 
and then subdivides this task within a node. 
 One of the conventional approaches to parallel structure 
learning is dividing the whole network learning problem into 
several subnetworks learning, where each of them contains 
randomly sampled variables. Evidently, the main issue here 
is how to select an appropriate sampling approach. Tamada 
et al. [20] developed a parallel PBN structure learning algo-
rithm for reverse engineering, based on the subnetwork strat-
egy and random walking technique, called Neighbor Node 
Sampling and Repeat (NNSR). The authors demonstrated 

Table 1. Parallel framework comparison. 

Framework Programming Model Framework 
Complexity 

Programming  
Language Ease of Use Code Conversion 

Effort Scalability 

CUDA SIMD Fair C/C++ Moderately More Low 

OpenMP Multi-thread Low Most Languages Easy Few Low 

MPI SIMD/MIMD Fair Most Languages Poor More Medium 

Hadoop Distributed High Java Poor More High 

Note: Framework complexity refers to the difficulty in using different frameworks.  
Ease of use refers to the effort required to programming. 
Code conversion refers to the effort required to changing the sequential code to parallel code. 



Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7    607 

that the small sample size and appropriate sampling of the 
variables (or genes) lead to subnetworks that can efficiently 
demonstrate cause-and-effect relationships. Therefore, they 
propose a two-phase heuristic algorithm which first, at each 
iteration, using random sampling (all variables being equally 
likely), learns a new subnetwork of the set of sampled varia-
bles, and then creates the whole network by using neighbor 
node sampling based on the random walking on the subnet-
works. In order to do this, they create a weighted graph by 
introducing edge frequency. 

 Edge frequency indicates the ratio of the number of oc-
currences of directed edge ! → ! in different subnetworks 
divided by the number of different subnetworks in which 
two variable !, ! are selected together (greater number indi-
cates a stronger cause-and-effect relationship). Next, random 
walk procedure selects a specific proportion of the nodes 
from a weighted graph and creates a large number of smaller 
subnetworks. The authors implemented the proposed method 
in C programming language and OpenMPI library on the 724 
computation nodes with dual Intel quad core Xeon 3.0 GHz, 
in total 5792 cores. They applied the proposed method on 
Human Umbilical Vein Endothelial Cells (HUVECs) with 
13731 transcripts and extracted GRN in less than 3 hours. 
Furthermore, the proposed method also extracts valuable 
information such as hub nodes and putative master regulators 
that are not achievable from the small network. Based on this 
model, Tamada et al. [50] have developed a software collec-
tion called SiGN. SiGN consists of two other parallel pro-
grams based on the graphical Gaussian model, SiGN-L1, and 
state space model [51], SiGNSSM. 
 One of the main sources of error in the statistical infer-
ence is overconfidence to model, which is generated by ig-
noring model uncertainty [52]. Model uncertainty refers to 
the situations in which there is no unique and agreed model 
for a specific problem. In most situations, the main cause of 

uncertainty is irrelevant variables in constructing the model. 
Inspired by ensemble learning, one way to tackle model un-
certainty is Bayesian Model Averaging (BMA). BMA refers 
to the procedure of selecting variables by averaging posterior 
probability of the models in which each of them consists of a 
set of candidate variables or regulators in the GRN. The 
main challenge in the BMA is selecting an efficient model. 
Young et al. [53] proposed a Bayesian inference method for 
regression variables selection from time-series data based on 
the BMA, called ScanBMA. They have developed a greedy 
mechanism for picking appropriate models based on Oc-
cam’s window principle. Parallel implementation of 
ScanBMA named as fastBMA [54] is available from 
https://github.com/lhhunghimself/fastBMA. 

3.2. Information Theory Based Models 

 Due to easy implementation, simplicity, low computa-
tional cost, and ability to detect complex interactions, paral-
lel Information Theory Based Models (ITBM) is somewhat 
superior in reverse engineering. In the last two decades, 
some attractive algorithms based on the information theory 
have been developed. The ITBMs such as correlation-based 
[55, 56], Mutual Information (MI) [57-60], and Gaussian 
Graphical Models [17] (GGM) are the main state-of-the-art 
approaches to extract dependency on biological networks 
inference. In following, along with the review, we will intro-
duce mathematical details of some similarity measures 
which are the cornerstone of ITBMs. Pearson correlation 
(PC), Mutual Information (MI), and Partial Correlation are 
the main similarity measures that have been extensively used 
in the literature. Each of them has their own limitations and 
benefits. There is no proof that one is superior to others [61]. 
 MI is often used as a similarity measure, which enables 
the detection of non-linear relationships among the variables. 
It is defined based on the individual and joint entropies in the 
following way: 

Table 2. Some related libraries and projects on CUDA, MPI, OpenMP, and Hadoop. 

