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We study the S 5 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In
conventional treatments of the model the Kondo interaction is decoupled in favour of a hybridization of
conduction and localized f electrons. However, such an approximation breaks the local gauge symmetry and
implicates that the local f-occupation is no longer conserved. To avoid these problems, we use in this work an
alternative approach to the model based on the Projective Renormalization Method (PRM). Thereby, within
the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat excitation
near the Fermi surface which is composed of conduction electron creation operators combined with
localized spin fluctuations. This leads to an alternative description of the Kondo resonance without having
to resort to an artificial symmetry breaking.

I
n the conventional view of heavy-fermion systems, conduction electrons (c electrons) and localized spins (f
electrons) hybridize with each other at low temperatures through the Kondo coupling and form a heavy Fermi
liquid. Thereby, a large Fermi surface develops in this approach, which is determined by the total number of c

and f electrons. This picture of heavy fermions is supported by experimental findings, since a narrow quasiparticle
band is found in the excitation spectrum close to the Fermi energy1,2. From a theoretical point of view, a large
Fermi surface follows within a factorization approximation of the Kondo coupling. In the Kondo lattice
Hamiltonian

H~
X

ks

ekc{ksckszjK

X
i

Si
:si~H0zH1, ð1Þ

H0 is the kinetic energy of the conduction electrons and H1 is the Kondo exchange (jK . 0).
Si~

P
ab sab

�
2

� �
f {iafib and si~

P
ab sab

�
2

� �
c{iacib represent the f and c electron spins. Combining an f creation

operator from Si with a c annihilation operator from si, and vice versa, expectation values f {i,bci,b

D E
and c{i,bfi,b

D E
can be formed, which lead to a mean-field model of hybridized f and c electrons. A more rigorous treatment of the
Kondo lattice is based on the so-called large N expansion. Here, N is the f-spin degeneracy, which is artificially
driven to infinity3,4. In the limit N R ‘ the key physics is captured as a mean-field theory, and properties at finite
N are obtained through an expansion in the small parameter 1/N.

Due to the appearance of non-zero amplitudes f {i,bci,b

D E
the mean-field description is related to a broken

symmetry and a hybridization gap in the electronic spectrum. These artifacts are circumvented within our
approach. A further outstanding drawback of the large N approach is that the cross-over between the heavy
Fermi liquid and the local moment physics appears as a sharp phase transition where the 1/N expansion becomes
singular5. Moreover, the large N approach can not form two-particle singlets for N . 2, such as Cooper pairs and
spin-singlets. Therefore, anti-ferromagnetism and superconductivity are consequently absent from the mean-
field theory5. Note that the local f-occupation, nf

i ~
P

s f {isfis, is a constant of motion of the Kondo lattice model,
since nf

i commutes with the Kondo Hamiltonian. Therefore, the concept of a large Fermi surface in heavy
fermions was modified by Oshikawa6 provided that the system can be described as a Fermi liquid. He showed,
using rather general arguments that the Luttinger sum rule is fulfilled, when also the completely localized spins
contribute to the Fermi sea volume as electrons.

However, it is not obvious that the size of the Fermi surface is large in the Kondo lattice model. In particular, in
the one-dimensional case there is evidence based on Density Matrix Renormalization Group (DMRG) and
Quantum Monte Carlo (QMC) calculations that the Fermi surface is small7–9. On the other hand, for an infi-
nite-dimensional hypercubic lattice a Fermi-liquid state with a large Fermi surface was found10. In this study
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Dynamical Mean Field Theory (DMFT) and QMC was used avoid-
ing breaking of the gauge symmetry. Evidence of a discontinuity
was found in the momentum distribution indicating Fermi liquid
behavior.

The DMFT is a widely-used approach to the Kondo lattice which
relies on an expansion in powers of 1/d, where d is a variable dimen-
sion11–13. The idea of the DMFT is to reduce the lattice problem to the
physics of a single magnetic ion embedded within a self-consistently
determined effective medium. The qualitative physics of the Kondo
lattice, including the development of coherence at low temperatures,
can well be described by this approach.

