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Abstract
Interleukin-10 and Interleukin-12 are produced primarily by pathogen-activated
antigen-presenting cells, particularly macrophages and dendritic cells. IL-10
and IL-12 play very important immunoregulatory roles in host defense and
immune homeostasis. Being anti- and pro-inflammatory in nature, respectively,
their functions are antagonistically opposing. A comprehensive and in-depth
understanding of their immunological properties and signaling mechanisms will
help develop better clinical intervention strategies in therapy for a wide range of
human disorders. Here, we provide an update on some emerging concepts,
controversies, unanswered questions, and opinions regarding the immune
signaling of IL-10 and IL-12.
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Interleukin-12 signaling 
Interleukin-12 (IL-12) is the first member of a family of het-
erodimeric cytokines identified1. It is a pro-inflammatory molecule 
produced primarily by professional antigen-presenting cells (APCs), 
including monocytes/macrophages and dendritic cells (DCs)2.  
IL-12 is composed of p35 (encoded by Il12a) and p40 (encoded 
by Il12b) chains, and it principally activates natural killer (NK) 
cells and induces the differentiation of naïve CD4+ T lymphocytes 
to become interferon-gamma (IFN-γ)-producing T helper 1 (Th1) 
effectors in cell-mediated immune responses to intracellular 
pathogens2. IFN-γ, in turn, acts on APCs to augment IL-12 secretion 
in a positive feedback loop3,4. The p40 chain can also form a dimer 
with p19 to give rise to IL-235, which is required for Th17 differ-
entiation, function, and maintenance6. Similarly, the p35 chain can 
combine with Epstein-Barr-induced 3 (EBI3) to form IL-357, the 
latest addition to the IL-12 family, in induced regulatory T-cell pop-
ulation (referred to as iTr358) and in tolerogenic human DCs9. IL-12 
and IL-23 have overlapping as well as distinct immunostimulatory 
activities6. IL-12 signals through the IL-12 receptor (IL-12R) com-
prised of the IL-12Rβ1 and IL-12Rβ2 subunits that are expressed 
on T cells, NK cells, and DCs10,11. IL-12 stimulates non-receptor 
Janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2) activities, 
leading to the phosphorylation of signal transducers and activators 
of transcription (STATs) (in particular, STAT4 homodimers)12,13. 
IL-35 is an immunosuppressive cytokine that signals through 
IL-12β2 and gp130, resulting in the heterodimeric formation and 
activation of STAT1 and STAT4, which in turn bind to the unique 
promoter regions of Ebi3 and Il12a14.

Regulation of interleukin-12 production
Both Il12a and Il12b genes need to be expressed coordinately in 
the same cells to produce biologically active IL-1215. Paradoxically, 
the mRNA of Il12a is widely expressed in many cell types, albeit at 
low levels in some cells, most of which do not even produce IL-12. 
The Il12b mRNA is restricted to cells that can produce biologically 
active heterodimer16. Synthesis of the p35 chain was proposed to 
be a rate-limiting step for IL-12 production for its low abundance 
of transcripts in cells under steady-state conditions17. Over the past 
20 years, a large number of molecular analyses have identified 
numerous transcription factors that bind to the promoter regions of 
Il12a and Il12b. The promoters of Il12a have been shown to bind 
transcription factors such as nuclear factor kappa B (NFκB) c-Rel 
(in DCs)18, c-Maf (as an inhibitor)19, and IFN regulatory factor 1 
(IRF-1)20 in activated macrophages. Goriely et al. showed that 
lipopolysaccharide (LPS)- and IFN-γ-induced human Il12a gene 
activation was immediately preceded by a selective and rapid 
remodeling of a single positioned nucleosome within the -396/-241 
region of the promoter containing critical Sp1-binding sites21. The 
same group also reported that, in human DCs activated through 
Toll-like receptor 3 (TLR3) and TLR4 but not TLR2, IRF-3 was 
recruited to an IFN-stimulated response element (ISRE) between 
-251 and -242 in the Il12a gene promoter. Accordingly, DCs from 
IRF-3-deficient mice were impaired in TLR4-induced Il12a mRNA 
expression and IL-12p70 synthesis22.

Interestingly, a novel nuclear protein called GC-binding protein 
(GC-BP) was found in macrophages that engulf apoptotic cells 
via phagocytosis. GC-BP is activated via tyrosine phosphorylation 

induced by interactions between the phagocyte and the apoptotic 
cell expressing externalized phosphatidylserine. GC-BP has a 
direct and selective inhibitory activity on the transcription of the 
Il12a gene and IL-12 production23. It is speculated that this is part 
of the mechanisms that help suppress autoimmune responses to 
self-antigens during the clearance of apoptotic cells. This notion is 
consistent with the converse observation of the induction of IL-10 
production during phagocytosis of apoptotic cells24.