Project  Description  URL 

Spark An open-source cluster-computing framework on Hadoop http://spark.apache.org/ 

Pig A query language based on Hadoop for basic calculations over large datasets http://pig.apache.org/ 

Mahout A distributed machine learning and data mining library on Hadoop http://mahout.apache.org/ 

OpenMPI Most used implementation of the MPI model. Open MPI 1.7 and later is CUDA-aware https://www.open-mpi.org/ 

MVAPICH CUDA-aware MPI implementation. It helps to run CUDA+MPI http://mvapich.cse.ohio-state.edu/ 

Mars A Map-Reduce framework on graphics processors https://github.com/arianepaola/Mars 

CuBLAS An implementation of basic linear algebra subprograms on CUDA framework https://developer.nvidia.com/cublas 

JCUDA Java bindings for CUDA libraries. It helps to run Hadoop Map task on GPUs http://www.jcuda.org/ 

omp4j An OpenMP like library for Java programming language http://www.omp4j.org/ 

mpi4py A library for MPI programming in python http://pythonhosted.org/mpi4py/ 

PyCUDA A library for integrating CUDA in python https://github.com/inducer/pycuda 
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!(!!;!!) = !(!!) + !(!!) − !(!! ,!!)         (2) 

where ! !   is the differential entropy of a random variable 
! and is a measure of its uncertainty. In particular, for a con-
tinuous variable !, it is defined by: 

!(!) = −   !!(!)log!!(!)!"          (3) 

 In 3, !! !   is probability density function for continuous 
variable !. It can be estimated by different methods such as 
histogram plotting, kernel estimators, k-nearest neighbor esti-
mators [62], and B-spline estimators [63]. Note that estimating 
probability density function is one of the challenging problems 
in the MI based approaches. Binning the continuous variables 
into quantile intervals is another way of estimating probability 
distribution. Within this approach, each continuous expression 
value is replaced by an integer value corresponding to the bin 
if fall into. This is defined as follows: 

!(!!;!!) =   !
!!!   !

!!! !!"log
!!"

!!!!!!
         (4) 

where ! is the number of bins, !!" represents the joint 
probability !(!! = !,!! = !), and !!! =   ! !!" and 
!!! =   ! !!" are marginal probabilities !(!! = !) and 
!(!! = !). This method is very simple and fast but is 
sensitive to the number of bins used. Based on this approach, 
Belcastro et al. [64] developed a parallel MI-based 
algorithm. 

 Kernel-based estimators are computationally expensive 
when a large number of variables are available. To tackle 
this problem, Daub et al. [63] proposed a B-spline based 
method for binning continuous data. Within this approach, 
each continuous value is assigned to ! bins with weights 
given by the B-spline function of order ! defined over ! knot 
points. For a continuous value, this function returns a vector 
of size ! with ! continuous non-negative weights that 
indicate to which bins the value should be assigned. Based 
on this idea, four parallel reverse engineering [48, 65-67] 
have been developed which will be discussed in detail 
below. 

 Zola et al. [48] proposed a parallel algorithm named 
TINGe (Tool Inferring Networks of Genes). TINGe is the 
first parallel software for reverse engineering which con-
structs the largest whole genome plant network. It uses B-
spline based MI and provides efficient permutation testing 
for assessing statistical significance by rank transformation, 
Data Processing Inequality (DPI) to remove indirect rela-
tionships, and parallel processing for reverse engineering. 
DPI states that if three random variables !!, !!, !! from a 
Markov Chain in that order i.e., !! → !! → !!, then 
!(!!;!!) ≤ !(!!;!!) and !(!!;!!) ≤ !(!!;!!). Indeed, if 
three genes !!, !!, !! from a triangle in the network, DPI 
can be applied to remove the indirect edge among the three 
edges by removing the weakest MI value. This can signifi-
cantly decrease false positive rate. In their performance eval-
uations on Arabidopsis thaliana of size 15222 genes and 
3137 observations, the method inferred GRN in 30 minutes 
on a 2048-CPU Blue Gene/L and 2 hours and 25 minutes on 
a 8 node Cell blade cluster. Since, TINGe was successful, 

Misra et al. [65] implemented it on the Intel Xeon Phi single-
chip coprocessor and Chockalingam et al. [67] developed a 
distributed version of TINGe on the Amazon EC2 cloud 
computing platform by using Hadoop framework.  

