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Abstract

Bartonella henselae is a fastidious intraerythrocytic, gram-negative bacteria that causes cat

scratch disease in humans. Ixodes ricinus has been confirmed to be a competent vector of

B. henselae, and some indirect evidences from clinical cases and epidemiological studies

also suggested that some other tick species, including Rhipicephalus sanguineus, may

transmit the bacteria. B. henselae has been detected in R. sanguineus but no experimental

investigations have been performed to evaluate the vector competency of this tick species

regarding B. henselae transmission. To this end, this work aimed to assess the transstadial

transmission of B. henselae between larvae and nymphs of R. sanguineus as well as trans-

mission by nymphs infected at the larval stage. Four hundred B. henselae negative larvae

were fed with B. henselae-infected blood by using an artificial membrane feeding system.

After five days of feeding, B. henselae was detected by PCR in 57.1% (8/14) of engorged

larval pools, 66.7% (4/6) of semi-engorged larval pools, and 66.7% (2/3) of larval feces

pools. After molting, B. henselae DNA was also detected in 10% (1/10) of nymph pools, but

not in tick feces. After a pre-fed step of nymphs infected at the larval stage on non-infected

blood meal, B. henselae was detected by PCR in blood sample from the feeder, but no Bar-

tonella colonies could be obtained from culture. These findings showed that B. henselae

could be transstadial transmitted from R. sanguineus larvae to nymphs, and also suggest

that these nymphs may retransmitted the bacteria through the saliva during their blood

meal. This is the first study that validated the artificial membrane feeding system for main-

taining R. sanguineus tick colony. It shows the possibility of transstadial transmission of

B. henselae from R. sanguineus larvae to nymphs.

Author summary

B. henselae is gram-negative bacteria that infects red blood cells of humans and compan-

ion animals and causes cat scratch disease in humans. Ticks were considered to be
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potential vectors of B. henselae for a long time until it was finally experimentally demon-

strated for Ixodes ricinus. Since then, no evidence on B. henselae transmission by other

tick species was reported. This study was performed 1) to validate the use of artificial

membrane system to feed and infect R. sanguineus ticks and 2) to determine the possibility

of B. henselae transmission by R. sanguineus, a world-widely distributed ticks. Our results

show that the artificial membrane feeding system can be used to maintain R. sanguineus
colony in the laboratory, and that B. henselae can be acquired by R. sanguineus during a

blood meal on artificial membrane feeding system and can be transmitted from larvae to

nymphs that were able to inject bacterial DNA to blood during a new blood meal. How-

ever, further investigations are still needed to confirm the viability of bacteria transmitted

to blood by nymphs infected at the larval stage in order to validate B. henselae transmis-

sion by R. sanguineus.

Introduction

Bartonella henselae is a fastidious gram-negative bacteria which infects companion animals

and is responsible for cat scratch disease (CSD) in humans [1]. Worldwide, B. henselae infec-

tion is estimated to be between 5% and 86% in cats [2–4]. B. henselae is normally transmitted

from cat to cat by fleas (Ctenocephalides felis felis) and usually transmitted from cat to human

by cat scratch due to B. henselae contamination from flea feces [5–9]. Most human CSD cases

are self-limited from asymptomatic to skin inflammation, fever and lymphadenopathy [10].

However, B. henselae is becoming increasingly associated with a number of other syndromes

including conjunctivitis, encephalopathy and endocarditis [11–13]. In addition, bacillary

angiomatosis and peliosis hepatitis are unusual vascular proliferative lesions observed in

immunocompromised patients with B. henselae infection [14, 15].

Despite cat flea has been known to be the competent vector of B. henselae, ticks have also

been considered as potential vectors for Bartonella transmission for a long time [16–31]. B.

henselae DNA has been detected in several species of ticks, including Ixodes pacificus, I. persul-
catus, I. ricinus, and R. sanguineus [18, 26–28]. Co-infections of B. henselae with other patho-

gens known to be transmitted by ticks, such as Anaplasma spp., Borrelia spp. and Rickettsia
spp., have been reported in both humans and animals by molecular evidence, suggesting a pos-

sible co-transmission of pathogenic agents after a tick bite [19, 20, 22, 25, 30, 32–34]. More-

over, B. henselae has been isolated by blood culture or detected by PCR from human patients

with history of tick bites, which emphasized the hypothesis that ticks may serve as vectors for