Results
Perturbation theory. The aim of the present work is to provide an
alternative description of the transformation from localized moment
to heavy Fermi liquid behavior as a smooth crossover instead of a
sharp phase transition. To avoid technical details, at the beginning
let us explain the main idea of our study on the basis of perturbation
theory. These considerations will be used afterwards to construct
an appropriate many-particle approach to numerically evaluate
the electronic spectrum. The one-particle spectral function
A(k, v) of conduction electrons is defined by A k,vð Þ~ 1=2pð ÞÐ?
{? cks tð Þ,c{ks

h i
z

� �
eivtdt, where the expectation value and the

time dependence are governed by Hamiltonian (1). The presence
of the Kondo exchange prevents a straightforward evaluation of
A(k, v). For that reason we transform the Hamiltonian into a
diagonal (or at least quasi-diagonal) form by applying a unitary
transformation to H, ~H~eX H e{X . Here the generator X 5 2X{

in lowest order perturbation theory with respect to jK is given by

X~
1ffiffiffiffiffiffi
NL
p

X
kk’

jK

ek{ek’
Kkk’ ð2Þ

(NL number of lattice sites). The operator quantity Kkk’~ 1=2ð ÞP
abSk’{k

:sabc{kack’b~ Kk’kð Þ{ is taken over from the decompo-

sition of H1~ j
� ffiffiffiffiffiffi

NL
p� �P

kk’Kkk’. Evaluating the transformation
to second order in jK, one finds

~H~
X

ks

~ekc{kscksz
X
vijw

~JijSi
:Sjz~E, ð3Þ

where ~ek is somewhat changed compared to ek. The second term in
(3) is the well-known RKKY interaction and ~E is an additional energy
constant. Note that in ~H the conduction electrons and the localized
spins act as independent subsystems which no longer interact with
each other. After an approximate diagonalization of the RKKY
interaction, for instance by introducing Schwinger bosons, all
expectation values formed with ~H can be determined. However,
the evaluation of A(k, v) also requires the transformation of the
operator from which the expectation value is taken. This follows

from the general property Ah i~ Tr ~Ae{b ~H
� 	.

Tre{b ~H
� 	

~

~A
D E

~H
, for any operator variable A, where ~A~eX Ae{X . Thus, we

obtain

A k,vð Þ~ 1
2p

ð?
{?

~cks tð Þ,~c{ks

h i
z

� �
~H
eivtdt, ð4Þ

where now the expectation value and the time dependence of ~cks tð Þ
are governed by ~H. An explicit evaluation of ~c{k,s~eXc{kse{X up to
second order in X leads for A(k, v) to the expression

A k,vð Þ~ ukj j2d v{ekð Þz 1
4NL

X
k’

vk’kj j2 Sk{k’
:Sk’{kh i ~HJ

d v{ek’ð Þ,
ð5Þ

where the coefficients uk and vk9k depend on the initial dispersion of
conduction electrons ek and the Kondo coupling jK. Following

Doniach’s picture of competing energy scales of anti-ferromag-
netism and heavy fermion physics in 4f systems14,15, in Eq. (5) we
have neglected the excitations of the localized spin system
~HJ~

P
q~JqSq

:S{q. Note that in the heavy-fermion regime the
Kondo scale TK can be considered as large compared to the
excitation energies of the f system.