Compared with Il12a, the Il12b promoter has been more extensively 
studied, and numerous transcriptional factors have been identified 
as regulators for Il12b transcription. When murine macrophages 
are stimulated with LPS, nucleosome 1 is selectively remodeled 
so that the transcription factor CCAAT enhancer-binding protein β 
(C/EBPβ)/LAP could gain access to this region25. However, remod-
eling of nucleosome 1 alone is not sufficient for Il12b transcription 
and more factors are required for its induced expression. These fac-
tors include NFκB26,27, PU.128, IRF-129, nuclear factor in activated 
T cells (NFAT)30, and IFN consensus sequence-binding protein 
(ICSBP, also called IRF-8)31 in human or murine macrophages or 
both. Activation protein 1 (AP-1) has been reported to be an activa-
tor of Il12b transcription in LPS-stimulated macrophages32, whereas 
in tumor-derived prostaglandin E

2
 (PGE

2
)-treated macrophages, 

it appears to play the opposite role: inhibiting Il12b transcription 
and promoting tumor progression in vivo33. The controversy has not 
been resolved to date.

Goodridge et al. observed that whilst LPS-induced p38 mitogen-
activated protein kinase (MAPK) activation is required for the induc-
tion of both p40 and p35 subunits, extracellular signal-regulated 
kinase (ERK) signaling mediates negative feedback regulation of 
p40, but not p35, production34. Such ERK activation is downstream 
of calcium influx and targets LPS-induced Il12b transcription by 
suppressing the synthesis of the transcription factor IRF-1. In con-
trast, the negative regulation of the p35 subunit of IL-12 occurs via 
a calcium-dependent, but ERK-independent, mechanism, which 
was thought to involve NFκB signaling.

CpG oligodeoxynucleotides (ODN) activates the TLR9/MyD88/
TRAF6 (TNF receptor-associated factor 6) cascade leading to the 
activation of I kappa B kinase (IKK) -NFκB and JNK, which are 
critical for the production of pro-inflammatory cytokines. Ma et al. 
reported that the catalytic subunit of DNA-dependent protein 
kinase (DNA-PKcs) is involved in this activation process35. DNA-
PKcs-deficient DCs exhibited a defect in the IL-6 and IL-12p40 
expression in response to CpG-ODN in a dose- and time-dependent 
manner. Loss of DNA-PKcs impaired phosphorylation of IKK, 
IκBα, NFκB, and JNK in response to CpG-ODN35. TLR2-mediated 
production of IL-12p40 in monocytes and macrophages triggered 
by the synthetic ligand Pam3csk4 has been shown to activate the 
phosphorylation of JNK-1/2. Blocking JNK with a chemical inhibi-
tor resulted in inhibition of Pam3csk4-induced p40 production36. 
However, the further downstream signaling is not clear.

At the transcriptional level, the differential regulation of Il12a 
and Il12b genes is well illustrated in macrophages derived from 
C/EBPβ-deficient mice. In sharp contrast to the enhanced induc-
tion of Il12b mRNA, C/EBPβ−/− primary macrophages derived from 
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both the bone marrow and the peritoneal cavity displayed a totally 
defective expression of Il12a mRNA. This may explain the defec-
tive production of bioactive IL-12 and the impaired Th1 responses 
of C/EBPβ-deficient mice to Candida albicans, a pathogen that 
requires Th1-mediated control37. The enhanced p40 production 
in C/EBPβ-deficient macrophages is in direct contradiction to an 
earlier molecular study25. It cautions against directly extrapolating 
in vitro data for its in vivo relevance.

An important pathway in robust IL-12 induction is the requirement 
for “priming” of LPS-activated macrophages and DCs by IFN-γ for 
the expression of maximal amounts of Il12a and Il12b mRNAs and 
for IL-12 production4,20,38. The IFN-γ priming is a positive feedback 
mechanism for more robust IL-12 production in certain immune 
responses, as the primer IFN-γ is derived principally from NK cells 
and activated Th1 lymphocytes, cells that are initially activated by 
APC-derived IL-12 upon pathogen infection. Overall, inadequate 
investigations have been performed to elucidate this important 
feedback amplification mechanism in a comprehensive manner.

Negishi et al. reported that MyD88-associated IRF-1 migrates into 
the nucleus more efficiently than non-MyD88-associated IRF-1. 
The critical role of MyD88-dependent “IRF-1 licensing” is under-
scored by the observation that the induction of a specific gene 
subset downstream of the TLR-MyD88 pathway, such as IFN-β, 
inducible nitric oxide (NO) synthase, and IL-12p35, is impaired in 
Irf1-deficient cells39. The study places IRF-1 as an additional mem-
ber participating in MyD88 signaling and provides a mechanistic 
explanation for the enhancement of the TLR-dependent IL-12p35 
induction program by IFN-γ.

