
Send Orders for Reprints to reprints@benthamscience.ae

 Current Genomics, 2018, 19, 603-614 603

REVIEW ARTICLE

 1389-2029/18 $58.00+.00 ©2018 Bentham Science Publishers

Parallel Algorithms for Inferring Gene Regulatory Networks: A Review

Omid Abbaszadeh, Ali Reza Khanteymoori* and Ali Azarpeyvand

Department of Electrical and Computer Engineering, University of Zanjan, Zanjan, Iran

	 Abstract: System biology problems such as whole-genome network construction from large-scale
gene expression data are sophisticated and time-consuming. Therefore, using sequential algorithms
are not feasible to obtain a solution in an acceptable amount of time. Today, by using massive-
ly parallel computing, it is possible to infer large-scale gene regulatory networks. Recently, estab-
lishing gene regulatory networks from large-scale datasets have drawn the noticeable attention of
researchers in the field of parallel computing and system biology. In this paper, we attempt to
provide a more detailed overview of the recent parallel algorithms for constructing gene regulatory
networks. Firstly, fundamentals of gene regulatory networks inference and large-scale datasets chal-
lenges are given. Secondly, a detailed description of the four parallel frameworks and libraries in-
cluding CUDA, OpenMP, MPI, and Hadoop is discussed. Thirdly, parallel algorithms are reviewed.
Finally, some conclusions and guidelines for parallel reverse engineering are described.

A R T I C L E H I S T O R Y

Received: December 18, 2017
Revised: February 20, 2018
Accepted: May 22, 2018

DOI:
10.2174/1389202919666180601081718

Keywords: Gene regulatory network, Parallel algorithms, Parallel processing, Reverse engineering, CUDA, OpenMP,
MPI, Hadoop.

1. INTRODUCTION

 Each cell consists of thousands of genes. In each cell,
the only small percentage of genes is expressed. Genes that
are expressed interact with each other through mRNAs
(messenger RNAs), proteins, or other types of molecules
and managed cellular phenotypes and functions. Differences
in gene expression are responsible for both morphological
and phenotypic differences which indicate cellular reactions
to environmental disturbances or hormonal stimuli [1].
There are several methods available for measuring gene ex-
pression level. Sequential Analysis of Gene Expression
(SAGE) [2], DNA microarrays [3], Tiling arrays [4] and
RNA-Seq [5] are the most used and important methods.
The output of these methods is the expression profiles of
genes that can be used in bioinformatics applications.

 One of the main objectives of bioinformatics researchers
is deciphering the gene-gene interactions which are known
as constructing a Gene Regulatory Network (GRN) or re-
verse engineering from gene expression profiles. A GRN is a
graphical representation that demonstrates associations be-
tween a set of genes. In this model, edges represent regulato-
ry influence or co-expression relationships in the regulatory
network or co-expression network, respectively, and nodes
represent molecular entities like genes [6]. The knowledge
regarding the gene network not only shed light on the
biological processes such as cellular differentiation, division,

*Address correspondence to this author at the Department of Electrical and
Computer Engineering, University of Zanjan, Zanjan, Iran; Tel: (+98) 24
33052604; Fax: (+98) 24 33052604; E-mail: khanteymoori@znu.ac.ir

and signaling, but also can provide valuable information for
drug discovery, molecular biology, cancer-related, and medi-
cal-related research [7, 8]. For example, Imoto et al. [9] and
di Bernardo et al. [10] studies are prominent works that used
gene regulatory networks in drug discovery.
 According to conventional wisdom, reverse engineering
is a difficult problem, particularly in dealing with large-
scale data. Considerable sequential algorithms have been
developed to derive GRN model and meaningful infor-
mation from experimental data. These algorithms can be
categorized into seven main groups, namely; Boolean net-
works [11], Statistical methods like Partial-least-squares
[12, 13], Differential equation systems [14], Bayesian net-
works [15, 16], Graphical Gaussian Models [17], Evolution-
ary approaches [18], and Information theory-based approach-
es [19]. Though there are various sequential algorithms for
reverse engineering, they will not construct high dimension-
al gene networks and demonstrate valuable information like
hub nodes, master-regulators, and some important regulated
genes [20]. Furthermore, by increasing the size of data, the
quality of the constructed network based on sequential algo-
rithms is reduced (e.g. large number of false-positive edges
in huge network).
 Even with recent progress in reverse engineering, in order
to construct an appropriate network from large-scale data, the
use of new machine learning methods and high-performance
computing are important and challenging at the same time [7,
21]. Recently, parallel and distributed reverse engineering
algorithms have received significant attention. Therefore, most
of the proposed algorithms are scalable and reasonably accu-
rate for reconstruction of GRNs from large-scale datasets. In
practice, parallel and distributed algorithms can considerably

604 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

reduce the execution time and provide scalability without los-
ing quality. In the past, one of the main difficulties in the im-
plementation of parallel and distributed algorithms was lack of
an efficient framework for developing parallel algorithms.
Furthermore, parallel programming required a level of exper-
tise that few researchers and biologists have. Today, the use
parallel frameworks such as CUDA (Compute Unified Device
Architecture), MPI (Message Passing Interface), OpenMP,
and Hadoop can considerably ease the work of researchers
when they need to implement the efficient parallel algorithms.
 There are outstanding review papers covering the field of
GRN inference. Some of the well-structured overviews of the
general idea behind GRN inference and common mathemati-
cal modeling can be found in [19, 22-28]. Bansal et al. [22],
Chai et al. [23], Lee and Tzou [24], and Schlitt et al. [25] pre-
pared review papers on the computational approaches and a
brief mathematical formulation for GRNs reconstruction. Si-
ma et al. [26] reviewed dynamic methods that inferred GRN
from time-series experiment data. Biswas et al. [27] reviewed
evolutionary approach for GRN inference and Sirbu et al. [28]
analyzed several evolutionary algorithms.
 Based on our knowledge, no work has been carried out
to review the parallel algorithms for GRN inference.
Therefore, we want to highlight two major issues: algo-
rithms and tools which have been implemented in parallel
frameworks and different parallel frameworks that can be
used in learning gene networks.
 The paper is organized as follows: Section 2 introduces
a brief overview of parallelism and parallel frameworks such
as CUDA, MPI, OpenMP, and Hadoop. In Section 3, we
review recent parallel algorithms in reverse engineering.
Section 4 draws conclusion and prepares some directions
for future research on parallel GRN inference.

2. PARALLEL FRAMEWORKS

 In order to achieve the promise of GRN inference on
large-scale datasets, it is necessary for existing GRN al-
gorithms to be executed in parallel. Parallel program-
ming is concerned with the distribution of a program
among a set of processors and defines how they interact in
order to make the results. One of the most important as-
pects of parallelism is its relation to the hardware and
programming frameworks. There are several frameworks
for parallel programming. CUDA, MPI, OpenMP, and Ha-
doop are the most popular frameworks for parallel and dis-
tributed programming. CUDA proposed by Nvidia is a par-
allel programming framework for Nvidia GPUs (Graphical
Processing Unit). It is an extension to the C and C++
that provide a set of libraries for exploiting GPUs as gen-
eral purpose processors. MPI (Message Passing Interface)
and OpenMP (Open Multiprocessing) are the set of stand-
ard libraries for parallel programming in distributed and
shared memory space environments, respectively. MPI uses
message passing among the processes in clustered systems
where it generally shared nothing. OpenMP is used for
parallel programming in multi-core fashion which is gen-
erally based on shared memory architecture. Also, MPI
can be used to distribute the algorithm when using mul-
tiple GPUs. Hadoop is a software framework that enables
us to run applications and store big datasets in the distrib-
uted environments. In this section, we briefly introduce
the organization of CUDA, MPI, OpenMP, and Hadoop.