Thus, the one-particle spectrum (5) is built up by a coherent
excitation with energy ek and amplitude jukj2 and by additional exci-
tations at frequencies ek9 with amplitudes jvk9kj2. Usually, such exci-
tations are responsible for a typical broadening of the coherent
excitation at ek and determine the lifetime of the quasiparticle in
the metallic state. In the present case these are the contributions to
jvk9kj2 of order j2

K . Beyond this second order perturbation theory we
find that the next higher order / j3

K of the incoherent part of Eq. (5)
leads to the well-known Kondo resonance which has been found by
Kondo in case of one magnetic impurity. Namely, taking together in
the second term the parts in j2

K and j3
K Eq. (5) can be rewritten as

A k,vð Þ~d v{ekð Þz 1
p

C vð Þ
v{ekð Þ2

ð6Þ

with

C vð Þ~pS Sz1ð Þj2
K

4NL

X
k’

1z
2jK

NL

X
q

f eq
� �

{ 1
2

ek’{eq

 !
d v{ek’ð Þz � � � ,

ð7Þ

where jukj2 was approximated by 1. Note that in third order per-
turbation theory the expectation value Sk{k’

:Sk’{kh i ~HJ
<S Sz1ð Þ

becomes local, which means that all interaction effects between loca-
lized spins at different sites do not contribute since they are of higher
order. Furthermore note that the sum over q leads to a divergence for
ek9 5 0, and the additional excitations in A(k, v) become dominant.
They are located close to the chemical potential v 5 0. Since their
energy is momentum-independent, i.e. independent of k, this set of
excitations has to be interpreted as the well-known Kondo res-
onance. The approximate result (7) agrees with the imaginary part
of the Green’s function for the impurity Kondo model in perturba-
tion theory (compare e.g. with Ref. 16), where A k, wð Þ~ 1=pð Þ
=G k, wð Þ. Using moreover the Green’s function G(k, v) in the gen-
eral form

G k,vð Þ~ 1
v{ek{iC vð Þ , ð8Þ

(real part of the self energy is neglected) one also finds that C(v) has
to be interpreted as imaginary part of the one-particle self-energy.
Thereby, higher order terms in the denominator of A k, wð Þ~ 1=pð Þ
=G k, wð Þ are neglected17.

Note that the perturbation expansion (7) of C(v) in jK breaks
down below a characteristic temperature when the second term in
the bracket becomes of the order of the first term. This temperature is
often used to define the Kondo temperature and is conventionally
obtained from an expansion of an effective Kondo coupling18. To see
this the sum over q can easily be evaluated

C vð Þ~ pS Sz1ð Þj2
K

4NL

X
k’

1{2r0jK ln
max ek’j j,Tð Þ

D


 �
d v{ek’ð Þz � � �

ð9Þ

or

C vð Þ~ pS Sz1ð Þj2
K r0

4
1{2r0jK ln

max vj j,Tð Þ
D


 �
zO j4

K

� �
, ð10Þ

where in the last line also the integration over k9 was performed. Here
r0 is the electronic density of states. In a final step the single-impurity
Kondo temperature TK 5 D exp(21/jKr0) is introduced leading to

C vð Þ~ pS Sz1ð Þj2
K r0

4
3{2r0jK ln

max vj j,Tð Þ
TK


 �
zO j4

K

� �
ð11Þ
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One should again emphasize that no difference from the single
impurity case16,17 has occurred up to now.

The previous considerations are based on perturbation theory
leading to a divergence in A(k, v). This divergence can be removed
by including higher order contributions to infinite order in jK. For the
single impurity model, higher order perturbation theory leads to
equally divergent contributions. This series was summed up by
Abrikosov19 in the leading ln(T/TK) approximation to give the fol-
lowing result for the T-matrix, T eð Þ^ jK=NLð Þ 1{ jKr0=Nðð
ln ej j=Dð ÞÞÞ{1s:S.