The TLR-NFκB-dependent pathway inducing IL-12 and the 
IFN-dependent pathway inducing type I IFN (α and β) and IFN-
regulated genes have also been shown to cooperate for the robust 
production of IL-12 in DCs. Gautier et al. reported that R-848/
Resiquimod (TLR7 ligand in the mouse and TLR7/8 ligand in 
human) synergized with poly (I:C) (TLR3 ligand) or LPS (TLR4 
ligand) in inducing high levels of bioactive IL-12p70 secretion and 
IFN-β mRNA accumulation by mouse bone marrow-derived DCs 
(BMDCs). Strikingly, IL-12p70, but not IL-12p40, secretion was 
strongly reduced in BMDCs from STAT1−/− and IFNAR−/− mice. 
STAT1 tyrosine phosphorylation, IL-12p35, and IFN-γ mRNA 
accumulations were strongly inhibited in IFNAR−/− BMDCs acti-
vated with the TLR ligand combinations. Similar observations 
were made by using neutralizing anti-IFNAR2 antibodies in human 
TLR8-expressing peripheral blood monocyte-derived DCs40. This 
study suggests that TLR engagement on DC induces endogenous 
IFNs that cooperate with the NFκB-inducing machinery for optimal 
IL-12p70 secretion.

Signaling events from distinct classes of pathogen recognition 
receptors (PRRs) affect each other in modulating innate and adap-
tive immunity through modulating IL-12 production. Activation of 
cytosolic RIG-I-like receptors (RLRs) results in the selective sup-
pression of TLR-induced transcription of the Il12b gene through 
the binding of RLR-activated transcription factor IRF-3 to the Il12b 
promoter, where it competitively edges out IRF-5, a transcriptional 
activator of Il12b that binds to the same sequence motif, the ISRE. 

IRF-5 binding in this region is usually accompanied with chroma-
tin remodeling of both regulatory regions and the formation of a 
productive transcriptional complex containing other transcription 
factors41. Consequently, the activation of RLRs in mice attenu-
ated TLR-induced Th1 and Th17 responses against viral infec-
tion of mice42. Similarly, Kim et al. identified a crosstalk between 
TLR4- and nucleotide-binding oligomerization domain 2 (NOD2)- 
mediated activities in the regulation of intestinal mucosal defense 
and tissue homeostasis via NOD2 signaling selectively interfering 
with TLR-induced Il12a gene expression and IL-12 production via 
the transcriptional regulator C/EBPα43.

Emerging evidence has demonstrated that mammalian target of 
rapamycin (mTOR) is an important regulator of immunity by mod-
ulating the differentiation, activation, and function of lymphocytes 
and APCs44. In exploring the long-held “puzzle” of low levels of 
IL-12 induced through TLR4 signaling in macrophages and DCs, 
which implied the existence of stringent regulatory mechanisms, 
He et al. identified the critical regulatory roles of three protein 
kinases, mTOR, phosphoinositide-3 kinase (PI3K), and ERK, in 
TLR-induced Th1 responses by reciprocally controlling IL-12 and 
IL-10 production in innate immune cells of murine origin45. Moreo-
ver, it was revealed that c-fos was a key molecule that mediated 
the kinase-regulated IL-12 and IL-10 expression in TLR4 signaling 
by regulating c-fos expression and NFκB binding to the promoters 
of IL-12 and IL-10 in a differential manner45. These findings con-
firmed the role of c-fos in this capacity reported in an earlier study 
by Mitsuhashi et al.33 and were corroborated by a similar study in 
human DCs with an additional delineation of the opposing activi-
ties of the two components of the mTOR complex, mTORC1 and 
mTORC2, in this signaling pathway46. Thus, by controlling the bal-
ance between IL-12 and IL-10, mTOR can specifically regulate the 
TLR-induced T-cell response in vivo. Indeed, blockade of mTOR 
by rapamycin efficiently boosted TLR-induced antigen-specific 
T- and B-cell responses to hepatitis B virus and hepatitis C virus 
vaccines45. This study links a ubiquitously present and fundamen-
tally important pathway of cellular survival, proliferation, and func-
tion to the production of a highly restricted specialist molecule in 
the immune system. Notably absent from the study is the answer to 
an obvious question: is the induction of IL-10 via mTOR signaling 
responsible for the inhibition of IL-12 production? Figure 1 sum-
marizes our current understanding of the transcriptional mecha-
nisms regulating the IL-12p40 promoter47.