2.1. GPU and CUDA

 In the last decade, the clock speed of processors has re-
mained constant. Therefore, processor designers came to the
conclusion that complex multi-core processor is not the
most efficient for massively parallel computing. Current-
ly, processor designing trend is going to many-core ap-
proach such as GPUs or co-processors (such as the Xeon
Phi) instead of complex multi-core processors [29]. This
kind of architecture provides heterogeneous computing and
achievable performance for SIMD (Single Instruction Mul-
tiple Data) programs. It describes programs with one in-
struction that performs the same operations on multiple
data points simultaneously. This change of designing par-
adigm has had (and will have) a significant impact on
the designing parallel algorithm [30].
 Each GPU consists of a series of streaming multiproces-
sor (SM, or SMX in the latest architectures) which within
each SM, a number of streaming processors (SP), known as
cores, are placed in arrays and execute arithmetic and logi-
cal operations in parallel. Furthermore, each SM has a
number of registers and a private per-block shared memory
to transfer data between concurrent threads. According to
the programming model, threads and thread blocks are
distributed along SPs and SMs. There is another memory
called global memory that is used to share data between
th e grid of SMs. A grid is a set of SMs that work inde-
pendently and thus may be executed asynchronously in
parallel [31].
 In 2007, Nvidia released CUDA framework which is
an extension to the C and C++ and makes available using
the GPU as general purpose GPUs [30]. CUDA provides
three features for programmers: 1) Threads management,
2) Memories management, and 3) Synchronization fea-
tures. These fine-grained features help us to divide the pro-
gram into subprograms that can be executed in parallel and
then integrate them. The written codes in CUDA contain
one or more functions that are called kernels which are
loaded to the GPUs and replicated in many threads. The
programmer determines the number of threads for each ker-
nel and manages the available memory spaces visible to the
kernel functions [31, 32]. One of the main tasks in
CUDA based parallel algorithms is to determine the
threads, blocks, grids, and managing memory allocation,
which is the source of differences in the performance of
algorithms. In spite of the remarkable advantages in pro-
gramming, GPU-based programming is different from
CPU-based programming. Nevertheless, several packages
were released whose users without any knowledge of GPU
programming can also access the high-performance com-
puting power of GPUs. OpenCL is another framework for
cross-platform GPU programming maintained by the
Khronos group, which can be run on different hardware
platforms. Recently, Nobile et al. [33] studied some com-
putational tools in bioinformatics that exploit GPUs as a
processing engine.

2.2. MPI

 MPI is the most used de-facto standard libraries for
parallel programming based on message passing para-
digm. It is a collection of libraries to send messages be-

Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7 605

tween computers or processes on the distributed memory
environment. In MPI programming model, nodes have
their own memory space, own processors, and communi-
cate with each other to access memory space [34]. In ad-
dition, programmers must divide the tasks among the
nodes with separate memory spaces and define the nodes
communications and synchronize them. To facilitate par-
allel programming, MPI provides various libraries and
functions to communicate, coordinate, and synchronize
between distributed nodes. Most of the current bioinfor-
matics code could be parallelized under the MPI models
such as mpiBLAST [35] (Basic Local Alignment Search
Tool), parallel version of the BLAST sequence alignment,
and MPI-CMS [36], parallel implementation of the Cross
Motif Search algorithm.

2.3. OpenMP

 OpenMP is a set of high-level APIs (Application Pro-
gramming Interfaces) which provides shared-memory based
parallelism and multi-threading paradigm in multi-core envi-
ronments. It consists of a set of compiler directives, libraries,
and predefined interfaces that can be used in programming
languages such as C/C++, Java, Python, and many other lan-
guages. After compiling OpenMP programs, threads negoti-
ate with each other through shared memory space and hence
increase the performance of the program. Similar to CUDA,
OpenMP provides three feature for programmers: 1) control-
ling features that alter the flow in a program, 2) synchroniza-
tion features for coordinating the execution of threads, and 3)
data environment features for communicating between
threads [37]. OpenMP provides a high-level abstraction that
makes it well suited for high-performance computing pro-
grammers in shared memory environment. Therefore, one
of the main advantages of OpenMP is that it does not re-
quire major changes for converting a sequential code to
parallel one.

2.4. Hadoop

 Before introducing Hadoop, Map-Reduce paradigm
should be introduced. In this paradigm, data is divided into
subsets, and then these subsets are assigned to the different
machines for parallel processing. Finally, it brings together
separate processes and returns the end result. The stage of
division and allocation of data to machines is called Map,
and bringing together and presenting the result is called
reduce stage. Map-Reduce paradigm is suitable for big data
analyzing due to its ability to execute the program in parallel
over the cluster of computers data without loading the whole
data into memory.
 Hadoop is a Java-based framework that allows parallel
and distributed programming across the distributed envi-
ronment using Map-Reduce paradigm. It has two main
components: YARN (Yet Another Resource Negotiator)
and HDFS (Hadoop Distributed File System). YARN
manages computational resources needed for distributed
executions. HDFS prepares scalable and robust distributed
file system for big data. Apart from the Hadoop, there are
numerous software frameworks (such as Pig, Spark, Ma-
hout etc.) that provide specific features whose users with
no knowledge of distributed programming can also pro-

cess large amounts of data on the specific domain [38].
Additionally, there are many bioinformatics tools which
have been developed based on Hadoop such as Cloud-
BLAST [39], distributed version of the BLAST2 algo-
rithm using Hadoop framework, Eoulsan [40], a frame-
work for RNA sequence data analysis, and Seqpig [41]
and BioPig [42], for analyzing large-scale sequencing
data.
 Unfortunately, there is no “silver bullet” for parallel pro-
gramming. Indeed, based on framework selection, parallel
programming is more complex and different than sequential
programming. Efficient distribution of tasks on the pro-
cessing units, avoiding inefficient data replication, and un-
necessary communication among the processing units are
the vital factors that affect parallel programming perfor-
mance. Each of the mentioned frameworks provides a
different paradigm of parallel programming and have their
own strong and weak points. The use of OpenMP for paral-
lel programming is easier than other frameworks, but it runs
on the shared-memory environment. MPI runs on shared and
distributed memory but requires more changes in the sequen-
tial algorithm. Hadoop provides highly scalable and faults
tolerant environment, but it is not always straightforward to
implement sequential algorithms as a Map-Reduce program.
Although exploiting CUDA leads to higher performance
compared to using CPU in data-level parallel programming,
but CUDA programming is more difficult than CPU pro-
gramming and programmers need an in-depth understanding
of the GPU architecture. Table 1 summarizes the characteris-
tics of the frameworks based on usability, complexity, and
scalability.
 There are many reasons to integrate the two or more par-
allel programming frameworks. For example, CUDA-aware
MPI programs, accelerate an existing single-GPU applica-
tion to scale across multi-GPU application by using MPI.
Apart from the above frameworks, several other projects
which provide specific features have been developed.
 Table 2 summarizes some important libraries and tools
for programmers to efficiently exploit and integrate parallel
frameworks. These libraries aim to develop more efficient
parallel programs and provide high level abstraction for re-
searchers with low experience in parallel and distributed
programming.

3. PARALLEL ALGORITHMS

 The crucial step in GRN inference is selecting the model.
In this review, we focus only on the approaches that the
modeling algorithms are parallel. Based on their mathemati-
cal models, in the next subsections, we will review parallel
algorithms.

3.1. Bayesian Network Based Models

 Modeling gene regulatory networks based on Probabilis-
tic Bayesian Networks (PBN) have become popular in the
bioinformatics community. The main advantages of PBN are
the ability to represent the uncertainty in models, exibility,
and integrating prior knowledge (e.g. biological knowledge)
with experimental data. In 1999, for the first time, Murphy et
al. [16] used the Bayesian network for GRN inference and

606 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

thereafter, significant efforts focused on reverse engineering
by PBNs. According to Pearl and Russell [43], PBN is a Di-
rected Acyclic Graph (DAG) ! = (!,!), where ! =
{!!,!!,⋯ ,!!}, the set of nodes, represents random varia-
bles, and ! is the set of directed edges, which represents
cause-and-effect relationships such as regulation influence
among the genes. A directional edge !! → !! indicates that
!! is parent of !! or gene !! regulates the gene !! in GRN
context. Mathematically, PBN encodes the Markov assump-
tion that given its parents, each variable !! is conditionally
independent of its non-descendants. Based on this assump-
tion, PBN compacts the joint probability distribution as fol-
low:

!(!!,⋯ ,!!) = !
!!! !(!!|!"(!!)) (1)

where !"(!!) is the set of parents of !! in the DAG.
 For Bayesian network learning, many outstanding algo-
rithms have been developed. Well-structured review of the
Bayesian network learning is presented in [44]. In essence,
learning PBNs from data consists of both parameter and
structure learning (or model selection). Estimating the local
conditional probabilities for each node is parameter learning
and establishing the network as a candidate DAG is structure
learning. Structure learning is more important than parameter
learning in GRN inference because cause-and-effect interac-
tions among the genes are determined at this step. Finding an
exact network that fits on data, is NP-hard problem because
the number of DAGs grows super-exponentially with the
number of variables. This implies that exact algorithms can
become a computationally intractable task and currently
there is no polynomial time algorithm that can solve an NP-
hard problem of large or even moderate input size. One way
to tackle NP-hard problems is to design heuristic or parallel
algorithms that reduce the computational time.
 There are three generic approaches to structure learning:
score-based, constraint-based, and hybrid learning methods
[45]. The first approach assigns a score to the candidate
DAG by scoring functions and tries to optimize scoring cri-
teria with a heuristic algorithm such as greedy search. Select-
ing an appropriate scoring function is very important since it
is the key ingredient to reconstruct high-quality GRN by
PBNs. These methods work well on small datasets with not
too many variables. Constraint-based methods efficiently
restrict the search space. Therefore, they can often work well
on large datasets. Sparse Candidate Algorithm (SCA) [46] is

one of the prominent constraint-based algorithms where each
variable constrained to have at most ! parents. Finally, hy-
brid methods are combinations of the score-based and con-
straint-based approaches.
 Nikolov and Aluru [47] developed a parallel hybrid
Bayesian structure learning for reverse engineering. They
demonstrated that the main cause of error in SCA based ap-
proaches is misselected optimal parents (OP) from candidate
parent (CP) set. To address this issue, inspired by parallel
pairwise mutual information [48], authors created a mutual
information based network to identify CP set for each node.
They then developed a parallel exact algorithm for selecting
OPs from CPs set. In order to do this, they checked all sub-
sets of CP and elicited the OPs for each node by scoring
function and eventually, OP sets were used to create an ini-
tial network. Note that obtained graph may contain cycles,
which are detected and eliminated by exponentiation of adja-
cency matrix based on cycle length (shorter cycles before
longer ones). The authors implement the proposed method in
the Cray system with AMD many-core processors by using
C++ and MPI library. In their evaluation of performance on
data of size 500 genes and 100 observations, in the best case,
the method inferred GRN in less than 2 minutes in the Cray
AMD cluster with 1024 cores.
 In the algorithm developed by Misra et al. [49], a mas-
sively parallel heuristic PBN structure learning was estab-
lished to whole-genome network reverse engineering by ex-
ploiting Tianhe-2 and Stampede high-end heterogeneous
supercomputers. The proposed method is similar to [47]
based on differences in the scoring function for network
evaluation, limited size of the CP set to reduce the computa-
tional complexity, and implementation techniques to achieve
performance, scalability, and efficient load balancing. In
order to efficiently distribute the work between the pro-
cessing units, they performed hierarchical dynamic work
distribution that first divides tasks across the cluster nodes,
and then subdivides this task within a node.
 One of the conventional approaches to parallel structure
learning is dividing the whole network learning problem into
several subnetworks learning, where each of them contains
randomly sampled variables. Evidently, the main issue here
is how to select an appropriate sampling approach. Tamada
et al. [20] developed a parallel PBN structure learning algo-
rithm for reverse engineering, based on the subnetwork strat-
egy and random walking technique, called Neighbor Node
Sampling and Repeat (NNSR). The authors demonstrated

Table 1. Parallel framework comparison.

Framework Programming Model Framework
Complexity

Programming
Language Ease of Use Code Conversion

Effort Scalability

CUDA SIMD Fair C/C++ Moderately More Low

OpenMP Multi-thread Low Most Languages Easy Few Low

MPI SIMD/MIMD Fair Most Languages Poor More Medium

Hadoop Distributed High Java Poor More High

Note: Framework complexity refers to the difficulty in using different frameworks.
Ease of use refers to the effort required to programming.
Code conversion refers to the effort required to changing the sequential code to parallel code.

Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7 607

that the small sample size and appropriate sampling of the
variables (or genes) lead to subnetworks that can efficiently
demonstrate cause-and-effect relationships. Therefore, they
propose a two-phase heuristic algorithm which first, at each
iteration, using random sampling (all variables being equally
likely), learns a new subnetwork of the set of sampled varia-
bles, and then creates the whole network by using neighbor
node sampling based on the random walking on the subnet-
works. In order to do this, they create a weighted graph by
introducing edge frequency.

 Edge frequency indicates the ratio of the number of oc-
currences of directed edge ! → ! in different subnetworks
divided by the number of different subnetworks in which
two variable !, ! are selected together (greater number indi-
cates a stronger cause-and-effect relationship). Next, random
walk procedure selects a specific proportion of the nodes
from a weighted graph and creates a large number of smaller
subnetworks. The authors implemented the proposed method
in C programming language and OpenMPI library on the 724
computation nodes with dual Intel quad core Xeon 3.0 GHz,
in total 5792 cores. They applied the proposed method on
Human Umbilical Vein Endothelial Cells (HUVECs) with
13731 transcripts and extracted GRN in less than 3 hours.
Furthermore, the proposed method also extracts valuable
information such as hub nodes and putative master regulators
that are not achievable from the small network. Based on this
model, Tamada et al. [50] have developed a software collec-
tion called SiGN. SiGN consists of two other parallel pro-
grams based on the graphical Gaussian model, SiGN-L1, and
state space model [51], SiGNSSM.
 One of the main sources of error in the statistical infer-
ence is overconfidence to model, which is generated by ig-
noring model uncertainty [52]. Model uncertainty refers to
the situations in which there is no unique and agreed model
for a specific problem. In most situations, the main cause of

uncertainty is irrelevant variables in constructing the model.
Inspired by ensemble learning, one way to tackle model un-
certainty is Bayesian Model Averaging (BMA). BMA refers
to the procedure of selecting variables by averaging posterior
probability of the models in which each of them consists of a
set of candidate variables or regulators in the GRN. The
main challenge in the BMA is selecting an efficient model.
Young et al. [53] proposed a Bayesian inference method for
regression variables selection from time-series data based on
the BMA, called ScanBMA. They have developed a greedy
mechanism for picking appropriate models based on Oc-
cam’s window principle. Parallel implementation of
ScanBMA named as fastBMA [54] is available from
https://github.com/lhhunghimself/fastBMA.

3.2. Information Theory Based Models

 Due to easy implementation, simplicity, low computa-
tional cost, and ability to detect complex interactions, paral-
lel Information Theory Based Models (ITBM) is somewhat
superior in reverse engineering. In the last two decades,
some attractive algorithms based on the information theory
have been developed. The ITBMs such as correlation-based
[55, 56], Mutual Information (MI) [57-60], and Gaussian
Graphical Models [17] (GGM) are the main state-of-the-art
approaches to extract dependency on biological networks
inference. In following, along with the review, we will intro-
duce mathematical details of some similarity measures
which are the cornerstone of ITBMs. Pearson correlation
(PC), Mutual Information (MI), and Partial Correlation are
the main similarity measures that have been extensively used
in the literature. Each of them has their own limitations and
benefits. There is no proof that one is superior to others [61].
 MI is often used as a similarity measure, which enables
the detection of non-linear relationships among the variables.
It is defined based on the individual and joint entropies in the
following way:

Table 2. Some related libraries and projects on CUDA, MPI, OpenMP, and Hadoop.