Non-perturbative many-particle approach to the 2d-Kondo
lattice. The previous perturbation treatment leads to two
characteristic problems in the evaluation of the one-particle
spectral function A(k, v). (i) There are contributions to the
spectral intensity which diverge and lead to unphysical results. (ii)
There is no difference from the single impurity case in lowest order in
jK. These problems can only be solved by including higher order
contributions to infinite order in jK. In the following, we therefore
apply the Projector-based Renormalization Method (PRM)20,21 to
evaluate A(k, v) for the Kondo lattice. The general concept of the
PRM (see methods section) is similar to what has been discussed
above: To enable the solution of Hamiltonian (1), the Kondo
interaction is again integrated out. However, a sequence of unitary
transformations is used instead of a single transformation as in
perturbation theory. Thereby, the PRM ensures a well-controlled
disentanglement of higher order interaction terms leading to an
effective Hamiltonian of the same operator structure as in Eq. (2).
However, the renormalized parameters ~ek, ~Jij and ~E are determined
self-consistently taking into account contributions up to infinite
order in the Kondo coupling. Moreover, within our non-
perturbative approach expression (4) for A(k, v) is still valid. The
amplitudes uk and vk9,k are also renormalized under the influence of
higher order contributions and will be marked by tilde symbols as
well. At this point we would like to emphasize the main motivation to
develop our own theoretical treatment: Firstly, we note that the
perturbative result (6) is also accessible within the PRM by
expanding the renormalization equations up to lowest order.
Furthermore, our approach has important advances over other
theories for the Kondo lattice: The PRM neither suffers from

additional constraints, as in the large N approach, nor from an
expansion for large dimension d as in the DMFT. Thereby, the
local f-electron occupation nf

i remains a constant of motion in the
calculation.

In the actual evaluation of the renormalization equations we
restrict ourselves to two dimensions in order to minimize the numer-
ical effort. Also, we consider electron concentrations only away from
half-filling which is a special case since there the system becomes
insulating. We have solved the renormalization equations self-con-
sistently on a square lattice with NL 5 103 lattice points. Fig. 1(a)
shows A(k, v) for T 5 0 in a very small k-region around the Fermi
momentum kF for electron filling nc 5 0.3. Clearly one can see the
coherent excitation ~ek which crosses the Fermi level at v 5 0. Note
that the renormalization of ~ek is very weak. This behavior is found to
be always true away from half-filling. In contrast, at half-filling nc 5

1/2 renormalization contributions to~ek become strong due to nesting
effects of the Fermi surface and lead to the opening of a gap at the
Fermi energy. This results in an insulating phase22,23 and will be
discussed in a forthcoming publication. Moreover, as expected, an
additional almost k-independent excitation is found at the Fermi
level which corresponds to additional contributions described by
the second term in Eq. (5). In contrast to the perturbative treatment
the renormalized amplitude ~vk’k is no longer divergent in the PRM.
However, it is still dominant for k9 < kF and any value of k. As before,
the multitude of these excitations has to be interpreted as Kondo
resonance. It results from the second term in A(k, v) and not from
a hybridization effect of f and c electrons. This important feature of
the Kondo resonance can also be recognized in Fig. 1(a). In contrast
to the coherent excitation, for the Kondo resonance we find a con-
tinuous spread of spectral intensity at the Fermi level throughout the
whole momentum region. Due to the finite number of lattice points,
considered in our calculation, the one-particle kinetic energy ~ek is
defined only for a finite number of k-points. Therefore the coherent
part of A(k, v), following the dispersion according to the first term of
Eq. (5), shows a set of discrete bright spots (19 visible in Fig. 1) which
is characteristic for a finite system. In contrast, the second part in Eq.
(5) which contributes to the Kondo resonance is made up of an
internal sum over all momenta k9 leading to the observed continuous
momentum character. Considering finite electron systems, this char-
acteristic feature could possibly be picked up by experiments to find

Figure 1 | (a) One-particle spectral function A(k, v) for nc 5 0.3 and jK/t 5 0.3 as a function of v for fixed values of k 5 k(ex 1 ey) in a small wave-vector

region around kF. The k-resolved Kondo resonance peak around v 5 0 is clearly seen for all k values. (b) A(k, v) for the raised temperature kBT 5 5 ?

1023 t, which is above the Kondo temperature TK. For fixed k around kF only the coherent excitations survive whereas the Kondo resonances disappear.