Interleukin-10 signaling
IL-10 was first discovered by complementary DNA clone-based 
screening for secreted factors by established Th2 cells that regu-
late cytokine production by activated Th1 cells48,49. IL-10 is a major 
immunosuppressive cytokine. It is a critical component in the 
maintenance of the fine balance between swift and potent immune 
responses against invading pathogens and the control of detrimental 
pathological injury. Almost all cells of the innate and adaptive arms 
of the immune system can produce IL-10, including DCs, mac-
rophages, mast cells, NK cells, eosinophils, neutrophils, B cells, 
CD8+ T cells, CD4+ Th1, Th2, and Th17 cells50–58, and regulatory 
T (Treg) cells53,57,59. The major role of IL-10 is to limit the extent of 
the activation of both the innate and the adaptive immune cells to 
maintain a homeostatic state. This role of IL-10 is vitally important 
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in protecting the host from infection-associated immunopathology, 
autoimmunity, and allergy, such as sepsis, arthritis, insulitis, inflam-
matory bowel disease (IBD), and so on. In addition to these activi-
ties, IL-10 regulates growth or differentiation (or both) of B cells, 
NK cells, cytotoxic and helper T cells, mast cells, granulocytes, 
dendritic cells, keratinocytes, and endothelial cells51.

The IL-10 receptor is composed of at least two subunits that are 
members of the IFN receptor (IFNR) family, the ligand-binding 
subunit (IL-10Rα and IL-10R1)60,61, and the accessory subunit 
for signaling, IL-10R2 (IL-10Rβ)62,63. IL-10, produced from vari-
ous cellular sources upon exposure to pathogens and inflammatory 
insults, binds to its receptor on target cells. Activation of the IL-10 
receptor complex induces a tetramer consisting of two IL-10R1 and 
two IL-10R2 chains, which bind homodimeric IL-10 to the extra-
cellular domains of IL-10R164. Upon the receptor-ligand engage-
ment, phosphorylation of the receptor-associated protein tyrosine 
kinase JAK1 is recruited to the intracellular domain by the IL-10R1 
chain, while non-receptor TYK2 is recruited to the receptor com-
plex by IL-10R262. These kinases serve as a temporary docking 

site for inactive cytosolic STAT1 or STAT3 or both62, which are 
recruited by JAK1 and TYK2 to the site upon phosphorylation of 
the IL-10R1 chain at two tyrosine residues64. The STATs bind to the 
IL-10R1 chain via the Src homology 2 (SH2) domain and are tyrosine- 
phosphorylated by the receptor-associated JAKs. Activation of 
STAT3 leads to its homodimerization, similarly to STAT165,66. Trans-
location of activated STATs to the nucleus renders high-affinity 
binding to the promoter regions of IL-10-responsive genes. Suc-
cessful engagement of the IL-10 receptor complex subsequently 
activates distinct JAK-STAT pathways and downstream signaling 
events that converge through various mechanisms to influence 
nuclear transcriptional events such as those mediated by NFκB67, 
resulting in the initiation of extensive anti-inflammatory and 
homeostatic programs.

It is important to note that the cellular source of IL-10 production 
is critical to its immunological activities in a cell-specific manner. 
Mice with a specific deletion in T cells generated by Cre/loxP-medi-
ated targeting showed heightened contact hypersensitivity reac-
tions and succumbed to severe immunopathology upon infection 

Figure 1. Transcriptional regulation of IL-12p40 (IL12b) in antigen-presenting cells. The data are drawn primarily from macrophage 
studies. In dendritic cells, c-Rel is not required for IL12B transcription. F1 denotes a large molecular complex containing multiple transcription 
factors binding to the human IL12b promoter47. Green-arrowed lines indicate a stimulatory role for IL12b transcription, whereas red-arrowed 
lines denote the reverse. Continuous short arrows denote multiple steps involved that are not specified in details. Dashed lines indicate 
undetermined signaling pathway. The promoter coordinates are with respect to the transcription start site, designated +1, of the human IL12b 
gene. GAP-12 is a putative transcriptional repressor of unidentified nature that is induced by IL-4 or PGE2 treatment of human monocytes28. 
The asterisks denotes controversial transcriptional factors that are defined as repressors by mouse knockout studies but as activators in some 
in vitro studies (see text for details). Akt, Ak strain transforming; AP-1; activating protein 1; cAMP, cyclic adenosine monophosphate; C/EBP, 
CCAAT enhancer-binding protein; CpG, cytosine-phosphate-guanine; ds, double-stranded; Ets2, E26 2; GAP-12, GATA sequence in the IL-12 
promoter; IRF, interferon regulatory factor; JNK, c-Jun N-terminal kinase; MyD88, myeloid differentiation primary response gene 88; mTOR, 
mammalian target of rapamycin; PGE2, prostaglandin E2; PK, protein kinase; Pol, polymerase; PU.1, purine.1; RLR, retinoic acid-inducible 
gene-I-like receptor; STAT, signal transduction and transcription; TLR, Toll-like receptor.
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with Toxoplasma gondii. Splenocytes from these mice secreted 
increased amounts of pro-inflammatory cytokines after activa-
tion in vitro compared with wild-type (WT) control splenocytes. 
However, in contrast to complete IL-10 deficiency, sensitivity 
to endotoxic shock and skin irritant responses of the skin in the 
T-specific IL-10-deficent mice were not greater than those of the 
WT controls68. A critical role of B cell-derived IL-10 has been 
demonstrated in the mouse model of experimental autoimmune 
encephalomyelitis (EAE). Mice with a disruption in the Ig μ heavy 
chain (μMT), which results in a lack of B cells, develop a non-
remitting form of EAE. Transfer of WT B cells restored remission, 
whereas B lymphocytes from IL-10-deficient mice were unable to 
suppress the disease progression52. Together, these studies highlight 
the distinctiveness of IL-10 derived from different cellular origins 
that determines its unique range of activities.