Project Description URL

Spark An open-source cluster-computing framework on Hadoop http://spark.apache.org/

Pig A query language based on Hadoop for basic calculations over large datasets http://pig.apache.org/

Mahout A distributed machine learning and data mining library on Hadoop http://mahout.apache.org/

OpenMPI Most used implementation of the MPI model. Open MPI 1.7 and later is CUDA-aware https://www.open-mpi.org/

MVAPICH CUDA-aware MPI implementation. It helps to run CUDA+MPI http://mvapich.cse.ohio-state.edu/

Mars A Map-Reduce framework on graphics processors https://github.com/arianepaola/Mars

CuBLAS An implementation of basic linear algebra subprograms on CUDA framework https://developer.nvidia.com/cublas

JCUDA Java bindings for CUDA libraries. It helps to run Hadoop Map task on GPUs http://www.jcuda.org/

omp4j An OpenMP like library for Java programming language http://www.omp4j.org/

mpi4py A library for MPI programming in python http://pythonhosted.org/mpi4py/

PyCUDA A library for integrating CUDA in python https://github.com/inducer/pycuda

608 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

!(!!;!!) = !(!!) + !(!!) − !(!! ,!!) (2)

where ! ! is the differential entropy of a random variable
! and is a measure of its uncertainty. In particular, for a con-
tinuous variable !, it is defined by:

!(!) = − !!(!)log!!(!)!" (3)

 In 3, !! ! is probability density function for continuous
variable !. It can be estimated by different methods such as
histogram plotting, kernel estimators, k-nearest neighbor esti-
mators [62], and B-spline estimators [63]. Note that estimating
probability density function is one of the challenging problems
in the MI based approaches. Binning the continuous variables
into quantile intervals is another way of estimating probability
distribution. Within this approach, each continuous expression
value is replaced by an integer value corresponding to the bin
if fall into. This is defined as follows:

!(!!;!!) = !
!!! !

!!! !!"log
!!"

!!!!!!
 (4)

where ! is the number of bins, !!" represents the joint
probability !(!! = !,!! = !), and !!! = ! !!" and
!!! = ! !!" are marginal probabilities !(!! = !) and
!(!! = !). This method is very simple and fast but is
sensitive to the number of bins used. Based on this approach,
Belcastro et al. [64] developed a parallel MI-based
algorithm.

 Kernel-based estimators are computationally expensive
when a large number of variables are available. To tackle
this problem, Daub et al. [63] proposed a B-spline based
method for binning continuous data. Within this approach,
each continuous value is assigned to ! bins with weights
given by the B-spline function of order ! defined over ! knot
points. For a continuous value, this function returns a vector
of size ! with ! continuous non-negative weights that
indicate to which bins the value should be assigned. Based
on this idea, four parallel reverse engineering [48, 65-67]
have been developed which will be discussed in detail
below.

 Zola et al. [48] proposed a parallel algorithm named
TINGe (Tool Inferring Networks of Genes). TINGe is the
first parallel software for reverse engineering which con-
structs the largest whole genome plant network. It uses B-
spline based MI and provides efficient permutation testing
for assessing statistical significance by rank transformation,
Data Processing Inequality (DPI) to remove indirect rela-
tionships, and parallel processing for reverse engineering.
DPI states that if three random variables !!, !!, !! from a
Markov Chain in that order i.e., !! → !! → !!, then
!(!!;!!) ≤ !(!!;!!) and !(!!;!!) ≤ !(!!;!!). Indeed, if
three genes !!, !!, !! from a triangle in the network, DPI
can be applied to remove the indirect edge among the three
edges by removing the weakest MI value. This can signifi-
cantly decrease false positive rate. In their performance eval-
uations on Arabidopsis thaliana of size 15222 genes and
3137 observations, the method inferred GRN in 30 minutes
on a 2048-CPU Blue Gene/L and 2 hours and 25 minutes on
a 8 node Cell blade cluster. Since, TINGe was successful,

Misra et al. [65] implemented it on the Intel Xeon Phi single-
chip coprocessor and Chockalingam et al. [67] developed a
distributed version of TINGe on the Amazon EC2 cloud
computing platform by using Hadoop framework.

 Shi et al. [66] proposed a parallel MI-based algorithm by
using B-spline function and CUDA framework, called
CUDA-MI. By defining the weighting matrix (!×!, !:
number of genes; !: number of bins) in which each row of it
indicates the weight coefficients of gene value in the set of
the bin, CUDA-MI calculates pairwise MI in parallel among
genes. Thereafter, the authors implemented their approach on
the Nvidia Tesla C2050 GPU with 448 cores 1.15 GHz and
compared it with Quad-Core i7 2.66 GHz CPU. By using
single GPU version, their best acceleration was 82x, com-
pared to the execution on multi-threaded CPU. Additionally,
they combined CUDA-MI with ARACNE [57] method and
the results of specifiity, sensitivity, and precision analysis
revealed that the combined method is more efficient than
simple ARACNE and TINGe software [48].

 PC is another widely used correlation measure that de-
tects linear relationships among the variables and is defined
as follow:

!(!! ,!!) =
!"#(!!,!!)

!(!!)!(!!)
 (5)

where !"# !! ,!! is the covariance of !!, !!, and !(!!) is
the standard deviation of !!. Liang et al. [56] used PC based
method for gene co-expression network reconstruction,
called FASTGCN. They proposed a parallel algorithm that
integrates genetic information entropy to preprocessing, PC
for analyzing dependency, and z-score for coefficient nor-
malization, and efficiently exploits GPU memory by using
the zero-copy technique. The authors compared CUDA ver-
sion of FASTGCN (implemented on Nvidia Tesla K20c with
2496 cores 760 MHz) against three versions of FASTGCN:
Multi-core (Intel Xeon 16 cores 2.90GHz) CPU with 16
OpenMP thread, Single-thread CPU with C/C++ program-
ming language, and Single-thread CPU with R programming
and achieved 2x, 10x, 80x speedups respectively on the da-
taset containing 16000 genes of 590 individuals.
 Zheng et al. [68] developed a new software based on
their previous PCA-CMI (Path Consistency Algorithm based
on Conditional Mutual Information) algorithm [69], known
as CMIP. PCA-CMI is a well-known iterative algorithm for
reverse engineering. At first, it creates a complete graph of
size ! (! is the number of genes) and at each iteration !
(! = 1, 2,⋯ , !), by using !-order Conditional Mutual Infor-
mation (CMI), quantifies relationships among two genes
given their common !-neighbors. The CMI of variables !!
and !! given !! is defined as:

!(!!;!!|!!) = !(!! ,!!) + !(!! ,!!) − !(!!) −
!(!! ,!! ,!!) (6)

where !(!! ,!!), !(!! ,!!), and !(!! ,!! ,!!) are joint en-
tropies. High CMI value indicates that there may be a close
relationship between the variables !! and !! given
variable(s) !!. After that, it deletes the edges with zero or

Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7 609

low CMI value at each iteration. The time consumed for
large-scale data and how to determine an appropriate edge
deletion threshold are the main drawbacks of PCA-CMI. To
overcome these drawbacks, the authors developed two paral-
lel software by using CUDA and OpenMP frameworks and
defined a mechanism for automatic threshold setting. In
CUDA version of CMIP, pre-processed data is delivered to
GPU cores for correlation calculation using a parallel model
and in OpenMP version, loop calculation is accelerated with
the multi-threading approach. CMIP attained acceptable per-
formance compared to conventional methods.

 Borelli et al. [70] proposed a new exhaustive search algo-
rithm, which expresses the reverse engineering as a feature
selection problem. In this way, feature selection can be
viewed as an iterative searching method for selecting an op-
timal subset of genes which regulate target gene based on
mean conditional entropy function as selecting criteria. The
mean conditional entropy of variables !! given !! defined as:

!(!!|!!) = !!∈!! !(!!)!(!!|!! = !!) (7)