Bartonella spp. [16, 17, 20, 23–25, 29, 31]. In 2008, Cotté and co-workers have demonstrated

that B. henselae can survive in I. ricinus during their molting from larvae to nymphs and from

nymphs to adults, and can be transmitted to blood through tick saliva in an artificial mem-

brane feeding system [35]. They also showed that the bacteria located into the salivary glands

of I. ricinus adults infected at the nymphal stage was alive and infectious as when the corre-

sponding tick salivary glands were injected to cats which then developed a bacteremia. Later,

Reis and co-workers also reported that B. birtlesii could be transstadial transmitted from I. rici-
nus larvae to nymphs and from nymphs to adults [36]. They also demonstrated that when

infected on infected mice as larvae, I. ricinus nymphs can retransmit the bacteria to naïve

mice, and when infected at the nymphal stage, adults can retransmit the bacteria to blood

through the membrane feeding system. All these results proved that I. ricinus can act as a vec-

tor for both B. henselae and B. birtlesii [35, 36].

The brown dog tick, R. sanguineus, has the worldwide geographic distribution. This tick

plays roles as a vector of several pathogens causing clinical illness, including Babesia vogeli and
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Ehrlichia canis in dogs, and Rickettsia conorii and R. rickettsii in humans [37]. R. sanguineus
has been suspected to be a potential vector of Bartonella spp. since 1992, when two patients

developed fever with a relapsing course after tick bites, and B. henselae was isolated by culture

from their blood [23]. Several molecular epidemiological surveys were then conducted, and

the B. henselae DNA positive rate in R. sanguineus ticks has been reported as being 0.09% (1/

209) in Italy, 3.2% (2/62) in California, USA, and 5.3% (15/281) in the central part of Taiwan

[28, 30, 38]. In addition, B. vinsonii subsp. berkhoffii DNA has been detected in R. sanguineus
adult feces suggesting that tick feces could be a potential source of B. vinsonii subsp. berkhoffii
infection [39]. However, no validation of the vector competence of R. sanguineus for Barto-
nella spp. transmission has been performed until now.

Because of evidence of R. sanguineus harboring and potentially transmitting Bartonella spp.

and limited information on Bartonella transmission by ticks, we performed the present experi-

mental study to investigate the possibility of B. henselae transmission by R. sanguineus using

an artificial membrane feeding system. This feeding technique can mimic the natural condi-

tions of tick infection via the digestive tract in controlled condition as validated for I. ricinus
with both tick-borne bacteria and parasites and, until now, was never applied to R. sanguineus
feeding or infection studies [35, 36, 40–42].

Methods

Tick collection and population maintenance

Engorged R. sanguineus females were collected from dogs in veterinary hospitals in Taiwan

and morphological identification was performed by using taxonomic keys [43]. Each engorged

female was placed in a container inside a chamber with 80–90% of relative humidity, at room

temperature and with a photoperiod of 16:8h (L: D) cycles until finishing her oviposition

period [44]. In each larval batch, 10% of larval ticks was randomly selected and tested for B.

henselae DNA presence. Only B. henselae negative offspring were then used in all experiments.

After feeding and molting from the previous life stage, ticks were starved in the previously

mentioned conditions for one-month until next feeding.

B. henselae isolates

B. henselae, isolated from strayed cats in eastern part of Taiwan, was cultured on chocolate

agar plates (Taiwan Prepared Media Co., LTD), at 35˚C, and in an atmosphere of 5% CO2.

Number of Colony-Forming Units (CFU) was evaluated to estimate the amount of viable B.

henselae. B. henselae colonies were harvested by using sterilized polypropylene loop (SPL

Lifesciences Co., LTD), suspended in sterile 1x of Phosphate-Buffered Saline (1x PBS), and

used immediately for tick feeding [35]. DNA of B. henselae used as a positive control for

nested-PCR was extracted from a bacterial colony using DNeasy Blood & Tissue kit

(Qiagen).

Skin membrane preparation

Outbred ICR (Bltw:CD1) mice (BioLASCO Taiwan Co., LTD), around 10 weeks old, without

any treatment from cooperating laboratories in National Pingtung University of Science and

Technology, Taiwan were used to obtain skins. Mice skins with the dermal thickness around

300 μm were considered to use in artificial feeding of R. sanguineus larvae and nymphs (hypo-

stome length: 50 μm and 120 μm, respectively) [45, 46]. The mice skins were then processed as

previously described [41]. Briefly, dissected skins were first sterilized in 70% ethanol for 5 min,

followed by rinsing in sterile distilled water for 5 min and then 1x PBS for 5 min. Those skins
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were finally aseptically treated in an antimicrobial solution of Gentamicin (10 mg/ml),

Amphotericin B (0.25 μg/ml), Penicillin (50 U/ml) and Streptomycin (50 μl/ml) for 10 min.

