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Chest pain is a common symptom in patients with systemic lupus erythematosus,

an autoimmune disease that is associated with increased cardiovascular morbidity

and mortality. While chest pain mechanisms can be multifactorial and often attributed

to non-coronary or non-cardiac cardiac etiologies, emerging evidence suggests that

ischemia with no obstructive coronary arteries (INOCA) is a prevalent condition in patients

with chest pain and no obstructive coronary artery disease. Coronary microvascular

dysfunction is reported in approximately half of SLE patients with suspected INOCA. In

this mini review, we highlight the cardiovascular risk assessment, mechanisms of INOCA,

and diagnostic approach for patients with SLE and suspected CMD.

Keywords: systemic lupus erythematosus, chest pain, coronary microvascular dysfunction, coronary vasospasm,

ischemic heart disease

INTRODUCTION

Cardiovascular disease (CVD) is a significant contributor to mortality in patients with systemic
lupus erythematosus (SLE), with cardiovascular mortality approximately 2.7-fold higher than
the general population (1). Despite advancements in treatment for SLE that have improved
prognosis, CVD remains a major comorbidity, manifesting as accelerated atherosclerosis and
myocardial infarction. Because SLE patients are predominantly female, inadequate CVD risk
assessment and underdiagnosis in SLE patients may contribute to CVD morbidity and mortality,
which are worse overall for women compared to men with ischemic heart disease (2). Young
women with SLE are particularly at risk (3), as those in the 35-to 44-year age group have a
50-fold increase in risk of myocardial infarction compared to age-matched reference women
(4). Patients with SLE frequently report chest pain in the absence of obstructive coronary
artery disease (CAD), and their chest pain is often attributed to a non-ischemic etiology (5).
However, in the past decade, advances in the non-invasive diagnosis of ischemia and no
obstructive CAD (INOCA) have determined that coronary microvascular dysfunction (CMD)
is highly prevalent in patients with SLE. In this mini review, we highlight the cardiovascular
risk assessment, mechanisms of INOCA, and diagnostic approach for patients with SLE and
suspected CMD.
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CARDIOVASCULAR RISK ASSESSMENT IN
SLE PATIENTS

Traditional cardiovascular risk factors only partially explain
the increased CVD risk in SLE patients (6). Thus, traditional
cardiovascular risk scores underestimate CVD risk in SLE
patients (7). In an analysis of 263 asymptomatic patients with
SLE and no prior CVD, risks of non-fatal MI and CVDmortality
were over 10-fold higher than what would be expected based
on traditional risk factors alone, and presence of SLE increased
CVD risk at least 4-fold compared with predictions based on
Framingham Risk Score (FRS) models (8). A modified FRS for
SLE in which each item is multiplied by 2 was found to be a
more accurate predictor of CAD in patients with SLE (9), but
this approach does not reflect SLE-specific factors that contribute
to heterogeneity of CVD risk in SLE patients. In a cohort of
210 SLE patients without prior CVD or diabetes mellitus (93%
female, mean age 45 ± 12 years), both generic risk scores
and “SLE-adapted” CVD risk scores underestimated high CVD
risk as defined by carotid and femoral atherosclerotic plaque
presence (10). Compared to modified risk scores that use a
multiplication factor for the presence of SLE (e.g., modified FRS),
the QRESEARCH risk estimator version 3 (QRISK3) includes
SLE as an independent CVD risk factor and improved prediction
of subclinical atherosclerotic CVD (10, 11).