Note that the discrete bright spots for the coherent excitations are characteristic for finite systems which is not the case for the Kondo resonance.
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experimental evidence for the different nature of the Kondo res-
onance. In Fig. 1(b) the spectral function is given in the same
wave-vector region as before for the raised temperature of T 5 5 ?

1023 t. Now the Kondo resonance has disappeared and only the
coherent excitation has survived, which means that T is higher than
the Kondo temperature TK. Let us mention that the overall behavior
in Fig. 1 looks similar to numerical QMC results24,25 for the periodic
Anderson model in one dimension for large values of the Coulomb
repulsion U. As is well known, the Anderson model reduces to the
Kondo model in the large U limit and low lying energy level ef of the
localized f electrons. In particular, in Ref. 24 some f-like bands with
low weight were found very close to the chemical potential, two of
which seemed almost not to disperse which is quite similar to the
behavior of the resonance mode in Fig. 1.

Fig. 2 shows the density of states rc(v) 5 (1/NL)Sk A(k, v) as a
function of v for three different values of T in a small frequency
region around v 5 0. For the two lower T the Kondo peak around v
5 0 appears as a consequence of the Kondo contributions in A(k, v).
The extra background in the spectrum is mainly composed of coher-
ent excitations with respect to different momenta k. Additional inco-
herent excitations with energies different from zero may contribute
to the background as well. We have also checked the sum ruleð?

{?
A k,vð Þdv~1, which at first glance seems to be contradicted

by the obvious T-dependence of the different values in Fig. 2.
However, the frequency interval outside the restricted v-region of
Fig. 2 also contribute to the sum rule so that the sum rule is almost
perfectly fulfilled for the different T curves. Similarly, particle-hole
symmetry seems to be present for the curves of Fig. 2. However this is
not the case for nc 5 0.3 when the full frequency region is considered
(not shown).

Discussion
Firstly, let us discuss how the Kondo scale enters the formalism. To
address this point, we start from relation

P
i Si

:sih i~ 1
� ffiffiffiffiffiffi

NL
p� �P

kk’ Kk’kh i, which suggests that the expectation value Kk’kh i parti-
cipates in the formation of the singlet state at low temperatures. In
Fig. 3 the expectation value Kk’kh i is shown for wave vectors close to
the Fermi surface, k9 5 k < kF. As expected, Kk’kh i turns out to be
negative. Moreover, it exhibits a strong increase in magnitude with
decreasing temperatures. This behavior is an indication for the

formation of the singlet state, to which predominantly wave vectors
k9, k close to the Fermi surface participate. In real space this gives rise
to correlations ÆSi ? sjæ between local and conduction electron spins
which are limited to a range of about 50 lattice sites (see inset). For
comparison, Fig. 3 also shows the complete expectation value ÆSi ? siæ
as a function of T. Obviously, ÆSi ? siæ is negative as well but almost
independent of T. Because of the former relation between ÆSi ? siæ and
Kk’kh i one concludes that expectation values Kk’kh i for wave vectors

away from kF are not affected for low temperatures. These wave
vectors form the majority in the Brillouin zone, which explains the
marginal T-dependence of ÆSi ? siæ. The width of Kkk’h i in Fig. 3 can
be identified with the Kondo scale kBTK and is of order 5 ? 1024 t. The
same energy scale is also found in the T-dependence of the electronic
part of specific heat CV(T), which can be evaluated in the PRM as well
(not shown). For low T a strong increase , T is found which is
usually associated to a large heavy fermion mass. For T . TK the
linear T-slope changes to a much lower value as known from normal
metals.

In conclusion, we have applied the Projector-based Renormali-
zation Method (PRM) to the Kondo lattice model in d 5 2 in order
to study the electronic one-particle spectrum in the heavy-fermion
regime. As main result of our study, we have found that the Kondo
resonance is caused by additional low-energetic contributions to the
spectral function A(k, v), which are dispersionless and distributed
continuously in momentum space even for a finite electron system.
Such a continuous distribution disagrees with a mean-field descrip-
tion of the Kondo resonance and proves that the Kondo resonance is
a true many-body effect.