 Conditional entropy of !! conditional on !! refers to the
average entropy of !! conditional on the value of !!, aver-
aged over all possible values of !!. Small value of condition-
al entropy indicates that !! can well predict !! or gene !!
associates the gene !! in GRN context. Exhaustive search
algorithm which is a time-consuming step has been imple-
mented on the GPU and Multi-GPU in parallel. Furthermore,
search algorithm has been implemented in global and local
versions. Regulated genes of each target gene have been lim-
ited but not limited in the local and global search, respective-
ly. Finally, the authors generated data by AGN simulator
with 1024, 2048, 4096, and 8192 genes to evaluate their ap-
proach. They have compared the proposed method when it is
implemented by one, two, and four GPUs with 240 core per
GPU against CPU version which utilized six 3.2GHz core
and OpenMP library. By using four GPU, their acceleration
compared to the execution on CPU is 55, 110, 260, when
there are 32, 64, and 128 target genes per block, respectively.
 LegumeGRN [71] is a reverse engineering web tool,
which has been implemented on multiple well-known re-
verse engineering algorithms. LegumeGRN developers have
implemented a parallel version of TIGRESS [72] and GE-
NIE3 [73], two popular algorithms for reverse engineering,
which uses feature selection like methods as a mechanism
for reverse engineering. GENIE3 uses tree-based ensemble
feature selection method for reverse engineering on multifac-
torial expression data and TINGe uses LARS feature selec-
tion.
 When dealing with high dimensional data and non-
uniform distribution of variables, bias of MI estimator is one
of the main sources of error. To overcome this problem,
Kiraskov et al. [62] proposed an unbiased MI estimator
based on ! nearest neighbor (KNN) classifier. The main idea
is estimating the probability densities from the distribution of
its ! nearest neighbor which implies minimally biased esti-
mator. Sales and Romualdi [74] developed a parallel R pack-
age for reverse engineering based on KNN and MI, called
PARMIGENE (PARallel Mutual Information estimation for

GEne NEtwork reconstruction). The authors combined
PARMIGENE with CLR, ARACNE, and MRNET, three
state-of-the-art ITBMs which use MI for reverse engineer-
ing. Experimental results on in-silico datasets show that
PARMIGENE estimator not only gives unbiased and more
precise results, but is also faster than the other estimators.

3.3. Differential Equation-Based Models

 Ordinary differential equations that are based on the bio-
chemical systems theory are popular approaches for reverse
engineering. In this model, by using a non-linear function !,
regulatory interactions between genes can be expressed as
follow:

!!(!) = !!(!!,⋯ , !! , !, !!) (8)

where !!(!) describes the expression level of gene ! at time
!, !! and ! are the interaction parameters among genes and
the external perturbation of gene, respectively. To date, one
of the most prominent methods is a type of systems of ordi-
nary differential equations called S-Systems. The general
form of an S-System for representing a gene regulatory net-
work is the as follow:
!!!
!"
= !! !

!!! !!
!!,!

!"#$%!#$&'

− !! !
!!! !!

!!,!

!"#$%!%&'()

,∀! (9)

where !! is the expression level of gene !, and ! is the total
number of genes in the network. The non-negative parame-
ters !! and !! are rate constants; !!,! and ℎ!,! are kinetic or-
ders that reflect the interaction from gene ! to gene ! in the
activation and degradation processes, respectively. The pa-
rameter estimation of an S-system model is a large-scale
optimization problem that is computationally expensive.
 Lee et al. [75] and Jostin and Jaeger [76] developed a
GRN model based on S-system. They proposed two distrib-
uted evolutionary algorithms for solving large-scale S-
system parameters estimation. Lee et al. [75] combined Ge-
netic Algorithm (GA) and Particle Swarm Optimization
(PSO). The authors used two fitness function based on the
Minimum Square Error (MSE) and exploited island model
parallelism. In this way, the entire population is divided into
the number of subpopulations and each of them is inde-
pendently executed on the one or more processor(s). The
algorithm is implemented on top of the Hadoop platform.
Jostin and Jaeger [76] developed parallel island evolutionary
algorithm, which is faster and more accurate than the compa-
rable simulated annealing algorithm.
 Xiao et al. [77] recently developed an asynchronous par-
allel algorithm to improve the accuracy and lower time com-
plexity of large-scale GRN inference by combining splitting
technology and ODE. The authors demonstrated that the
sparsity and modularity of large-scale GRNs are much high-
er than the small-scale GRNs. In this paper, the whole net-
work decomposes into clusters based on the MI criteria and
each cluster is modeled by ODE. They used Gaussian elimi-
nation process for parameter estimation.
 Gardner et al. [78] developed an algorithm via a set of
ODEs on the series of steady-state RNA expression, called
NIR (Network Identification by multiple Regression). NIR

610 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

constructs a first-order model of regulatory interactions and
uses multiple linear regression to estimate model parameters.
Due to the high time complexity, like the other sequential
algorithms, sequential NIR cannot be used with large-scale
datasets with thousands of genes. Gregoretti et al. [79] de-
veloped a parallel version of NIR algorithm. They argued
that parameter estimation of NIR can be done independently
by decomposing data matrix into a set of sub-matrices. In
addition to speedup, the results of tests on large datasets
show that the parallel NIR produces many fewer errors.

Fig. (1). Parallel framework usage in the reviewed papers.

Fig. (2). Modeling methods usage in the reviewed papers.

 Differential evolution is a population-based approach that
holds promise for parameter estimation of ordinary differen-
tial equations and is appropriate to be parallelized [80] be-
cause the evaluation of the populations is independent of
each other. In this approach, a problem is iteratively solved
until no further improvement on the solution with regard to a
given objective function. In each iteration, a new population
is created via a migration technique in which the best indi-
vidual from each population is selected and copied to anoth-
er population [81]. Kozlov and Samsonov [82] and Ramirez
et al. [83] proposed a parallel differential evolution algo-
rithm for differential equations parameter estimation by us-
ing MPI library and CUDA framework, respectively.
 As discussed in the introduction, there are many algo-
rithms for GRN modeling from expression data. In this arti-
cle, we reviewed only the approaches that its modeling algo-
rithms were parallel. Table 3 shows some of the strengths
and weaknesses of computational methods which provides
useful insights on GRN reconstruction.

CONCLUSION AND DISCUSSION

 According to reviewed papers, parallel approaches most-
ly use MPI library (Fig. 1). This can have several reasons.
One is that some frameworks, such as CUDA, are only sup-
ported on specific hardware and programming language.
Another reason is that MPI can be used in a wider range of
problems than other frameworks. In spite of the complexity
of MPI programming, the last reason is that the researchers
in MPI programming have a greater ability than CUDA and
Hadoop frameworks. However, none of the frameworks are
complete and have their own limitations. As discussed earli-
er, hybrid parallel programming such as MPI-OpenMP,
MPI-CUDA, and OpenMP-CUDA is a good idea to achieve
better performance and increase flexibility.
 Mathematical modeling is an alternative categorization.
Based on the reviewed papers, information theory based and
differential equations based approaches are often used than
PBN models (Fig. 2). There are two important reasons for
this: first, these approaches are more prevalent among bioin-
formatics researchers; second, their branch-less nature makes

Information theory

Differental equation

Bayesian network

48%

28%

24%

MPI

CUDA

OpenMP

Hadoop

57%
23%

10%

10%

Table 3. Advantages and disadvantages of computational methods.

Model Strength Weakness

Bayesian network • Facilitate the incorporation of prior knowledge and ex-
perimental data

• Able to cope with incomplete and noisy data

• Handle with uncertainty

• Feedback regulations not allowed

• Learning structure of the Bayesian network is NP-hard,
therefore, can only apply to small-scale networks

• Cannot model time series data

Information theory • Easy to parallelize

• Low computational cost

• Able to detect complex interactions

• Can have a high rate of false positives in high dimension-
al data

• Poor asymptotic behaviour under high dimensional data

Differential equation • Suitable for time series and steady-state data

• Model positive and negative feedback interactions

• Difficult to find optimal parameter values

• Applicable to small-scale networks

Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7 611

Table 4. Parallel GRN inference algorithms.