All dissected skins were then stored at -20˚C not longer than 3 months until use.

Blood preparation for tick feeding

Goat blood, obtained from a goat farm in Pingtung, Taiwan and confirmed Bartonella DNA

negative by PCR, was used in all following experiments (ethical permit IACUC number:

NPUST-105-036). After collection, the blood was defibrinated and depleted of functional com-

plement by heat treatment at 56˚C for 30 min [35]. To prevent fungal and bacterial contamina-

tion during tick feeding, decomplemented blood was supplemented with 20 μl/ml of

Fosfomycin, 0.25 μg/ml of Amphotericin B, and 10 KU/ml of Heparin [35].

Feeding larvae with B. henselae-infected blood

The artificial membrane feeding system was adapted from Bonnet et al [41]. This system con-

sists of a glass feeder closed with a mice skin at the bottom, and placed on the top of the tick

container. Placing the blood above the skin membrane supports a continuous gravitational

pressure on the membrane. The glass feeders were connected to a 37˚C water circulation sys-

tem to mimic host body temperature, attract ticks and preserve Bartonella in the blood (Fig 1).

This system was established under room temperature, 80–90% of relative humidity and photo-

period of 16:8h (L: D).

The general framework of the tick feeding experiment is shown in Fig 2. A total of 400 lar-

vae were fed with B. henselae-infected blood for 5 days by using artificial membrane feeding

system under laboratory conditions as described above. The larval feeding duration in the

present study was adjusted from the reported time of feeding of R. sanguineus larvae on rabbits

under laboratory conditions, i.e. 3 to 6 days [44]. The B. henselae-infected blood was prepared

as follow: a total of 40 μl of B. henselae suspension at a concentration of 109 CFU/ml was added

to 4 ml of decomplemented blood for feeding. Blood was changed twice a day at 12 h intervals,

and the side of mice skin in contact with the blood was washed three times with RPMI 1640

(CORNING) [41]. As a control group, 200 larvae were fed on non-infected blood under the

same condition and the blood was changed once a day (Fig 2). At the end of feeding experi-

ment, larvae that spontaneously detached from mice skin were considered as engorged larvae,

Fig 1. Diagram of an artificial membrane feeding system used to feed R. sanguineus larvae and nymphs. The

artificial feeder consists of a glass feeder, animal skin, and tick container. The glass feeder is connected to a 37˚C water

circulation system to mimic host body temperature.

https://doi.org/10.1371/journal.pntd.0008664.g001
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and the larvae that were still attached on the mice skin and then manually detached were con-

sidered as semi-engorged larvae. The attachment rate of R. sanguineus larvae on mice skin was

calculated at day 5 after the beginning of the experiment.

Feeding nymphs with non-infected blood

A total of 60 nymphs that molted from experimentally Bartonella-infected larvae were fed in a

unique feeder with non-infected blood for 4 days according to the delay of bacteria detection

in blood samples reported for I. ricinus [35, 36]. As control, 40 nymphs molted from larvae

engorged on non-infected blood were also fed in another feeder with non-infected blood. A

total of 100 μl of blood was collected daily from each feeder and used to detect Bartonella DNA

by PCR. After 4 days of feeding, 10 μl of blood was spread on chocolate blood agar plates to

detect Bartonella colonies [35]. At day 4, nymphs were manually detached on the mice skin

and considered as semi-engorged nymphs for calculating the nymph attachment rate (Fig 2).

DNA extraction from tick and blood samples

DNA was extracted using DNeasy Blood & Tissue kit (Qiagen) from 6 kinds of samples,

including 100 μl of blood samples, pools of 5 engorged larvae, pools of 10 semi-engorged lar-

vae, pools of larval feces, pools of 3 unfed nymphs (molted from engorged larvae) and pools of

nymphal feces from both experimental and control groups. Tick feces were collected from the

tick container during the feeding process by sterilized polypropylene loop and needle (SPL

Lifesciences Co., LTD), and suspended in 100 μl of sterile 1x PBS. The final elution was 50 μl

for all samples. All DNA samples were stored at -20˚C until PCR processing for B. henselae
DNA detection.