 Shi et al. [66] proposed a parallel MI-based algorithm by 
using B-spline function and CUDA framework, called 
CUDA-MI. By defining the weighting matrix (!×!, !: 
number of genes; !: number of bins) in which each row of it 
indicates the weight coefficients of gene value in the set of 
the bin, CUDA-MI calculates pairwise MI in parallel among 
genes. Thereafter, the authors implemented their approach on 
the Nvidia Tesla C2050 GPU with 448 cores 1.15 GHz and 
compared it with Quad-Core i7 2.66 GHz CPU. By using 
single GPU version, their best acceleration was 82x, com-
pared to the execution on multi-threaded CPU. Additionally, 
they combined CUDA-MI with ARACNE [57] method and 
the results of specifiity, sensitivity, and precision analysis 
revealed that the combined method is more efficient than 
simple ARACNE and TINGe software [48]. 

 PC is another widely used correlation measure that de-
tects linear relationships among the variables and is defined 
as follow: 

!(!! ,!!) =
!"#(!!,!!)

!(!!)!(!!)
           (5) 

where !"# !! ,!!   is the covariance of !!, !!, and !(!!) is 
the standard deviation of !!. Liang et al. [56] used PC based 
method for gene co-expression network reconstruction, 
called FASTGCN. They proposed a parallel algorithm that 
integrates genetic information entropy to preprocessing, PC 
for analyzing dependency, and z-score for coefficient nor-
malization, and efficiently exploits GPU memory by using 
the zero-copy technique. The authors compared CUDA ver-
sion of FASTGCN (implemented on Nvidia Tesla K20c with 
2496 cores 760 MHz) against three versions of FASTGCN: 
Multi-core (Intel Xeon 16 cores 2.90GHz) CPU with 16 
OpenMP thread, Single-thread CPU with C/C++ program-
ming language, and Single-thread CPU with R programming 
and achieved 2x, 10x, 80x speedups respectively on the da-
taset containing 16000 genes of 590 individuals. 
 Zheng et al. [68] developed a new software based on 
their previous PCA-CMI (Path Consistency Algorithm based 
on Conditional Mutual Information) algorithm [69], known 
as CMIP. PCA-CMI is a well-known iterative algorithm for 
reverse engineering. At first, it creates a complete graph of 
size ! (! is the number of genes) and at each iteration  ! 
(! = 1, 2,⋯ , !), by using !-order Conditional Mutual Infor-
mation (CMI), quantifies relationships among two genes 
given their common !-neighbors. The CMI of variables !! 
and !! given !! is defined as: 

!(!!;!!|!!) = !(!! ,!!) + !(!! ,!!) − !(!!) −
!(!! ,!! ,!!)            (6) 

where !(!! ,!!), !(!! ,!!), and !(!! ,!! ,!!) are joint en-
tropies. High CMI value indicates that there may be a close 
relationship between the variables !! and !! given 
variable(s) !!. After that, it deletes the edges with zero or 
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low CMI value at each iteration. The time consumed for 
large-scale data and how to determine an appropriate edge 
deletion threshold are the main drawbacks of PCA-CMI. To 
overcome these drawbacks, the authors developed two paral-
lel software by using CUDA and OpenMP frameworks and 
defined a mechanism for automatic threshold setting. In 
CUDA version of CMIP, pre-processed data is delivered to 
GPU cores for correlation calculation using a parallel model 
and in OpenMP version, loop calculation is accelerated with 
the multi-threading approach. CMIP attained acceptable per-
formance compared to conventional methods. 