SLE-related factors (e.g., as age at diagnosis, cumulative
disease duration, disease activity, and cumulative dose of
prednisone or cyclophosphamide) have been found to correlate
with coronary atherosclerosis, and elevated c-reactive protein
level was associated with CVD events in SLE patients (12, 13).
Derivation of a SLE-specific cardiovascular risk equation (SLE-
CRE) that incorporates both traditional CVD risk factors and
SLE-specific risk factors (SELENA-SLEDAI disease activity score,
low C3, and lupus anticoagulant) may better estimate 10-year
CVD risk among patients with SLE compared to existing FRS
or Pooled Cohort Risk Equation risk scores (14). In a recent
single-center analysis of 1,887 SLE patients (88% female, age
39 ± 15 years), SLE-CRE had the highest sensitivity (61%) but
lowest specificity (64%) for predicting CVD events compared
to QRISK3, FRS, and modified FRS; the authors recommended
the modified FRS as the best performer with its simple scoring
system (15). However, further studies in larger cohorts are
needed to improve the precision of CVD risk assessment in SLE
patients. The American College of Cardiology (ACC)/American
Heart Association (AHA) prevention guideline recommends to
consider the presence of chronic inflammatory or autoimmune
disease as a risk-enhancing factor (16) but does not provide
specific recommendations regarding risk calculators.

MECHANISMS OF ISCHEMIA IN PATIENTS
WITH NO OBSTRUCTIVE CAD

Chest pain and discomfort are frequently reported by patients
with SLE, with high prevalence of angina in comparison
to the general population (5). SLE patients with chest pain
often present a diagnostic dilemma as they are frequently

dismissed when coronary angiography demonstrates non-
obstructive CAD or normal epicardial coronary arteries, which
is more common among women than men with chest pain
(17). Given previous limitations in diagnostic technology,
these symptoms are often attributed to psychosomatic pain,
chest wall pain, pericarditis/myocarditis, esophageal pain, or
myofascial pain (18). Failure to accurately diagnose INOCA
has significant clinical implications. Despite the absence of
obstructive epicardial CAD, women with persistent stable angina
have an elevated risk for CVD events, including all-cause
and CVD mortality and progression to obstructive CAD (19,
20). Mechanisms of INOCA are predominantly attributed to
coronary microvascular dysfunction (CMD) and/or coronary
vasospasm, one or both of which are diagnosed in up to
4 in 5 patients undergoing invasive evaluation for INOCA
(21–25). CMD is defined as an attenuated coronary blood
flow response or coronary flow reserve (CFR), increased
microvascular resistance, microvascular vasospasm, impaired
myocardial perfusion reserve, and/or myocardial ischemia in
the absence of obstructive CAD (<50% epicardial stenosis or
fractional flow reserve >0.80) (26). CMD has an estimated
prevalence of approximately 50% in individuals with no
obstructive CAD undergoing non-invasive stress tests (27,
28). Epicardial coronary artery spasm is defined as >90%
constriction either spontaneously or in response to a provocative
stimulus (29).

Endothelial dysfunction, smooth muscle cell dysfunction,
and vascular remodeling are major pathogenetic mechanisms
in CMD and vasospasm. Endothelial dysfunction results
from a reduced production or action of endothelium-derived
relaxing factors (nitric oxide, vasodilator prostaglandins, and
endothelium-dependent hyperpolarization factors), leading to
the inability of the small resistance vessels (prearterioles and
arterioles) or the large conduit vessels (epicardial arteries)
to vasodilate adequately in response to myocardial demand,
therefore leading to ischemia (30). Endothelial dysfunction is
caused by aging, hypertension, hyperlipidemia, diabetes, obesity,
chronic inflammatory disease, and smoking, and it is a precursor
to coronary atherosclerosis (31, 32). In addition, patients
with CMD and/or vasospasm may have enhanced coronary
vasoconstrictive reactivity related to inflammation, rho kinase-
induced myosin light-chain phosphorylation, and increased
production of vasoconstrictive mediators (e.g., endothelin-1,
serotonin, catecholamines), contributing to smooth muscle cell
hyper-reactivity (30). The autonomic nervous system, a key
regulator of vascular tone, can also contribute to coronary
vasomotor dysfunction, such as heightened sympathetic nervous
system activity and increased vagal tone in patients with
vasospastic angina, and may be implicated in SLE (33).
Finally, vascular remodeling and capillary rarefaction may occur
in patients with hypertensive heart disease, aortic stenosis,
infiltrative heart diseases, or chronic kidney disease (34).
These functional and structural alterations of the coronary
microvascular and epicardial arterial system contribute to the
imbalance of vasodilating and vasoconstricting responses to
stress, resulting in a supply-demand mismatch in coronary blood
flow and ischemia.
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Microvascular involvement is known to affect multiple
organ systems in SLE, for example, in the kidney (lupus
nephritis), digestive system (intestinal vasculitis), pulmonary
vasculature (pulmonary hypertension, pulmonary vasculitis)
and skin (livedo reticularis, cutaneous vasculitis). Although
cardiac microvascular involvement occurs in other autoimmune
diseases (such as systemic sclerosis and rheumatoid arthritis), the
possibility of CMD in SLE has not been well established (35–
39). Brachial endothelial dysfunction is significantly impaired
in young SLE patients (40). Recent studies have indicated
that skin microvascular dysfunction is present in young SLE
patients with and without CVD risk factors (41) and associated
with elevated carotid intimal media thickness and aortic
atherosclerosis (42). Given this propensity for SLE to affect
the microvasculature and the endothelium, the cardiovascular
involvement is an important consideration beyond the well-
known risk for atherosclerotic CAD.