B. henselae PCR amplification

B. henselae DNA was detected by using nested-PCR [47]. The primers forward 5’-CTTCGTT

TCTCTTTCTTCA-3’ and reverse 5’-CTTCTCTTCACAATTTCAAT-3’ used for outer reac-

tion, amplified fragments of the 16S-23S rRNA internal transcribed spacer (ITS) region of Bar-
tonella spp. [48]. The primers forward 5’-TTGCTTCTAAAAAGCTTATCAA-3’ and reverse

5’-CAAAAGAGGGATTACAAAATC-3’ used for inner reaction were designed to be specific

to B. henselae amplifying a 254-bp fragment [47]. PCR mixtures was set up as follows: 5 μl of

DNA template, 1 μl of 10 μM of each primer, 5 μl of 10X Taq buffer (Genomics BioSci & Tech,

Taiwan), 4 μl of 2.5 mM of dNTPs Mixture (Genomics BioSci & Tech, Taiwan), 1 μl of 2.5 U/

Fig 2. Duration of tick feeding experiment of R. sanguineus larvae into nymphs. Larvae were fed for 5 days and

were allowed to complete their molting period, which ranged from 15–45 days. After they become nymphs, they were

starved around one month and then fed for 4 days. B. henselae were detected by PCR assay from larval samples (at the

end of larval feeding), nymphal samples (after molting completed) and blood samples (daily collected during the

nymphal feeding). After 4 days of nymphal feeding, blood from each feeder was collected for Bartonella isolation.

https://doi.org/10.1371/journal.pntd.0008664.g002
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μl of Taq DNA polymerase (Genomics BioSci & Tech, Taiwan), and adjusted to a final volume

of 50 μl with distilled water. The PCR conditions for both outer and inner reactions were those

described by Sato and co-workers [47].

Sequence and statistical analyses

The B. henselae suspected positive samples were sent for nucleotide sequencing (Genomics

BioScience and Technology Co., Ltd., Taiwan). Sequence data was analyzed for genetic rela-

tionship in GenBank database by using NCBI nucleotide BLAST tool and validated sequences

were aligned and analyzed by using MegAlign (DNASTAR, Inc., WI, USA). The attachment

rates of R. sanguineus larvae and nymphs, and the engorgement rates of R. sanguineus larvae in

control and experimental groups were calculated, and compared by using the Fisher’s exact

test (p<0.05) (GraphPad Prism 8.4.2 software). B. henselae infection rates in tick pools were

evaluated by using the bias-corrected maximum likelihood estimation (MLE) method with

95% confidence interval, analyzed per 100 ticks by the PooledInfRate statistical software ver-

sion 4.0 [49].

Results

High attachment rates of R. sanguineus on artificial membrane feeding

system

In the present study, some of R. sanguineus larvae started to attach on mice skin around 6

hours after tick placement, and some engorged larvae from both groups started to detach

spontaneously on day 3 (Fig 3A and 3B). After 5 days of feeding on B. henselae-infected blood,

a total of 43% (172/400) of larvae were completely engorged, and 41.5% (166/400) were semi-

engorged (Table 1 and Fig 3C). For control group, 34% (68/200) and 47.5% (95/200) of larvae

were fully engorged and semi-engorged, respectively. The engorgement rate of larvae from

experimental group (43%) was significantly higher than in control group (34%) (p = 0.0344).

Fig 3. R. sanguineus larvae and nymphs engorged using goat blood infected or not with B. henselae. (A) Larvae

attached on the mice skin. (B) Engorged larvae detached from the mice skin after 3 days. (C) Engorged larva (left) and

semi-engorged larva (right). (D) Semi-engorged nymph (left) and unfed nymph (right).

https://doi.org/10.1371/journal.pntd.0008664.g003
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Attachment rates of R. sanguineus larvae on mice skins in experimental and control groups

were 84.5% and 81.5%, respectively, with no significant difference (p = 0.3529) (Table 1).

Engorged larvae were maintained under rearing conditions until they completed their molting

period, which ranged from 15–45 days. Regarding nymphs on day 4 of feeding, 56.7% (34/60)

of nymphs from experimental group and 70% (28/40) of nymphs from control group were

attached on mice skins and considered as semi-engorged nymphs (Table 1 and Fig 3D).

Attachment rates were not significantly different between nymphs from experimental group

and that from control group (p = 0.2908).

B. henselae DNA detection in engorged R. sanguineus larvae and

transstadial transmission to nymphs

Pools of engorged larvae (N = 5), pools of semi-engorged larvae (N = 10), and pools of larval

feces were collected and tested for B. henselae DNA presence after 5 days of feeding on infected

blood. PCR result showed that 57.1% (8/14) of engorged larval pools presented the expected B.

henselae-specific 254-bp DNA fragment. 66.7% (4/6) of semi-engorged larval pools and 66.7%

(2/3) of larval feces pools from the experimental group were also positive for B. henselae DNA.