Reference Data Type Based on Framework (Co)processor
Source

Available
Description

[66] Discrete Information Theory CUDA GPU √3
Known as CUDA-

MI

[56] Continuous Information Theory CUDA GPU √4
Known as
FastGCN

[68] Discrete Information Theory CUDA GPU √5 Known as CMIP

[83] Continuous Differential Equation CUDA GPU - -

[70] Discrete Information Theory CUDA-OpenMP GPU - -

[74] Continuous Information Theory OpenMP - √6
Known as PAR-

MIGENE

[76] Continuous Differential Equation MPI - - -

[77] Continuous Differential Equation MPI - - Known as LSGPA

[53] Continuous Bayesian Network MPI - √7,8
Known as fast-

BMA

[50] Continuous B-S-L1 MPI - √9 Known as SiGN

[65] Discrete Information Theory MPI Intel Xeon Phi - Based on TINGe

[49] Discrete Bayesian Network MPI
Intel Xeon/ Intel

Xeon Phi
- -

[82] Continuous Differential Equation MPI Intel Xeon - Known as DEEP

[48] Continuous Information Theory MPI - √10 Known as TINGe

[64] Discrete Information Theory MPI Intel Xeon - -

[79] Continuous Differential Equation MPI - -
Known as Parallel

NIR

[20] Discrete Bayesian Network MPI Intel Xeon √11 -

[47] Discrete Bayesian Network MPI Cray AMD - -

[75] Continuous Differential Equation Hadoop - - -

[67] Continuous Information Theory Hadoop - - -

[71] Continuous ∗2 - - √12
Known as Leg-

umeGRN
1B-S-L: Bayesian Network, State Space Model, L1-regularization
2A software which have implemented multiple well-known reverse engineering algorithms
3https://sites.google.com/site/liuweiguohome/cuda-mi
4http://ibi.zju.edu.cn/software/FastGCN/
5http://www.picb.ac.cn/CMIP/
6https://cran.r-project.org/web/packages/parmigene/index.html
7https://github.com/lhhunghimself/fastBMA, fastBMA is a parallel implementation of ScanBMA
8https://www.bioconductor.org/
9http://sign.hgc.jp/
10http://aluru-sun.ece.iastate.edu/doku.php?id=tinge_gena
11http://bonsai.hgc.jp/~tamada/hgc/suppl/GWGN/index.html
12https://legumegrn.noble.org/cc.html

612 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

them attractive for parallelism. However, there are several
parallel algorithms in literature developed for PBN structure
learning, which can be used in the context of GRN problems
with minor modifications. As discussed earlier, using PBNs
in addition to prior knowledge (e.g. gene ontology or biolog-
ical knowledge) can ultimately improve accuracy and have a
reasonable biological justification.
 In order to perform parallel inference, selecting modeling
approach and parallel framework are essential steps. In this
work, we reviewed parallel algorithms on GRN inference
problem. We also briefly explained parallel frameworks for
programming and development of algorithms. Table 4 sum-
marizes the research works we have found within the litera-
ture’s which use parallelism in the reverse engineering pro-
cess.
 As a result of our studies, we propose some guidelines to
facilitate decision-making for parallel reverse engineering:
• GRNs often are modular [84]. Modularity is a suitable

property for parallel reverse engineering and based on
this, researchers can develop efficient parallel algorithms.

• Based on the reviewed papers, much less attention has
been paid to the knowledge-based approach. Therefore,
developing parallel knowledge-based algorithm is an in-
teresting idea.

• In gene expression dataset, sample sizes are substantially
smaller than the number of available genes. This is
known as “large p small n” problem, so researchers must
take this into account to design more efficient method.

 Sequential inference algorithms are highly limited to the
size of the dataset and often do not provide valuable infor-
mation such as hub genes, master regulators, and many oth-
ers. Parallel algorithms for large-scale GRN problems deliv-
er fast and useful results. However, this field is interdiscipli-
nary, involving parallel algorithms design, bioinformatics,
and machine learning. Therefore, in this paper, parallel re-
verse engineering algorithms are reviewed from the perspec-
tive of parallel frameworks used, bioinformatics knowledge
used for inference, and mathematical modeling methods.

CONSENT FOR PUBLICATION

 Not applicable.

CONFLICT OF INTEREST

 The authors declare no conflict of interest, financial or
otherwise.

ACKNOWLEDGEMENTS

 Declared none.

REFERENCES
[1] Lockhart, D.J.; Winzeler, E.A. Genomics, gene expression and

DNA arrays. Nature, 2000, 405(6788), 827-836. Available
from: https://www.nature.com/articles/35015701

[2] Velculescu, V.E.; Zhang, L.; Vogelstein, B.; Kinzler, K.W.
Serial analysis of gene expression. Science, 1995, 270(5235),
484-487. Available from: http://science.sciencemag.org/content/
270/5235/484

[3] Rays, M.; Chen, Y.; Su, Y.A. Use of a cDNA microarray to
analyse gene expression patterns in human cancer. Nat. Genet-

ics, 1996, 14(4), 367-370.
[4] Bertone, P.; Stolc, V.; Royce, T.E.; Rozowsky, J.S.; Urban, A.E.;

Zhu, X.-A.; Rinn, J.L.; Tongprasit, W.; Samanta, M.; Weissman,
S.; Gerstein, M.; Snyder, M. Global identification of human tran-
scribed sequences with genome tiling arrays. Science, 2004,
306(5705), 2242-2246. Available from: http://science.science
mag.org/content/306/5705/2242.full

[5] Wang, Z.; Gerstein, M.; Snyder, M. RNA-seq: A revolutionary
tool for tran- scriptomics. Nat. Rev. Genet., 2009, 10(1), 57-63.

[6] Zhang, B.; Horvath, S. A general framework for weighted gene
co-expression network analysis. Stat. Appl. Genet. Mol. Biol.,
2005, 4, Article 17.

[7] Marbach, D.; Costello, J.C.; Kuffner, R.; Vega, N.M.; Prill, R.J.;
Camacho, D.M.; Allison, K.R.; Kellis, M.; Collins, J.J.;
Stolovitzky, G. Wisdom of crowds for robust gene network in-
ference. Nat. Methods, 2012, 9(8), 796-804.

[8] Basso, K.; Margolin, A.A.; Stolovitzky, G.; Klein, U.; Dalla-
Favera, R.; Califano, A. Reverse engineering of regulatory net-
works in human b cells. Nat Genet., 2005, 37(4), 382-390.

[9] Imoto, S.; Savoie, C.J.; Aburatani, S.; Kim, S.; Tashiro, K.;
Kuhara, S.; Miyano, S. Use of gene networks for identifying and
validating drug targets. J. Bioinform. Comput. Biol., 2003, 1(3),
459-474.

[10] di Bernardo, D.; Thompson, M.J.; Gardner, T.S.; Chobot, S.E.;
Eastwood, E.L.; Wojtovich, A.P.; Elliott, S.J.; Schaus, S.E.;
Collins, J.J. Chemogenomic profiling on a genome-wide scale
using reverse-engineered gene networks. Nat. Biotechnol., 2005,
23(3), 377-383.

[11] Liang, S.; Fuhrman, S.; Somogyi, R. Reveal, a general reverse
engineering algorithm for inference of genetic network architec-
tures. Pac. Symp. Biocomput., 1998, 18-29. Available from:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.5380

[12] Pihur, V.; Datta, S.; Datta, S. Reconstruction of genetic associa-
tion networks from microarray data: A partial least squares ap-
proach. Bioinformatics, 2008, 24(4), 561-568.

[13] Boulesteix, A.L.; Strimmer, K. Partial least squares: A versatile
tool for the analysis of high-dimensional genomic data. Brief.
Bioinform., 2007, 8(1), 32-44.

[14] Chen, T.; He, H.L.; Church, G.M. Modeling gene expression
with differential equations In: Pacific symposium on biocompu-
ting, vol. 4, 1999, pp. 4.

[15] Friedman, N.; Linial, M.; Nachman, I.; Pe'er, D. Using bayesian
networks to analyze expression data. J. Comput. Biol., 2000,
7(3-4), 601-620.

[16] Murphy, K.; Mian, S. Modelling gene expression data using
dynamic bayesian networks. 1999, Technical Report: University
of California.

[17] Wille, A.; Zimmermann, P.; Vranová, E.; Fürholz, A.; Laule,
O.; Bleuler, S.; Hennig, L.; Prelic, A.; von Rohr, P.; Thiele, L.;
Zitzler, E.; Gruissem, W.; Bühlmann, P. Sparse graphical gauss-
ian modeling of the isoprenoid gene network in Arabidopsis
thaliana. Genome Biol., 2004, 5(11), R92.

[18] Chan, Z.S.H.; Havukkala, I., Jain, V.; Hu, Y.; Kasabov, K. Soft
computing methods to predict gene regulatory networks: An in-
tegrative approach on time-series gene expression data. Appl.
Soft Computing, 2008, 8(3), 1189-1199.

[19] De Jong, H. Modeling and simulation of genetic regulatory
systems: A literature review. J. Comput. Biol., 2002, 9(1), 67-
103.