INFLAMMATORY MECHANISMS OF SLE
CORONARY VASCULAR DYSFUNCTION
AND ATHEROSCLEROSIS

The chronic inflammatory state of SLE plays a crucial role
in accelerating endothelial dysfunction, atherosclerosis, and
autonomic dysfunction. Endothelial dysfunction and early
atherosclerosis in SLE have been attributed to dysregulation
of prothrombotic cell death, and inflammatory mediators
(Figure 1) (43–50).

Monocyte/Macrophage Function
In SLE patients, type I interferons (IFNs) drive an increase
in elevated inflammatory chemokines monocyte chemotactic
protein-1 [MCP-1] and macrophage inflammatory protein 1α,
triggering recruitment of monocytes into the subendothelial
space and the upregulation of scavenger receptors such as CD36
(elevated in SLE monocytes) and scavenger receptor A (SR-A)
(51–54). IFNs also promote formation of macrophage foam cells
with the uptake of oxidized low-density lipoprotein (55–58).
Indeed, a correlation between MCP-1 levels and carotid artery
intima thickness is observed in SLE, underscoring its potential
importance in promoting plaque development in SLE (59).

Neutrophil Function
Type I IFNs and other inflammatory mediators elevated in
SLE also contribute to vascular damage by inducing endothelial
dysfunction and reduced nitric oxide mediated vasodilation (60–
63). Neutrophils in SLE are a potent source of type I IFNs–
either releasing it directly themselves or triggering its production
via the release of neutrophil extracellular traps or NETs (64–
67). In SLE, NETs from inflammatory neutrophils termed low
density neutrophils (LDNs) or granulocytes have been found
to contain matrix metalloproteinases, resulting in damage to
endothelial cells and drive the release of inflammatory cytokines
and type I IFNs, promoting endothelial dysfunction (68–71).
Levels of LDNs are associated with coronary plaque burden and
endothelial dysfunction (72, 73), thus underscoring the role for

these neutrophils in SLE-associated cardiovascular disease and
potentially CMD.

Metabolic Dysregulation
Among SLE patients, renal dysfunction and higher corticosteroid
doses are associated with metabolic syndrome, prevalence of
which is enhanced in SLE patients and further contributes
to increased CVD risk (74). Body mass index is significantly
related to insulin resistance in SLE patients, independently of
age, sex, race, and corticosteroid use (75). Chronic inflammation
may be a potential contributor to enhanced risk of developing
metabolic syndrome and insulin resistance in SLE patients,
via TNFα release from adipocytes (76–78). In addition to
secreting pro-inflammatory cytokines, white adipose tissue also
secretes adipokines such as leptin and adiponectin, both of
which are responsible for regulating energy homeostasis and
metabolism. Leptin also drives inflammation and upregulates
oxidative stress, not only in neutrophils and monocytes, but
also in endothelial cells and cardiomyocytes (79–82). Indeed,
leptin levels are increased in SLE, with evidence that the increase
confers enhanced risk of atherosclerosis in these patients (83, 84).