Looking at the electron density nc, one finds that nc is related to the
electronic spectral function via nc~ 1=NLð Þ

P
k

Ð
A{ k,vð Þdv. On

the right hand side, all excitations from the non-perturbative exten-
sion of Eq. (5) contribute. This relation fixes the position of the Fermi
energy, when nc is fixed. Using our result for A(k, v), the Kondo-type
excitation turns out to be located slightly below the Fermi energy, i.e.
inside the Fermi volume, which is consistent with photoemis-
sion experiments. This low-energy quasi-particle is the famous
Abrikosov-Suhl resonance indicating heavy fermion behavior which
is mainly characterized by a large effective mass of conduction elec-
trons. The resonance emerges from the second term in Eq. (5) in

Figure 2 | Density of states rc(v) for nc 5 0.3 and jK/t 5 0.3 as a function
of v for three different temperatures, plotted for a small frequency
region around v 5 0. Clearly seen is the Kondo resonance at v 5 0 for the

two lower temperature values T 5 0 and T 5 2 ? 1024 t. For T 5 5 ? 1023 t

the resonance peak disappears since T is larger than the Kondo

temperature TK < 5 ? 1024 t (see text).

Figure 3 | Spin coupling Kk’kh i for k9 5 k < kF as a function of T (black
curve). For T below TK Kk’kh i drops to rather small values which indicates

the formation of the heavy-fermion state. In contrast, ÆSi ? siæ is almost T

independent (red curve). This behavior demonstrates that only wave

vectors close to kF contribute to the formation of the heavy-fermion state.

The inset shows the correlation function ÆSi ? sjæ as function of (i 2 j).
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addition to the conventional coherent contribution. Thus, experi-
mentalists might interpret both excitation types, i.e. the coherent
excitation ~ek and the Kondo resonance, as ingredients of the large
Fermi volume within a Fermi liquid picture resulting from a mean-
field description.

Unfortunately, the question whether the Kondo lattice in 2d is a
Fermi liquid can not be answered by our present treatment. On the
one hand, for the electron filling nc 5 0.3 considered in this work the
results are comparable with the Kondo impurity model, which is
known to be a Fermi liquid19,26,27. The Kondo resonance always arises
at ek < 0, i.e. at v < 0 and is wave-vector independent as in the single
impurity case. Moreover, we have found that the wave-vector
dependence of the spin correlation function ÆSk–k9 ? Sk9–kæ is rather
smooth, i.e. the correlations between local spins at different sites are
rather weak. Therefore, we conclude that for parameter values not
too close to the quantum phase transition to antiferromagnetism, the
impurity physics largely governs the Kondo physics of the lattice
model at nc 5 0.3. On the other hand, one should emphasize that
correlation effects between different lattice sites were found in the
spin correlation function ÆSi ? sjæ which is spatially extended in a
range of 50 lattice sites (inset of Fig. 3). Thus, long ranging coherence
effects between local and conduction electron spins do not disturb
the impurity-like behavior of the Kondo lattice. Moreover, for k
values on the Fermi surface, k 5 kF, the numerical evaluation of
the quasiparticle weight ~ukj j2 leads to a very small value. A non-
vanishing of the quasiparticle weight ~ukj j2 (usually called Zk) would
be an important evidence that the Kondo lattice in d 5 2 has the
character of a Fermi liquid.

A possibly simple way to check experimentally the Fermi liquid
behavior is to measure the k-dependent occupation number. Note
that at finite temperatures the expected jump at kF for T 5 0 is
smeared out. Therefore, one has to extract the finite temperature
effects by use of an adequate Fermi distribution function, which is
the usual way to interpret photoemission experiments at low tem-
peratures. A jump at kF would support the Fermi liquid picture.