 Borelli et al. [70] proposed a new exhaustive search algo-
rithm, which expresses the reverse engineering as a feature 
selection problem. In this way, feature selection can be 
viewed as an iterative searching method for selecting an op-
timal subset of genes which regulate target gene based on 
mean conditional entropy function as selecting criteria. The 
mean conditional entropy of variables !! given !! defined as: 

!(!!|!!) =   !!∈!! !(!!)!(!!|!! = !!)         (7) 

 Conditional entropy of !! conditional on !! refers to the 
average entropy of !! conditional on the value of !!, aver-
aged over all possible values of !!. Small value of condition-
al entropy indicates that !! can well predict !! or gene !! 
associates the gene !! in GRN context. Exhaustive search 
algorithm which is a time-consuming step has been imple-
mented on the GPU and Multi-GPU in parallel. Furthermore, 
search algorithm has been implemented in global and local 
versions. Regulated genes of each target gene have been lim-
ited but not limited in the local and global search, respective-
ly. Finally, the authors generated data by AGN simulator 
with 1024, 2048, 4096, and 8192 genes to evaluate their ap-
proach. They have compared the proposed method when it is 
implemented by one, two, and four GPUs with 240 core per 
GPU against CPU version which utilized six 3.2GHz core 
and OpenMP library. By using four GPU, their acceleration 
compared to the execution on CPU is 55, 110, 260, when 
there are 32, 64, and 128 target genes per block, respectively.  
 LegumeGRN [71] is a reverse engineering web tool, 
which has been implemented on multiple well-known re-
verse engineering algorithms. LegumeGRN developers have 
implemented a parallel version of TIGRESS [72] and GE-
NIE3 [73], two popular algorithms for reverse engineering, 
which uses feature selection like methods as a mechanism 
for reverse engineering. GENIE3 uses tree-based ensemble 
feature selection method for reverse engineering on multifac-
torial expression data and TINGe uses LARS feature selec-
tion. 
 When dealing with high dimensional data and non-
uniform distribution of variables, bias of MI estimator is one 
of the main sources of error. To overcome this problem, 
Kiraskov et al. [62] proposed an unbiased MI estimator 
based on ! nearest neighbor (KNN) classifier. The main idea 
is estimating the probability densities from the distribution of 
its ! nearest neighbor which implies minimally biased esti-
mator. Sales and Romualdi [74] developed a parallel R pack-
age for reverse engineering based on KNN and MI, called 
PARMIGENE (PARallel Mutual Information estimation for 

GEne NEtwork reconstruction). The authors combined 
PARMIGENE with CLR, ARACNE, and MRNET, three 
state-of-the-art ITBMs which use MI for reverse engineer-
ing. Experimental results on in-silico datasets show that 
PARMIGENE estimator not only gives unbiased and more 
precise results, but is also faster than the other estimators.  

3.3. Differential Equation-Based Models 

 Ordinary differential equations that are based on the bio-
chemical systems theory are popular approaches for reverse 
engineering. In this model, by using a non-linear function !, 
regulatory interactions between genes can be expressed as 
follow:  

!!(!) = !!(!!,⋯ , !! , !, !!)          (8) 

where !!(!) describes the expression level of gene ! at time 
!, !! and ! are the interaction parameters among genes and 
the external perturbation of gene, respectively. To date, one 
of the most prominent methods is a type of systems of ordi-
nary differential equations called S-Systems. The general 
form of an S-System for representing a gene regulatory net-
work is the as follow:  
!!!
!"
= !!   !

!!! !!
!!,!

!"#$%!#$&'

− !!   !
!!! !!

!!,!

!"#$%!%&'()

,∀!         (9) 