[20] Tamada, Y.; Imoto, S.; Araki, H.; Nagasaki, M.; Print, C.;
Charnock-Jones, D.S.; Miyano, S. Estimating genome-wide
gene networks using nonparametric bayesian network models
on massively parallel computers. IEEE/ACM Trans. Comput.
Biol. Bioinform., 2011, 8(3), 683-697.

[21] Hecker, M.; Lambeck, S.; Toepfer, S.; van Someren, E.; Guth-
ke, R. Gene regulatory network inference: Data integration in
dynamic models-a review. Biosystems, 2009, 96(1), 86-103.

[22] Bansal, M.; Belcastro, V.; Ambesi-Impiombato, A.; Bernardo,
D.D. How to infer gene networks from expression profiles. Mol.
Syst. Biol., 2007, 3, 78.

[23] Chai, L.E.; Loh, S.K.; Low, S.T.; Mohamad, M.S.; Deris, S.;
Zakaria, Z. A review on the computational approaches for gene
regulatory network construction. Comput. Biol. Med., 2014, 48,
55-65.

[24] Lee, W.P.; Tzou, W.S. Computational methods for discovering
gene networks from expression data. Brief Bioinform., 2009,

Parallel Algorithms for Inferring Gene Regulatory Networks Current Genomics, 2018, Vol. 19, No. 7 613

10(4), 408-423.
[25] Schlitt, T.; Brazma, A. Current approaches to gene regulatory

network modelling. BMC Bioinformatics, 2007, 8(Suppl 6), S9.
[26] Sima, C.; Hua, J.; Jung, S. Inference of gene regulatory net-

works using time-series data: A survey. Curr. Genomics, 2009,
10(6), 416-429.

[27] Biswas, S.; Acharyya, S. Neural model of gene regulatory net-
work: A survey on supportive meta-heuristics. Theory Biosci.,
2016, 135(1-2), 1-19.

[28] Sîrbu, A.; Ruskin, H.J.; Crane, M. Comparison of evolutionary
algorithms in gene regulatory network model inference. BMC
Bioinformatics, 2010, 11, 59. Available from: https://bmcbioin
formatics.biomedcentral.com/articles/10.1186/1471-2105-11-59

[29] Borkar, S. Thousand core chips: A technology perspective In:
Proceedings of the 44th Annual Design Automation Conference,
ACM, 2007, pp. 746-749.

[30] Diaz, J.; Munoz-Caro, C.; Nino, A. A survey of parallel pro-
gramming models and tools in the multi and many-core era.
IEEE Trans. Parallel Distr. Syst., 2012, 23(8), 1369-1386.

[31] Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel
programming with cuda. Queue, 2008, 6(2), 40-53.

[32] CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Cor-
poration, 2011.

[33] Nobile, M.S.; Cazzaniga, P.; Tangherloni, A.; Besozzi, D.
Graphics processing units in bioinformatics, computational bi-
ology and systems biology. Brief Bioinform, 2017, 18(5), 870-
885.

[34] Gropp, W.; Lusk, E.; Skjellum, A. Using MPI: Portable parallel
programming with the message-passing interface, vol. 1; MIT
Press, 1999.

[35] Lin, H.; Ma, X.; Feng, W.; Samatova, N.F. Coordinating com-
putation and i/o in massively parallel sequence search. IEEE
Trans. Parallel Dist. Syst., 2011, 22(4), 529-543.

[36] Ferretti, M.; Musci, M.; Santangelo, L. Mpi-cms: A hybrid
parallel approach to geometrical motif search in proteins. Con-
curr. Comp. Pract. Exp., 2015, 27(18), 5500-5516.

[37] Chandra, R.; Menon, R.; Dagum, L.; Kohr, D.; Maydan, D.;
McDonald, J. Parallel Programming in OpenMP, 1st ed. Mor-
gan Kaufmann, 2001.

[38] Taylor, R.C. An overview of the hadoop/mapreduce/hbase
framework and its current applications in bioinformatics. BMC
Bioinformatics, 2010, 11(Suppl 12), S1.

[39] Matsunaga, A.; Tsugawa, M.; Fortes, J. Cloudblast: Combining
mapreduce and virtualization on distributed resources for bioin-
formatics applications In: IEEE Fourth International Conference
on eScience, 2008, pp. 222-229.

[40] Jourdren, L.; Bernard, M.; Dillies, M.A.; Le Crom, S. Eoulsan:
A cloud computing-based framework facilitating high through-
put sequencing analyses. Bioinformatics, 2012, 28(11), 1542-
1543.

[41] Schumacher, A.; Pireddu, L.; Niemenmaa, M.; Kallio, A.; Kor-
pelainen, E.; Zanetti, G.; Heljanko, K. Seqpig: Simple and scal-
able scripting for large sequencing data sets in hadoop. Bioin-
formatics, 2014, 30(1), 119-120.

[42] Nordberg, H.; Bhatia, K.; Wang, K.; Wang, Z. Biopig: A ha-
doop-based analytic toolkit for large-scale sequence data. Bioin-
formatics, 2013, 29(23), 3014-3019.

[43] Pearl, J. Bayesian networks. Department of Statistics, UCLA,
USA, 2011.

[44] Needham, C.J.; Bradford, J.R.; Bulpitt, A.J.; Westhead, D.R. A
primer on learning in bayesian networks for computational biol-
ogy. PLoS Comput. Biol., 2007, 3(8), e129. Available from:
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal
.pcbi.0030129

[45] Chickering, D.; Geiger, D.; Heckerman, D. Learning bayesian
networks: Search methods and experimental results In: Proceed-
ings of Fifth Conference on Artificial Intelligence and Statistics,
1995, pp. 112-128.

[46] Friedman, N.; Nachman, I.; Pe´er, D. Learning bayesian net-
work structure from massive datasets: The sparse candidate al-
gorithm In: Proceedings of the Fifteenth Conference on Uncer-
tainty in Artificial Intelligence. Morgan Kaufmann Publishers
Inc., 1999, pp. 206-215.

[47] Nikolova, O.; Aluru, S. Parallel bayesian network structure
learning with application to gene networks. In: 2012 Interna-
tional Conference for High Performance Computing, Network-

ing, Storage and Analysis (SC), IEEE, 2012, pp. 1-9.
[48] Zola, J.; Aluru, M.; Sarje, A.; Aluru, S. Parallel information-

theory-based construction of genome-wide gene regulatory net-
works. IEEE Trans. Parallel Dist. Syst., 2010, 21(12), 1721-
1733.

[49] Misra, S.; Vasimuddin, M.; Pamnany, K.; Chockalingam, S.P.;
Dong, Y.; Xie, M. Aluru, M.R.; Aluru, S. Parallel bayesian net-
work structure learning for genome-scale gene networks. In
SC14: International Conference for High Performance Compu-
ting, Networking, Storage and Analysis. IEEE, 2014, pp. 461-
472.

[50] Tamada, Y.; Shimamura, T.; Yamaguchi, R.; Imoto, S.; Naga-
saki, M.; Miyano, S. Sign: Large-scale gene network estimation
environment for high performance computing. Genome Infor-
matics, 2011, 25(1), 40-52.

[51] Tamada, Y.; Yamaguchi, R.; Imoto, S.; Hirose, O.; Yoshida, R.;
Nagasaki, M.; Miyano, S. Sign-ssm: Open source parallel soft-
ware for estimating gene networks with state space models. Bio-
informatics, 2011, 27(8), 1172-1173.

[52] Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T.
Bayesian model averaging: A tutorial. Statist. Sci., 1999, 14(4),
382-401.

[53] Young, W.C.; Raftery, A.E.; Yeung, K.Y. Fast bayesian infer-
ence for gene regulatory networks using scanbma. BMC Syst.
Biol., 2014, 8, 47.

[54] Hung, L.H.; Shi, K.; Wu, M.; Young, W.C.; Raftery, A.E.;
Yeung, K.Y. fastBMA: Scalable network inference and transi-
tive reduction. Gigascience, 2017, 6(10), 1-10.