Regulation of interleukin-10 production
IL-10 production by macrophages and DCs through pathogen- 
associated molecular patterns (PAMPs) has been most widely studied. 
Macrophages produce IL-10 as a consequence of the recognition of 
PAMPs by its PRRs. Several classes of PRRs are expressed by mac-
rophages, including TLRs, C-type lectin receptors, RIG-1 (retinoic 
acid-inducible gene 1) receptors, and NOD-like receptors69,70. The 
PAMPs bind to the TLRs with its TLR-interacting (TIR) domain, 
initiating signaling into macrophages with the help of intracellu-
lar adaptors that lead to the activation of multiple members of the 
MAPKs and subsequently transcription factors Sp171, C/EBPβ and 
δ72, c-Maf73, NFκB74, and phosphorylated cyclic AMP element- 
binding protein (CREB)75. TLRs can also act in synergy with other 
agonists such as IL-473 and PGE

2
76,77 to augment IL-10 produc-

tion. TLR3 or TLR4 activation results in the production of IFNβ, 
which sets up a feedback loop to sustain IL-10 mRNA induction78.

B cells express a number of TLRs. Agonists that act via TLR2, 
TLR4, or TLR9 have all been shown to promote IL-10 produc-
tion79–82. TLR9 activation in B cells stimulates activation of 
Bruton’s tyrosine kinase (Btk), and B cells from Btk knockout mice 
fail to secrete IL-10 following TLR9 stimulation. However, the 
molecular mechanism downstream of Btk is not clear. The role of 
Btk is not restricted to B cells, as Btk-deficient macrophages also 
secrete less IL-10 than WT cells83.

CD4+ T cells have been identified as an important source of IL-10 
in vivo84. Various transcription factors have been reported to induce 
IL-10 in T cells, including SP1, c-Jun, c-Maf, SMAD4, GATA3, 
and STATs84. However, the molecular signaling pathways that regu-
late IL-10 induction have not been fully delineated. The studies in 
this area have been complicated by the existence of multiple Th 
cell subsets, many of which can produce IL-10, including Th1, 
Th2, Th17, and Treg cells, albeit with different capacities. These 
observations have prompted the hypothesis that the IL-10 locus 
becomes differentially modified during Th cell polarization, which 
then invokes subtly different molecular mechanisms that drive 
IL-10 transcription in a quantitatively variable manner in the vari-
ous T-cell subtypes85.

In contrast to the host response to infectious agents, clearance of 
apoptotic cells of a self-nature by phagocytes results predominantly 

in anti-inflammatory reactions characterized by the production of 
immunoregulatory cytokines IL-10, PGE

2
, and transforming growth 

factor beta (TGFβ)86, which are critical to ensuring cellular home-
ostasis and suppression of autoimmunity as an evolutionarily well-
preserved mechanism. Chung et al. reported that the production of 
IL-10 in response to apoptotic cells is dependent on CD36, p38 
MAPK, and the transcription factor TALE homeoprotein Pre-B-cell 
leukemia homeobox 1 (Pbx1)24. The study establishes a novel role 
of a developmentally critical factor in the regulation of homeostasis 
in the immune system and opens up a new area for future explora-
tion at the intersection between cellular homeostasis and immune 
responses to exogenous pathogens as well as to endogenous danger 
signals.

Regulation of interleukin-12 production by 
interleukin-10
The potency of IL-12 in host defense makes it a target for stringent 
regulation. Indeed, the temporal, spatial, and quantitative expres-
sion of IL-12 during an immune response in a microenvironment 
contributes critically to the determination of the type, extent, and 
ultimate resolution of the reaction. Breaching of the delicate con-
trol and balance frequently leads to immunologic disorders and 
pathogenesis. One of the most important and well-studied nega-
tive regulators of TLR-induced IL-12 production is IL-1087. IL-10 
suppression of both IL12a and Il12b genes is seen primarily at the 
transcriptional level, and the inductions of the two genes have dif-
ferent requirements for de novo protein synthesis88. How IL-10 
suppresses Il12a transcription is unknown at present. IL-10 targets 
an enhancer 10 kb upstream of the Il12b transcriptional start site 
that is bound by nuclear factor, interleukin 3-regulated (NFIL3), 
a B-ZIP transcription factor. Myeloid cells lacking NFIL3 pro-
duce excessive IL-12p40 and increased IL-12p7089. Thus, the 
STAT3-dependent expression of NFIL3 is a key component of a 
negative feedback pathway in myeloid cells that suppresses pro- 
inflammatory responses.