Antiphospholipid Syndrome
Gene profiling has also revealed specific molecular pathways
in the pathogenesis of atherosclerosis and CVD in SLE
patients with and without antiphospholipid syndrome (APS).
Antiphospholipid antibodies are known to trigger inflammatory
cascades with increased expression of cytokines, chemokines, and
mediators of endothelial dysfunction, as well as accelerate the
influx of oxidized low-density lipoproteins into macrophages,
promoting atherosclerosis development (85). From microarray
expression profiling in monocytes of patients with SLE with
and without APS, IgG-anticardiolipin titers were significantly
related to inflammatory, endothelial dysfunction, and oxidative
stress markers, as well as were independently predicted both
atherosclerosis and thrombosis in SLE patients with APS (85).

ADVANCED CARDIAC IMAGING FOR
DIAGNOSIS OF CMD IN SLE PATIENTS

Advanced cardiac imaging studies in the past decade have
improved understanding of CMD prevalence in SLE patients.
Stress transthoracic doppler echocardiography (TTDE), positron
emission tomography (PET), and cardiac magnetic resonance
imaging (CMR) are recommended by society guidelines for the
diagnosis of CMD, with test choice guided by local availability
and expertise (86, 87).

Transthoracic Doppler Echocardiography
TTDE is an established method of CMD evaluation, by
measuring CFR in the left anterior descending coronary artery
(88, 89). In a study including 21 SLE patients (mean age 60 ±

11 years) and 23 control subjects (mean age 65 ± 10 years) with
comparable CVD risk factors, coronary artery calcium scores,
and no obstructive CAD, the prevalence of CMD (defined as
CFR < 2.5) was higher in the SLE group (67%) compared to the
control group (26%), with an odds ratio of 16.7 for CMD in SLE
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FIGURE 1 | Inflammatory mechanisms driving coronary vascular dysfunction in SLE. Lupus-specific and non-lupus specific factors drive inflammation and coronary

vascular dysfunction in SLE. IFNs indicate interferons; MCP-1, monocyte chemoattractant protein 1; NET, neutrophil extracellular trap; ROS, reactive oxygen species.

[Created in Biorender. Adapted from (43)].

patients after adjusting for age, body mass index, anemia, and
hemoglobin level (89). TTDE CFR has also been demonstrated
to be reduced in young SLE patients (n = 18, mean age 29
± 6 years) compared to age-, sex- and race-matched healthy
controls, supporting the hypothesis that coronary microvascular
impairment occurs early in SLE patients (90).

Stress Cardiac Positron Emission
Tomography
Stress cardiac PET utilizes radioactive tracers in patients at rest
and with vasodilator stress to quantify absolute myocardial blood
flow (MBF) and detect impaired myocardial flow reserve (MFR)
suggestive of CMD (91). Cardiac PETMFR < 2.0 has been found
to be prognostic in both women and men with INOCA and
recommended as a diagnostic threshold for CMD (28). In a recent
study of 42 middle-aged SLE patients (mean age 61.2± 0.5 years,
97% women) with no obstructive CAD who underwent cardiac
PET for evaluation of suspected CAD, MFR < 2.0 consistent
with CMD was seen in 57.1% of the patients, and global MFR
was significantly reduced compared to matched controls (1.9 ±

0.5 vs. 2.4 ± 0.7, P < 0.0001) despite a similar degree of non-
obstructive CAD burden and similar myocardial blood flow at
rest (92). MFR was reduced in the presence or absence of chronic
kidney disease, whether due to lupus nephritis or other causes.

MFR was not associated with SLE disease duration nor presence
of antiphospholipid antibodies. However, MFR was inversely
related to SLE disease activity, consistent with a prior PET study
of 13 SLE patients (93). Although prognostic utility of PET
MFR has not been reported in SLE patients only, several studies
have demonstrated that impaired PET MFR predicts adverse
cardiovascular events and all-cause mortality in patients with
autoimmune rheumatic diseases including SLE (37, 94, 95).