Methods
Projector-based renormalization method (PRM). The PRM starts from a
decomposition of a many-particle HamiltonianH into an unperturbed partH0 and
into a perturbation H1. The latter part accounts for transitions between the
eigenstates ofH0. The basic idea of the PRM is to integrate out the perturbationH1 by
a series of unitary transformations. For practical applications the unitary
transformations are best done in small energy steps Dl. Thereby, the evaluation in
each step can be restricted to low orders in H1. This procedure usually limits the
validity of the approach to parameter values ofH1 which are of the same magnitude as
those of H0. Assuming that all transitions with energies larger than some energy
cutoff l are already integrated out, the transformed Hamiltonian Hl for the Kondo
lattice model reads, Hl~H0,lzH1,l with

H0,l~
X

ks

ek,lc{kscksz
X

q

Jq,lSq
:S{qzEl ð12Þ

H1,l~
1ffiffiffiffiffiffi
NL
p

X
kk’

jk’k,lH l{ ek’,l{ek,lj jð ÞKk’k , ð13Þ

where the operator quantity Kk’k was introduced before. Due to the elimination of
high-energy transitions above l the coefficients in Eqs. (12),(13) depend on l. As in
the perturbative treatment, an effective exchange interaction between the f spins as
well as an energy constant El and a new k-dependence of the Kondo coupling jK are
generated by the transformation. The H-function in H1,l limits the excitations to
energies smaller than l. To find the l-dependence of the coefficients inHl we study a
subsequent unitary transformation of Hl to a new Hamiltonian Hl{Dl

Hl{Dl~eXl,DlHle{Xl,Dl : ð14Þ

Thereby, all transitions between l and a somewhat reduced cutoff l 2 Dl will be
eliminated. The generator Xl,Dl of the unitary transformation

Xl,Dl~
1ffiffiffiffiffiffi
NL
p

X
kk’

Xk’k l,Dlð ÞKk’k

Xk’k l,Dlð Þ~ jk’k,l

ek’,l{ek,l
Hk’k,l 1{Hk’k,l{Dlð Þ,

ð15Þ

(Hk9k,l 5 H(l 2 jek9,l 2 ek,lj), is fixed by the requirement that Hl{Dl no longer
contains excitations with energies larger than l 2 Dl. Since the elimination of

transitions is confined to a small energy shell Dl, the evaluation of Hl{Dl from Hl

can be restricted to low order contributions in jk9k,l. Expression (15) is a slight
generalization of the generator X, which was used to derive ~H in Eq. (2). By evaluating
transformation (14) to order j2

kk’,l together with (12), (13) we obtain discrete
renormalization equations (or flow equations) connecting the coefficients at cutoff l
with those at cutoff l 2Dl. For instance, the renormalization equation for jk9k,l reads

jk0k,l{Dl{jk’k,l~
1

2NL

X
q

Cl
kq;k’q 2 c{qscqs

D E� 	
, ð16Þ

where Cl
q’q;k’k~Hqq’,ljqq’lXk’k l,Dlð ÞzHkk’,ljkk’,lXq’q l,Dlð Þ. The complete

elimination procedure starts from the original model (1), where the coefficients are
fixed to ek,L 5 ek, Jq,L 5 0, EL 5 0, jkk9,L 5 jK. Here l 5 L denotes the largest
transition energy of the original Hamiltonian (1). Proceeding in stepsDl until l 5 0 is
reached all transition operators from H1 will be used up. One arrives at the final
HamiltonianHl~0, which has exactly the same form as the Hamiltonian ~H of Eq. (3).
Thus, from now on quantities with tilde symbols will always denote the fully
renormalized quantities at cutoff l 5 0. Note that the explicit evaluation of the unitary
transformation leads at first to operator expressions which differ from those of the
generic ansatz (12), (13). Therefore, an additional factorization approximation has to
be performed in order to trace back these operators to the generic ones. As a result, the
renormalization equations also depend on expectation values Æ???æ, which have to be
solved self-consistently together with the renormalization equations of Hl . For the

evaluation of these expectation values we use the invariance property Ah i~ ~A
D E

~H
.