Kobayashi et al. observed that acetylated histone H4 transiently 
associated with the Il12b promoter in WT bone marrow-derived 
macrophages (BMDMs), whereas association of these factors was 
prolonged in Il10−/− BMDMs. Experiments using histone deacety-
lase (HDAC) inhibitors and HDAC3 short hairpin RNA indicate 
that HDAC3 is involved in histone deacetylation of the Il12b pro-
moter by IL-10. These results suggest that histone deacetylation on 
the Il12b promoter by HDAC3 mediates the homeostatic effect of 
IL-10 in macrophages90. More details clearly need to be worked 
out to understand the important homeostatic regulation of IL-12 
production by IL-10. In this context, the IL-4-inducing transcrip-
tion factor c-Maf is an interesting molecule that can directly and 
conversely regulate IL-12 and IL-10 gene expression in activated 
macrophages19,91. Conversely, IRF-5 is a driver of the “M1” polari-
zation of macrophages promoting Th1 and Th17 activities with acti-
vated transcription of inflammatory genes, including Il12a, Il12b, 
and Il23a, and repressed Il10 transcription92.

Interleukin-12 in adoptive cell therapy for cancer
IL-12 is able to activate all major cytotoxic killer and helper cell 
types of the immune apparatus (NK, NKT, CD4+, and CD8+ T cells) 
that are crucially important for immunosurveillance of and resistance 
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to cancer development and progression93. The extraordinary anti-
tumor efficacy of IL-12 has been demonstrated in animal mod-
els of cancer of diverse types94–105, and its use in various forms is 
now involved in a large number of human cancer clinical trials106. 
Adoptive cell therapy of malignant diseases takes advantage of the 
cellular immune system to recognize specific tumor-associated anti-
gens and destroy cancer cells. This is remarkably demonstrated by 
redirecting T cells with a chimeric antigen receptor (CAR) toward 
CD19, inducing complete remission of leukemia in more than two 
thirds of patients in early-phase trials107. After initial tumor reduc-
tion by CAR T cells, antigen-negative cancer cells not recognized 
by CAR may give rise to tumor relapse. Fortunately, the “quag-
mire” may be overcome by CAR-mediated activation of T cells in 
the tumor, releasing inducible IL-12, which augments T-cell acti-
vation and attracts and activates innate immune cells to eliminate 
antigen-negative cancer cells in the targeted lesion. Chmielewski 
et al. demonstrated the feasibility of this strategy by redirecting 
T cells with a carcinoembryonic antigen (CEA)-targeting CAR and 
engineering with the inducible recombinant IL-12 expression cas-
sette under the control of the NFAT/IL-2 minimal promoter108. In 
this context, IL-12 release was triggered by CAR signaling upon 
tumor antigen recognition and no IL-12 was detected in vitro with-
out CAR signaling. The production capacity of such modified CAR 
T cells was sufficient to reach therapeutic levels without the need 
of repetitive drug application109. The therapeutic advantage is indi-
cated by the fact that a dose of 105 IL-12 modified tumor-specific 
CAR T cells was more effective against established tumors than 
106 T cells without IL-12 in a pre-clinical model110.

To date, despite the enhanced anti-tumor efficacy of IL-12-secreting 
CAR T cells in this model, the mechanisms associated with this 
enhanced tumor eradication remain unclear. Previous work showed 
that IL-12 reversed Treg cell-mediated suppression of CD4+ Foxp3− 
T-cell proliferation111. IL-12 was shown to induce IFN-γ production 
by Treg cells in vitro and in vivo112,113. However, IFN-γ expression 
did not decrease the ability of Treg cells to suppress T-cell prolif-
eration114. Rather, IL-12 treatment decreased Treg cell frequency 
and Foxp3 levels in Treg cells. Furthermore, IL-12 increased 
IL-2R expression on effector CD4+ and CD8+ T cells, diminished its 
expression on Treg cells, and decreased IL-2 production by CD4+ 
and CD8+ T effectors. Together, these IL-12-mediated changes 
favored the outgrowth of non-Treg cells114. Kerkar et al. demon-
strated that engineering tumor-specific CD8+ T cells to secrete 
IL-12 improved their therapeutic efficacy in the B16 mouse model 
of established melanoma115. Surprisingly, direct binding of IL-12 
to receptors on lymphocytes or NK cells was not required. Instead, 
IL-12 sensitized bone marrow-derived tumor stromal cells, includ-
ing CD11b+F4/80hi macrophages, CD11b+MHCIIhiCD11chi DCs, 
and CD11b+Gr-1hi MDSCs, causing them to enhance the effects of 
adoptively transferred CD8+ T cells. This reprogramming of mye-
loid-derived cells occurred partly through IFN-γ. MHC I expression 
on host cells was essential for IL-12-mediated anti-tumor enhance-
ments115. These studies point to the potential immunological 
mechanisms of the T cell-secreted IL-12 in tumor models.