where !! is the expression level of gene !, and ! is the total 
number of genes in the network. The non-negative parame-
ters !! and !! are rate constants; !!,! and ℎ!,! are kinetic or-
ders that reflect the interaction from gene ! to gene ! in the 
activation and degradation processes, respectively. The pa-
rameter estimation of an S-system model is a large-scale 
optimization problem that is computationally expensive.  
 Lee et al. [75] and Jostin and Jaeger [76] developed a 
GRN model based on S-system. They proposed two distrib-
uted evolutionary algorithms for solving large-scale S-
system parameters estimation. Lee et al. [75] combined Ge-
netic Algorithm (GA) and Particle Swarm Optimization 
(PSO). The authors used two fitness function based on the 
Minimum Square Error (MSE) and exploited island model 
parallelism. In this way, the entire population is divided into 
the number of subpopulations and each of them is inde-
pendently executed on the one or more processor(s). The 
algorithm is implemented on top of the Hadoop platform. 
Jostin and Jaeger [76] developed parallel island evolutionary 
algorithm, which is faster and more accurate than the compa-
rable simulated annealing algorithm.  
 Xiao et al. [77] recently developed an asynchronous par-
allel algorithm to improve the accuracy and lower time com-
plexity of large-scale GRN inference by combining splitting 
technology and ODE. The authors demonstrated that the 
sparsity and modularity of large-scale GRNs are much high-
er than the small-scale GRNs. In this paper, the whole net-
work decomposes into clusters based on the MI criteria and 
each cluster is modeled by ODE. They used Gaussian elimi-
nation process for parameter estimation.  
 Gardner et al. [78] developed an algorithm via a set of 
ODEs on the series of steady-state RNA expression, called 
NIR (Network Identification by multiple Regression). NIR 
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constructs a first-order model of regulatory interactions and 
uses multiple linear regression to estimate model parameters. 
Due to the high time complexity, like the other sequential 
algorithms, sequential NIR cannot be used with large-scale 
datasets with thousands of genes. Gregoretti et al. [79] de-
veloped a parallel version of NIR algorithm. They argued 
that parameter estimation of NIR can be done independently 
by decomposing data matrix into a set of sub-matrices. In 
addition to speedup, the results of tests on large datasets 
show that the parallel NIR produces many fewer errors.  
 

 
Fig. (1). Parallel framework usage in the reviewed papers. 

 

 
Fig. (2). Modeling methods usage in the reviewed papers. 

 Differential evolution is a population-based approach that 
holds promise for parameter estimation of ordinary differen-
tial equations and is appropriate to be parallelized [80] be-
cause the evaluation of the populations is independent of 
each other. In this approach, a problem is iteratively solved 
until no further improvement on the solution with regard to a 
given objective function. In each iteration, a new population 
is created via a migration technique in which the best indi-
vidual from each population is selected and copied to anoth-
er population [81]. Kozlov and Samsonov [82] and Ramirez 
et al. [83] proposed a parallel differential evolution algo-
rithm for differential equations parameter estimation by us-
ing MPI library and CUDA framework, respectively.  
 As discussed in the introduction, there are many algo-
rithms for GRN modeling from expression data. In this arti-
cle, we reviewed only the approaches that its modeling algo-
rithms were parallel. Table 3 shows some of the strengths 
and weaknesses of computational methods which provides 
useful insights on GRN reconstruction. 

CONCLUSION AND DISCUSSION 

 According to reviewed papers, parallel approaches most-
ly use MPI library (Fig. 1). This can have several reasons. 
One is that some frameworks, such as CUDA, are only sup-
ported on specific hardware and programming language. 
Another reason is that MPI can be used in a wider range of 
problems than other frameworks. In spite of the complexity 
of MPI programming, the last reason is that the researchers 
in MPI programming have a greater ability than CUDA and 
Hadoop frameworks. However, none of the frameworks are 
complete and have their own limitations. As discussed earli-
er, hybrid parallel programming such as MPI-OpenMP, 
MPI-CUDA, and OpenMP-CUDA is a good idea to achieve 
better performance and increase flexibility.  
 Mathematical modeling is an alternative categorization. 
Based on the reviewed papers, information theory based and 
differential equations based approaches are often used than 
PBN models (Fig. 2). There are two important reasons for 
this: first, these approaches are more prevalent among bioin-
formatics researchers; second, their branch-less nature makes

Information theory

Differental equation

Bayesian network

48%

28%

24%

MPI

CUDA

OpenMP

Hadoop

57%
23%

10%

10%

Table 3. Advantages and disadvantages of computational methods. 

Model Strength Weakness 

Bayesian network • Facilitate the incorporation of prior knowledge and ex-
perimental data 

• Able to cope with incomplete and noisy data 

• Handle with uncertainty 

• Feedback regulations not allowed 

• Learning structure of the Bayesian network is NP-hard, 
therefore, can only apply to small-scale networks 

• Cannot model time series data 

Information theory • Easy to parallelize 

• Low computational cost 

• Able to detect complex interactions 

• Can have a high rate of false positives in high dimension-
al data 

• Poor asymptotic behaviour under high dimensional data 

Differential equation • Suitable for time series and steady-state data 

• Model positive and negative feedback interactions 

• Difficult to find optimal parameter values 

• Applicable to small-scale networks 
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Table 4. Parallel GRN inference algorithms. 