Stress Cardiac Magnetic Resonance
Imaging
Stress CMR has emerged as a diagnostic and prognostic tool
for the evaluation of CMD in patients with no obstructive CAD
(96, 97), and may be preferred in SLE patients with concern
for myocarditis or pericardial disease, given the standing of
CMR as a primary modality of diagnosis for these disease
processes (98). CMR measures of coronary blood flow include
the semiquantitative myocardial perfusion reserve index (MPRI)
<1.84 and quantitative MFR < 2.19, which are sensitive and
specific for diagnosing CMD in women and men with angina
and no obstructive CAD (99, 100). Furthermore, MPRI ≤

1.47 independently predicts of major adverse cardiac events
in patients with INOCA (101). A study of 20 young women
with SLE and angina (mean age 40.6 years) found that
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FIGURE 2 | Clinical risk assessment of SLE patients with chest pain and algorithm for diagnosis of coronary microvascular dysfunction and vasospasm. Non-invasive

and invasive testing allow assessment of coronary microvascular dysfunction, while invasive acetylcholine provocation testing can additionally assess coronary

vasospasm. While CMR may be preferred for concomitant assessment of myocarditis, test choice should be guided by local expertise and availability. All SLE patients

with angina should receive optimal medical therapy, including lifestyle intervention and intensive pharmacologic therapy (anti-ischemic and preventive therapy). CAD

indicates coronary artery disease; CFR, coronary flow reserve; CMR, cardiac magnetic resonance imaging; CVD, cardiovascular disease; ECG, electrocardiogram;

FFR, fractional flow reserve; IMR, index of microcirculatory restriction; MFR, myocardial flow reserve; MPRI, myocardial perfusion reserve index; PET, positron emission

tomography; and TTDE, transthoracic doppler echocardiography.

visually-identified stress-induced circumferential subendocardial
hypoperfusion consistent with global endocardial ischemia was

more common in the SLE patients compared with age and
sex-matched asymptomatic healthy controls (44 vs. 0%, P =

0.014) (102). MPRI trended lower in patients with SLE vs.

controls (2.0 ± 0.4 vs. 2.3 ± 0.4, P = 0.16), despite absence of
obstructive CAD with low burden of coronary atherosclerosis

and low-to-moderate SLE disease activity in the SLE patients.

MPRI did not correlate with SLE duration or SLE disease
activity in this relatively healthy SLE cohort, but presence
of SLE was found to be a predictor of subepicardial and
subendocardial MPRI (102). In a 5-year follow-up study, a
majority of the women reported persistent chest pain but only
25% had a decrease in their MPRI, which occurred in the absence
of coronary atherosclerosis progression (103). All individuals
with improved CMR findings were concomitantly on aspirin,
beta-blocker therapy and cholesterol-lowering agents at follow-
up, although clinical trials are needed to understand impact
of disease modifying agents and optimal preventive therapy
in SLE patients with CMD. Long-term studies to determine
prognostic utility of CMR MPRI or MPR in SLE patients
are needed.

INVASIVE CORONARY FUNCTION
TESTING FOR DIAGNOSIS OF CMD AND
VASOSPASM

Invasive testing allows for a more comprehensive delineation
of CMD vs. vasospasm in patients with INOCA (17),
although prevalence of coronary vasomotor dysfunction in
SLE patients has not been reported in invasive coronary
function studies. Since SLE patients not uncommonly
have Raynaud’s phenomenon, a vasospastic disorder of the
fingers or toes, coronary vasospasm has been hypothesized to
contribute to angina in SLE patients, although confirmatory
studies are lacking. Invasive measures of CMD predict
mortality and major adverse cardiac events, independent of
cardiovascular risk factors (104). Acetylcholine provocation
of epicardial vasospasm predicts myocardial infarction and
repeated angiography (105). Furthermore, stratified medical
therapy based on invasive diagnosis of CMD vs. epicardial
vasospasm improved angina and quality of life in a randomized
clinical trial (21). However, the diagnostic and prognostic
utility of invasive coronary function testing for SLE patients
is unknown.

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 867155

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


M
a
n
c
h
a
n
d
a
e
t
a
l.

C
M
D
in

S
L
E

TABLE 1 | Review of studies that assess CMD in patients with SLE.