Based on prior pre-clinical studies demonstrating that IL-12-secret-
ing CAR T cells are protected from inhibition by endogenous Treg 
cells (unpublished results), it is conceivable that IL-12-producing 

CAR T cells may be refractory to Treg cell-mediated inhibition and 
that previously requisite CAR-mediated T-cell “co-stimulation” 
(through CD28 or CD40L) may be overcome by CAR T cell-derived 
IL-12 secretion. In other words, CAR T cell-derived IL-12 may 
render the effectors independent of the “second signal” requirement 
“engraved” in classic T-cell activation paradigms. Furthermore, it 
is possible that IL-12 secretion within the tumor microenviron-
ment can reverse the anergic state of endogenous tumor-infiltrating 
lymphocytes (TILs) and blunt the immune suppression by mye-
loid-derived suppressor cells (MDSCs) as well as modulation of 
the tumor-associated macrophages (TAMs) from a suppressive M2 
phenotype to a pro-inflammatory M1 phenotype116–119.

Future perspectives
IL-10 is a pleiotropic cytokine with a strong role in limiting the 
scope and extent of immune activation. Loss of IL-10 function has 
deleterious effects. Therefore, IL-10 could be a potential therapeutic 
agent for many inflammatory or autoimmune disorders. However, 
systemic IL-10 administration has proven to be of limited value120 
and this indicates that IL-10 production would need to be care-
fully targeted to be efficacious therapeutically. This is evidenced 
by adoptive transfers of specific types of IL-10-producing immune 
cells in some autoimmune disease models that result in protection 
against the development of inflammatory pathologies121–127. Thus, 
a far more comprehensive and precise understanding of which 
IL-10-producing cells are important in vivo, and what the critical 
target cells of this IL-10 are would be instrumental in the future 
development of the therapeutic potentials of IL-10. The increased 
use of conditional gene targeting in mice will help in these future 
studies85.

In the intestinal mucosa, IL-10 is a well-established regulator of 
tissue inflammation and homeostasis. Mutations in the NOD2 
gene are strongly associated with Crohn’s disease, a form of IBD 
believed to be driven by uncontrolled Th1 and Th17 responses128. 
There has been long a debate on the nature of the IBD-associated 
NOD2 mutations: “loss of function” or “gain of function”? Noguchi 
et al. showed that a common disease-related NOD2 mutation, 
3020insC, displayed a “gain of function” property in that it sup-
pressed IL10 transcription by blocking the phosphorylation of the 
nuclear ribonucleoprotein hnRNP-A1 (heterogeneous nuclear ribo-
nucleoprotein A1) via the p38 MAPK129. This effect of 3020insC 
appears to be unique on the human IL-10 gene but not on its murine 
counterpart. The study challenges the present paradigms about the 
influence of the 3020insC mutation on Crohn’s disease, cautioning 
against deriving conclusions about the human disease on the basis 
of data from NOD2 knockout mice. It may provide a novel way of 
thinking about efforts to identify therapeutic targets for the treat-
ment of Crohn’s disease and other Th1/Th17-mediated autoimmune 
diseases associated with the 3020insC mutation.

Although a tremendous amount of knowledge has been gained 
about the signaling and function of IL-12 in immune cells since its 
discovery in 1989, many important questions remain. It is widely 
believed that the majority of the immunological activities of IL-12 
are mediated through IFN-γ produced by activated NK and Th1 
cells that have been exposed to APC-derived IL-12. However, 
considerable levels of IFN-γ-independent activities of IL-12 have 
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been reported in many infectious disease and cancer models130–136. 
The cellular and molecular basis of the non-canonical activities of 
IL-12 await further elucidation. In immunotherapy of cancers, it 
has been long noted that the repeated administration of recombinant 
IL-12 could contribute to increased immunosuppressive properties 
of the tumor by the induction of IL-10137–139. Although the underly-
ing molecular mechanism for the negative feedback is lacking, the 
finding that IL-12 is capable of potently inducing its own inhibitor 
reiterates the concept that the immune system is inherently equipped 
with an intrinsic negative feedback device that limits ongoing T-cell 
activation. This also indicates that the kinetics of T-cell responses 
may be regulated by the ratio of IL-12 and IL-10 levels, which may 
gradually decline during the immune response.