Reference Data Type Based on Framework (Co)processor 
Source  

Available 
Description 

[66] Discrete Information Theory CUDA GPU √3 
Known as CUDA-

MI 

[56] Continuous Information Theory CUDA GPU √4 
Known as 
FastGCN 

[68] Discrete Information Theory CUDA GPU √5 Known as CMIP 

[83] Continuous Differential Equation CUDA GPU - - 

[70] Discrete Information Theory CUDA-OpenMP GPU - - 

[74] Continuous Information Theory OpenMP - √6 
Known as PAR-

MIGENE 

[76] Continuous Differential Equation MPI - - - 

[77] Continuous Differential Equation MPI - - Known as LSGPA 

[53] Continuous Bayesian Network MPI - √7,8 
Known as fast-

BMA 

[50] Continuous B-S-L1 MPI - √9 Known as SiGN 

[65] Discrete Information Theory MPI Intel Xeon Phi - Based on TINGe 

[49] Discrete Bayesian Network MPI 
Intel Xeon/ Intel 

Xeon Phi 
- - 

[82] Continuous Differential Equation MPI Intel Xeon - Known as DEEP 

[48] Continuous Information Theory MPI - √10 Known as TINGe 

[64] Discrete Information Theory MPI Intel Xeon - - 

[79] Continuous Differential Equation MPI - - 
Known as Parallel 

NIR 

[20] Discrete Bayesian Network MPI Intel Xeon √11 - 

[47] Discrete Bayesian Network MPI Cray AMD - - 

[75] Continuous Differential Equation Hadoop - - - 

[67] Continuous Information Theory Hadoop - - - 

[71] Continuous ∗2 - - √12 
Known as Leg-

umeGRN 
1B-S-L: Bayesian Network, State Space Model, L1-regularization 
2A software which have implemented multiple well-known reverse engineering algorithms 
3https://sites.google.com/site/liuweiguohome/cuda-mi 
4http://ibi.zju.edu.cn/software/FastGCN/ 
5http://www.picb.ac.cn/CMIP/ 
6https://cran.r-project.org/web/packages/parmigene/index.html 
7https://github.com/lhhunghimself/fastBMA, fastBMA is a parallel implementation of ScanBMA 
8https://www.bioconductor.org/ 
9http://sign.hgc.jp/ 
10http://aluru-sun.ece.iastate.edu/doku.php?id=tinge_gena 
11http://bonsai.hgc.jp/~tamada/hgc/suppl/GWGN/index.html 
12https://legumegrn.noble.org/cc.html 
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them attractive for parallelism. However, there are several 
parallel algorithms in literature developed for PBN structure 
learning, which can be used in the context of GRN problems 
with minor modifications. As discussed earlier, using PBNs 
in addition to prior knowledge (e.g. gene ontology or biolog-
ical knowledge) can ultimately improve accuracy and have a 
reasonable biological justification.  
 In order to perform parallel inference, selecting modeling 
approach and parallel framework are essential steps. In this 
work, we reviewed parallel algorithms on GRN inference 
problem. We also briefly explained parallel frameworks for 
programming and development of algorithms. Table 4 sum-
marizes the research works we have found within the litera-
ture’s which use parallelism in the reverse engineering pro-
cess. 
 As a result of our studies, we propose some guidelines to 
facilitate decision-making for parallel reverse engineering: 
• GRNs often are modular [84]. Modularity is a suitable 

property for parallel reverse engineering and based on 
this, researchers can develop efficient parallel algorithms. 

• Based on the reviewed papers, much less attention has 
been paid to the knowledge-based approach. Therefore, 
developing parallel knowledge-based algorithm is an in-
teresting idea. 

• In gene expression dataset, sample sizes are substantially 
smaller than the number of available genes. This is 
known as “large p small n” problem, so researchers must 
take this into account to design more efficient method. 

 Sequential inference algorithms are highly limited to the 
size of the dataset and often do not provide valuable infor-
mation such as hub genes, master regulators, and many oth-
ers. Parallel algorithms for large-scale GRN problems deliv-
er fast and useful results. However, this field is interdiscipli-
nary, involving parallel algorithms design, bioinformatics, 
and machine learning. Therefore, in this paper, parallel re-
verse engineering algorithms are reviewed from the perspec-
tive of parallel frameworks used, bioinformatics knowledge 
used for inference, and mathematical modeling methods.  
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