Imaging

modality

Reference N Mean age

(years)

% Female Disease

duration

(years)

Disease activity and

prevalence of steroid

use

Measures of CMD Resting coronary velocity

(cm/s) or Myocardial flow

(mL/min/g)

Other measures of CAD

TTDE Kakuta

et al. (89)

21 (SLE)

23 (C)

60 ± 11 (SLE)

65 ± 10 (C)

81% (SLE);

78% (C)

9 (3–13) SLEDAI 0 (0)

prednisolone 95.2%

CFR 2.23 ± 0.71 (SLE)

CFR 3.01 ± 0.72 (C)

CFR not related to age,

disease duration, steroid

use, hematocrit, CRP

DFV 19.8 ± 5.5 (SLE)

DFV 17.1 ± 4.7 (C)

CACS of LAD 0

(0–138) (SLE); CACS of LAD

30 (0–225) (C); total CACS

similar between groups;

CACS not related to CFR

Hirata

et al. (90)

18 (SLE)

19 (C)

29 ± 6 (SLE)

28 ± 4 (C)

100% (SLE)

100% (C)

8.2 ± 7.2 SLEDAI 11 ± 5 CFR 3.4 ± 0.8 (SLE)

CFR 4.5 ± 0.5 (C)

CFR not related to SLEDAI,

disease duration, CRP,

cholesterol, steroid use

DFV 33.6 ± 9.5 (SLE)

DFV 26.2± 6.5 (C)

NR

PET Weber

et al. (92)

42 (SLE)

69 (C)

61± 0.5 (SLE)

62 ± 12 (C)

97% (SLE)

95% (C)

15.7 ± 10.5 SLEDAI 4 (0–6)

prednisone 48%

MFR 1.91 ± 0.5 (SLE)

MFR 2.4 ± 0.7 (C)

MFR inversely related to

SLEDAI but not to

disease duration

NR CAC = 0 in ∼50% of

each group (MFR remained

lower in SLE vs. C);

Frequency of CAC severity

similar between groups

Recio-

Mayoral

et al. (93)

13 (SLE)

12 (RA)

25 (C)

30 ± 8 (SLE)

47 ± 7 (RA)

44 ± 9 (C)

100% (SLE)

83% (RA)

80% (C)

11 ± 7 (SLE)

16 ± 11 (RA)

SLEDAI 0 (0–2)

DAS-28 2.0 (1.7–2.5)

prednisone 42% (SLE),

61% (RA)

MFR 2.44 ± 0.78

(SLE + RA)

MFR 3.87 ± 0.92 (C)

Similar MFR between SLE

and RA; MFR inversely

related to SLEDAI and

disease duration (SLE+RA)

but not to age,

prednisone dose

MBF 1.25 ± 0.27 (SLE +

RA)

MBF 1.13 ± 0.27 (C)

normal coronaries (72%)

mild CAD (28%)

obstructive CAD (0%)

Weber

et al. (94)

41 (SLE)

63 (psoriasis)

94 (RA)

65 ± 12 (all) 80% (all) NR NR MFR 1.83 (1.6–2.2) (SLE)

MFR 1.80 (1.4–2.5)

(psoriasis)

MFR 1.93 (1.5–2.2) (RA)

MFR similar between groups

MBF 1.01 (0.88–1.40) (SLE)

MBF 0.99 (0.8–1.3)

(psoriasis)

MBF 1.03 (0.82–1.3) (RA)

MBF similar between groups

NR

Feher

et al. (95)

101 (ARD)

101 (C)

63 (56–69)

(ARD)

60 (52–70) (C)

80% (ARD)

87% (C)

NR NR MFR 1.68 (1.34–2.05) (ARD)

MFR 1.86 (1.58–2.28) (C)

MBF 1.00 (0.84–1.21) (ARD)

MBF 0.80 (0.68-0.88) (C)

CAC>0 (50%) (ARD)

CAC>0 (39%) (C)

CMR Ishimori

et al.

(102)

20 (SLE)

10 (C)

41 ± 11 (SLE)

53 ± 5 (C)

100% 12.8 SLEDAI 0 (n = 3), 1–5

(n = 10), 6–10 (n = 5)

corticosteroid within 1

year 80%

MPRI 2.0 ± 0.4 (SLE)

MPRI 2.3 ± 0.4 (C)

MPRI not related to SLEDAI

or SLE duration

NR normal coronaries (89%)

mild CAD (11%)

obstructive CAD (0%)

Sandhu

et al.