Endotoxin tolerance, the transient, secondary downregulation of 
a subset of endotoxin-driven responses after exposure to bacterial 
products, is thought to be an adaptive response providing protec-
tion from pathological hyperactivation of the innate immune system 
during bacterial infection. IL-12 production is subjected to such a 
control mechanism. Wysocka et al. examined the development of 
IL-12 suppression during endotoxin tolerance in mice. The basis for 
decreased IL-12 production in vivo is clearly multifactorial, involv-
ing both loss of CD11chigh DCs as well as alterations in the respon-
siveness of macrophages and remaining splenic DCs. There is no 
demonstrable mechanistic role for B or T lymphocytes, the soluble 
mediators IL-10, TNF-α, IFN-α/β, nitric oxide, or the NFκB fam-
ily members p50, p52, or RelB140. To date, the tolerance mechanism 
that inhibits IL-12 production by APCs remains elusive. The need 
for the understanding is underscored by the frequent occurrence of 
“immunological paralysis” subsequent to septic shock in patients. 
In the broad context, Foster et al. have provided some major insights 
into this phenomenon by proposing a model for the gene-specific 
regulation of class “T” (for tolerant) and “NT” (for non-tolerant) 
genes mainly through preferential transcription factor recruitment, 
histone acetylation, H3K4 trimethylation, and chromatin remod-
eling in tolerant versus non-tolerant macrophages141.

The acute-phase proteins, C-reactive protein and serum amyloid 
A (SAA), are biomarkers of infection and inflammation. He et al. 
reported a novel property of SAA in the differential induction of 
IL-12 and IL-23 in human peripheral blood monocytes142. SAA-
induced IL-12p40 production was accompanied by a sustained 
expression of IL-23p19, but not IL-12p35, resulting in preferential 
secretion of IL-23, but not IL-12. The study identified SAA as a 
novel endogenous ligand that potentially activates the IL-23/IL-17 
pathway, representing a novel mechanism for regulation of inflam-
mation and immunity by an acute-phase protein. The differential 
production of IL-12 versus IL-23 was also observed in myeloid DCs 
(mDCs) and plasmacytoid DCs (pDCs) stimulated via TLR ligands. 
Only mDCs but not pDCs secreted IL-23. Although pDCs produced 
both mRNA and protein of the p40 subunit, the lack of bioactive 
heterodimeric IL-23 protein release was due to the absence of trans-
lation of the p19 mRNA into protein143. These findings support the 
hypothesis of a coordinated adaptive immune response based on a 
finely tuned contribution of these cytokines by different DC sub-
sets. How these endogenous and exogenous ligands induce IL-12 
and IL-23 differentially at the molecular level bears both great sci-
entific interests and practical implications.

The immunological activities of IL-12 are further complicated by 
the existence of IL-12p40 homodimer, IL-12p80, which acts as 
an IL-12 antagonist by binding to the IL-12R but which does not 
mediate a biological response144,145. Secretion of IL-12 is associated 
with excess production of IL-12p8016. For example, in contrast 
to the dogma about the restrictive nature of IL-12-producing cell 
types, meaningful amounts of IL-12p40 monomer and IL-12p80 
have been observed in human breast cancer cells146, which could 
potentially thwart the IL-12-induced anti-tumor responses in vivo. 
Approximately 20% to 40% of the p40 in the serum of nor-
mal and endotoxin-treated mice is in the form of IL-12p80147. In 
IL-12-dependent shock models, exogenous IL-12p80 inhibits 
IL-12-induced cell-mediated immune response and protects mice 
from sepsis-associated death148. However, IL-12p80 has also been 
reported to stimulate, rather than inhibit, the differentiation of CD8+ 
Tc1 (type I cytotoxic T) cells in vitro, contrary to its suppressive 
activity on Th1 function149. The divergent functions of the various 
forms of p40 highlight our lack of full appreciation of its true range 
of biological activities.

Recent pre-clinical studies demonstrated that treatment with CD19-
specific, CAR T cells that secrete IL-12 is able to safely eradicate 
established disease without the sophisticated and laborious prior 
conditioning of subjects150. Moreover, in severe combined immuno-
deficient (SCID)-Beige mice with human ovarian cancer xenografts, 
IL-12-secreting CAR T cells exhibited enhanced anti-tumor effi-
cacy as determined by an increased survival rate, prolonged persist-
ence of T cells, a higher level of systemic IFN-γ, and modulated 
tumor microenvironment151. How the locally released IL-12 con-
tributes to the highly favorable clinical efficacy and immunological 
modifications to numerous cell types in the tumor environment is 
an urgent and challenging task for the benefit of further improving 
this revolutionary therapeutic strategy for cancers of diverse types 
and progression states.

In summary, the complexity of the heterodimeric nature of both the 
cytokines and their receptors in the IL-12 family (also including 
IL-27) associated with the activation of different combinations of 
tyrosine kinases and STATs underlies the overlapping as well as 
distinct immunological consequences of the regulation and signal-
ing in this cytokine group. Greater efforts are called for to better 
decipher the intricacies. In the meantime, more caution is needed 
in interpreting data derived from studies of individual cytokine or 
receptor chains.
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