[55] Wen, X.; Fuhrman, S.; Michaels, G.S.; Carr, D.B.; Smith, S.;
Barker, J.L.; Somogyi, R. Large-scale temporal gene expression
mapping of central nervous system development. Proc. Natl.
Acad. Sci. U.S.A., 1998, 95(1), 334-339.

[56] Liang, M.; Zhang, F.; Jin, G.; Zhu, J. FastGCN: A gpu acceler-
ated tool for fast gene co-expression networks. PLoS One, 2015,
10(1), e0116776. Available from: http://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0116776

[57] Margolin, A.A.; Nemenman, I.; Basso, K.; Wiggins, C.;
Stolovitzky, G.; Dalla Favera, R.; Califano, A. Aracne: An algo-
rithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinformatics, 2006,
7(Suppl 1), S7.

[58] Faith, J.J.; Hayete, B.; Thaden, J.T.; Mogno, I.; Wierzbowski,
J.; Cottarel, G.; Kasif, S.; Collins, J.J.; Gardner, T.S.; Jeremiah,
J. Large-scale mapping and validation of Escherichia coli tran-
scriptional regulation from a compendium of expression pro-
files. PLoS Biol., 2007, 5(1), e8. Available from:
http://journals.plos.org/plosbiology/article?id=10.1371/journal.p
bio.0050008

[59] Meyer, P.E.; Kontos, K.; Lafitte, F.; Bontempi, G. Information-
theoretic inference of large transcriptional regulatory networks.
EURASIP J. Bioinform. Syst. Biol., 2007, 79879.

[60] Butte, A.J.; Kohane, I.S. Mutual information relevance net-
works: Functional genomic clustering using pairwise entropy
measurements. Pac. Symp. Biocomput., 2000, 418-429.

[61] Song, L.; Langfelder, P.; Horvath, S. Comparison of co-
expression measures: Mutual information, correlation, and mod-
el based indices. BMC Bioinformatics, 2012, 13, 328. Available
from: https://bmcbioinformatics.biomedcentral.com/articles/
10.1186/1471-2105-13-328

[62] Kraskov, A.; Stogbauer, H.; Grassberger, P. Estimating mutual
information. Phys. Rev. E, 2004, 69(6), 066138.

[63] Daub, C.O.; Steuer, R.; Selbig, J.; Kloska, S. Estimating mutual
information using b-spline functions-an improved similarity
measure for analysing gene expression data. BMC Bioinformat-
ics, 2004, 5, 118. Available from: https://bmcbioinformatics.bio
medcentral.com/articles/10.1186/1471-2105-5-118

[64] Belcastro, V.; Gregoretti, F.; Siciliano, V.; Santoro, M.;
D’Angelo, G.; Oliva, G.; Bernardo, G. Reverse engineering and
analysis of genome-wide gene regulatory networks from gene
expression profiles using high-performance computing.
IEEE/ACM Trans. Comput. Biol. Bioinform, 2012, 9(3), 668-
678.

[65] Misra, S.; Pamnany, K.; Aluru, S. Parallel mutual information
based construction of whole-genome networks on the intel (r)
xeon phi (tm) coprocessor. IEEE/ACM Trans. Comput. Biol. Bi-
oinform, 2015, 12(5), 1008-1020.

614 Current Genomics, 2018, Vol. 19, No. 7 Abbaszadeh et al.

[66] Shi, H.; Schmidt, B.; Liu, W.; Muller-Wittig, W. Parallel mutual
information estimation for inferring gene regulatory networks
on gpus. BMC Res. Notes, 2011, 4(1), 1.

[67] Chockalingam, S.P.; Aluru, M.; Aluru, S. Information theory
based genome-scale gene networks construction using mapre-
duce. In 2015 IEEE 22nd International Conference on High Per-
formance Computing (HiPC); IEEE, 2015, pp. 464-473.

[68] Zheng, G.; Xu, Y.; Zhang, X.; Liu, Z.P.; Wang, Z.; Chen, L.;
Zhu, X.G. Cmip: A software package capable of reconstructing
genome-wide regulatory networks using gene expression data.
BMC Bioinformatics, 2016, 17(Suppl 17), 535.

[69] Zhang, X.; Zhao, X.M.; He, K.; Lu, L.; Cao, Y.; Liu, J.; Hao,
J.K.; Liu, Z.P.; Chen, L. Inferring gene regulatory networks
from gene expression data by path consistency algorithm based
on conditional mutual information. Bioinformatics, 2012, 28(1),
98-104.

[70] Borelli, F.F.; de Camargo, R.Y.; Martins, D.C.; Rozante, L.C.
Gene regulatory networks inference using a multi-GPU exhaus-
tive search algorithm. BMC Bioinformatics, 2013, 14(Suppl 18),
S5.

[71] Wang, M.; Verdier, J.; Benedito, V.A.; Tang, Y.; Murray, J.D.;
Ge, Y.; Becker, J.D.; Carvalho, H.; Rogers, C.; Udvardi, M.;
He, J. LegumeGRN: A gene regulatory network prediction serv-
er for functional and comparative studies. PLoS One, 2013,
8(7), e67434. Available from: http://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0067434

[72] Haury, A.C.; Mordelet, F.; Vera-Licona, P.; Vert, J.P. Tigress:
Trustful inference of gene regulation using stability selection.
BMC Syst. Biol., 2012, 6(1), 145.

[73] Huynh-Thu, V.A.; Irrthum, A.; Wehenkel, L.; Geurts, P. Infer-
ring regulatory networks from expression data using tree-based
methods. PLoS One, 2010, 5(9), e12776. Available from:
https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-
0509-6-145

[74] Sales, G.; Romualdi, C. Parmigenea parallel r package for mu-
tual information estimation and gene network reconstruction.
Bioinformatics, 2011, 27(13), 1876-1877.

[75] Lee, W.P.; Hsiao, Y.T.; Hwang, W.C. Designing a parallel
evolutionary algorithm for inferring gene networks on the cloud
computing environment. BMC Syst. Biol., 2014, 8, 5. Available

from: https://bmcsystbiol.biomedcentral.com/articles/10.1186/
1752-0509-8-5

[76] Jostins, L.; Jaeger, J. Reverse engineering a gene network using an
asynchronous parallel evolution strategy. BMC Syst. Biol., 2010, 4,
17. Available from: https://bmcsystbiol.biomedcentral.com/
articles/10.1186/1752-0509-4-17

[77] Xiao, X.; Zhang, W.; Zou, X. A new asynchronous parallel
algorithm for inferring large-scale gene regulatory networks.
PLoS One, 2015, 10(3), e0119294. Available from:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.
0119294

[78] Gardner, T.S.; di Bernardo, D.; Lorenz, D.; Collins, J.J. Infer-
ring genetic networks and identifying compound mode of action
via expression profiling. Science, 2003, 301(5629), 102-105.
Available from: http://science.sciencemag.org/content/301/
5629/102

[79] Gregoretti, F.; Belcastro, V.; di Bernardo, D.; Oliva, G. A paral-
lel implementation of the network identification by multiple re-
gression (nir) algorithm to reverse-engineer regulatory gene
networks. PLoS One, 2010, 5(4), e10179. Available from:
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.
0010179

[80] Alba, E. Parallel evolutionary algorithms can achieve super-
linear performance. Inform. Process. Lett., 2002, 82(1), 7-13.

[81] Spirov, A.; Holloway, D. Using evolutionary computations to
understand the design and evolution of gene and cell regulatory
networks. Methods, 2013, 62(1), 39-55.

[82] Kozlov, K.; Samsonov, A. Deep-differential evolution entirely
parallel method for gene regulatory networks. J. Supercompu-
ting, 2011, 57(2), 172-178.

[83] Ramirez-Chavez, L.E.; Coello, C.; Rodriguez-Tello, E. A gpu-
based implementation of differential evolution for solving the
gene regulatory network model inference problem. In: Proceed-
ings of Fourth International Workshop on Parallel Architectures
and Bioinspired Algorithms, 2011, pp. 21-30.

[84] Segal, E.; Shapira, M.; Regev, A.; Pe'er, D.; Botstein, D.;
Koller, D.; Friedman, N. Module networks: Identifying regula-
tory modules and their condition-specific regulators from gene
expression data. Nat. Genet., 2003, 34(2), 166-176.