(103)

20 (SLE) 41 (baseline)

46 (follow-up)

same as

above

baseline:

same as

above

baseline: same as

above follow-up:

SLEDAI 0 (n = 5), 1–5

(n = 8), 6–10 (n = 3),

>10 (n = 1)

corticosteroid within 1

year 41%

MPRI 2.0 ± 0.4 (baseline)

MPRI 2.1 ± 0.6 (follow-up)

MPRI similar at baseline and

follow-up (36% with

persistent CMD)

NR progression to mild or

obstructive CAD (7%)

no change (93%)

Data are expressed as mean ± SD, or as median (IQR), or percentages as specified. NR indicates data not reported in the study. ARD indicates autoimmune rheumatic disease; C, controls; CAC, coronary artery calcium; CAD, coronary

artery disease; CFR, coronary flow reserve; CMR, cardiac magnetic resonance imaging; DAS-28, Disease Activity Score for rheumatoid arthritis; DFV, diastolic flow velocity; LAD, left anterior descending artery; MBF, myocardial blood

flow; MFR, myocardial flow reserve; MPRI, myocardial perfusion reserve index; PET, positron emission tomography; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity Index; and TTDE,

transthoracic doppler echocardiography.
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DISCUSSION

Chest pain is a frequent complaint of SLE patients in the
absence of obstructive CAD, and ischemic mechanisms such
as CMD and coronary vasospasm should be considered in the
diagnostic algorithm. Given the higher risk of CVD mortality
and morbidity attributed to SLE due to the inflammatory
and metabolic pathophysiologic mechanisms, early identification
and prevention of CVD risk factors is warranted, although
available risk scores underestimate CVD risk in SLE patients.
SLE patients presenting with chest pain should undergo clinical
risk assessment and subsequent evaluation for CAD, with the
consideration of CMD and/or coronary vasospasm evaluation
in those with no obstructive CAD (Figure 2). Society guidelines
recommend intensification of preventive and anti-ischemic
therapies in patients with stable angina and suspected INOCA,
particularly those with known coronary atherosclerosis, but
evidence-based treatment specific to INOCA is lacking (86, 87).

CMD evaluation of SLE patients to date consistently
demonstrates impaired flow or perfusion reserve compared to
matched controls (Table 1). A relationship between CMD and
SLE disease activity was reported in several of the studies, but
overall no relationship between CMD and disease duration, risk
factors, or steroid use, although larger cohorts may be needed
to further evaluate predictors of CMD in SLE patients. Blood
biomarkers of inflammation were not reported in the majority of
studies. Several studies also reported higher resting velocities or
myocardial flow in SLE patients compared to controls, suggesting
underlying differences in coronary blood flow autoregulation,
suspected due to vasomotor and autonomic dysfunction.
Although studies comparing CMD in SLE vs. other autoimmune
rheumatic diseases are limited, CMD has been reported in
autoimmune rheumatic diseases such as rheumatoid arthritis and
systemic sclerosis, strengthening the link between inflammation
and CMD (36). While the pathogenic inflammatory mechanisms

of various autoimmune rheumatic diseases are increasingly
described, differences in the inflammatory mechanisms that
contribute to CMD are not well understood.

Significant knowledge gaps exist in SLE patients with
INOCA, including the prevalence of coronary vasospasm,
contribution of autonomic dysfunction to ischemia and chest
pain, role of disease-modifying antirheumatic drugs on CMD and
cardiovascular outcomes, non-invasive and invasive strategies to
identify high risk patients for targeted preventive therapy, and
optimal therapy of microvascular and vasospastic angina. While
inflammatory mechanisms of SLE are increasingly understood,
mechanistic pathways underlying the pathobiology of SLE-
specific coronary vasomotor dysfunction remain unknown.
Future prospective research studies are needed to address these
questions in the risk assessment. diagnosis and treatment of SLE
patients with INOCA.
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