To find the desired spectral function A(k, v) we start from Eq. (4) with
~c{k,s~c{ks l~0ð Þ. The l-dependence of c{ks lð Þ is calculated via the following ansatz:

c{ks lð Þ~uk,lc{ksz
1ffiffiffiffi
N
p

L

X
k’

vk’,k,l

X
a

Sk{k’
: sas

2
c{k’a ð17Þ

with initial conditions uk,L 5 1, vk9k,L 5 0. The operator structure of (17) is suggested
from the first order expansion in Xl,Dl. The renormalization equations for the l-
dependent coefficients uk,l and vk9k,l are obtained by transforming c{ks lð Þ to

c{ks l{Dlð Þ in analogy to the transformation of Hl . The equation for vk,k9,l to first
order in Xl,Dl reads

vk’,k,l{Dl{vk’,k,l~uk,lXk’k l,Dlð Þz 1
2NL

X
q

vqk,lXk’q l,Dlð Þ 2 c{qacqa

D E
{1

� 	
, ð18Þ

The renormalization equation for uk,l can be evaluated in the same way. Alternatively,

it can be found from the sum rule ck,s lð Þ,c{k,s lð Þ
h i

z

� �
~1, with l replaced by l 2

Dl

uk,l{Dlj j2~1{
1

4NL

X
q
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�� ��2 Sk{q
:Sq{k
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1

2N3=2
L

X
qq0

vqk,l{Dlv�q0k,l{Dl Kqq0

 �

:

ð19Þ

Note that due to (18) the coefficients vq,k,l2Dl and vq9,k,l2Dl in (19) at cutoff l 2 Dl
can be expressed by vk9,k,l and uk,l. Thus, equations (18), (19) relate the two quantities
uk,l2Dl and vk9,k,l2Dl at cutoff l 2 Dl with the same quantities at l. Since the
renormalized Hamiltonian Hl~0 ~ ~H has the same decoupled form (3) as in
perturbation theory, the renormalization equations (18), (19) together with (17) lead
to the final result for the spectral function A(k, v). Thereby, A(k, v) takes the same
form as (5) but with the fully renormalized parameters of Hamiltonian ~H and of ~c{ks .

As mentioned above, the Kondo resonance results from additional contributions to
the spectral function A(k, v) close to the Fermi surface. Looking at expression (5) for
A(k, v) one notices that only terms from the sum over k9 can contribute to the Kondo
resonance which have k9 < kF, so that ek’<ekF ~0. At the same time, also the pre-
factors ~vk’,kj j2 become large for the same k9 values. This latter property can be
understood by means of renormalization equation (17) for vk9k,l: Taking k9 < kF and
arbitrary values of k ? kF, the first term uk,lXk9k(l,Dl) on the right hand side of (18) is
nonzero but small since Xk9k(l, Dl) is small. This follows from the structure of Xk9k(l,
Dl) in (15). Similarly, in the second term of Eq. (18) those terms from the sum over q
contribute most for which q < kF, since then Xk9q(l,Dl) is large. Thus, one concludes
that terms with wave vectors k9 < kF lead to a finite value of vk9k,l in the renorma-
lization procedure for l R 0. This property explains the appearance of the Kondo
resonance in A(k, v), which is almost independent of k [Fig. 1]. On the other hand,
from sum rule (19) one can show that for l R 0 the renormalized amplitude ~ukj j2 of
the coherent excitation in A(k, v) becomes reduced. For the case k 5 kF, which was
excluded above, the numerical evaluation of the renormalization equations (18), (19)
leads to a very small value of the coherent coefficient ~ukj j2, which can not be dis-
tinguished from zero within the numerical accuracy.
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