The MLE of B. henselae infection rate among pools of engorged and semi-engorged larvae

were then estimated as 14.94% (95% CI, 7.30–27.59%) and 9.06% (95% CI, 3.15–23.79%),

respectively. Samples from the control group were all negative for B. henselae detection

(Table 2 and Fig 4).

After larvae molted to nymphs, some of the unfed nymphs and their feces were tested for B.

henselae DNA detection by PCR. One (10%) pooled nymph sample was detected positive for

B. henselae DNA, when pooled nymphal feces samples from the experimental group were all

negative. The MLE of B. henselae infection rate of pooled nymphs was then evaluated as 3.33%

(95% CI, 0.20–15.30%). B. henselae DNA was not detected in samples from the control group

(Table 2 and Fig 4). All obtained sequences showed 100% identity to each other as well as with

the partial sequence of 16S-23S ribosomal RNA intergenic spacer B. henselae (Accession num-

ber MN170540.1).

Bartonella DNA detection in blood during feeding of nymphs infected at

the larval stage

Sixty nymphs from the experimental group infected as larvae and forty nymphs from the con-

trol group were fed separately on non-infected blood for 4 days. To determine whether B. hen-
selae was transmitted by nymphs through blood sucking, blood samples were collected daily

and tested for B. henselae DNA. The PCR result showed that B. henselae DNA was detected in

Table 1. Attachment rates of R. sanguineus larvae and nymphs fed on mice skin by artificial membrane feeding system.

Ticks fed on mice skin Larval stage Nymphal stage
Experimental group (400) Control group (200) Experimental group (60) Control group (40)

No. of engorged ticks (%) 172 (43%) � 68 (34%) � - -

No. of semi-engorged ticks (%) 166 (41.5%) 95 (47.5%) 34 (56.7%) 28 (70%)

Others (%) 62 (15.5%) 37 (18.5%) 26 (43.3%) 12 (30%)

Attachment rate 338 (84.5%) 163 (81.5%) 34 (56.7%) 28 (70%)

Data were analyzed statistically to compare results between ticks fed on B. henselae-infected blood (experimental group) and non-infected blood (control group) by

Fisher’s exact test (� p<0.05).

Others: unfed, inactive, or died ticks.

https://doi.org/10.1371/journal.pntd.0008664.t001
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blood 4 days after nymph attachment to the skin for those molted from larvae engorged on

infected blood, when PCR were all negative for the control group (Fig 5). Unfortunately, no

colonies were obtained after 14 days of culture of the blood sample taken on day 4, as for

control.

Discussion

In the present study, an artificial membrane feeding system using mice skin and initially

designed for I. ricinus was successfully set up for R. sanguineus [41]. Our results show high lar-

val attachment rate of 81.5% in the control group and 84.5% in the experimental group, as well

as 70% in the control group and 56.7% in the experimental group for nymphs. Under similar

Table 2. Detection of B. henselae DNA in R. sanguineus larvae engorged on infected blood and in nymphs after molting and maximum likelihood estimation (MLE)

of tick infection.

Pooled samples No. of individuals No. of positive pools/no. of pools tested (%) Maximum likelihood estimation (MLE) 95% CI

Experimental group
Engorged larvae 70 8/14 (57.1) 14.94% 7.30–27.59%

Semi-engorged larvae 60 4/6 (66.7) 9.06% 3.15–23.79%

Larval feces 2/3 (66.7) - -

Unfed nymphs 30 1/10 (10) 3.33% 0.20–15.30%

Nymphal feces 0/3 (0) - -

Control group
Engorged larvae 10 0/2 (0)

Semi-engorged larvae 20 0/2 (0)

Larval feces 0/2 (0)

Unfed nymphs 12 0/4 (0)

Nymphal feces 0/2 (0)

95% CI: 95% confidence interval.

https://doi.org/10.1371/journal.pntd.0008664.t002

Fig 4. B. henselae DNA detection in R. sanguineus larvae and nymphs. Detection of B. henselae DNA by nested-PCR

in representative samples: M, DNA marker; EL1 and EL2, pooled engorged larvae (Experimental group); SEL, pooled

semi-engorged larvae (Experimental group); LF, pooled larval feces (Experimental group); N, pooled unfed nymphs

(Experimental group); NF, pooled nymphal feces (Experimental group); EL-, pooled engorged larvae (Control group);

SEL-, pooled semi-engorged larvae (Control group); LF-, pooled larval feces (Control group); N-, pooled unfed

nymphs (Control group); NF-, pooled nymphal feces (Control group); +, positive control (B. henselae DNA); -,

negative control (distilled water).

https://doi.org/10.1371/journal.pntd.0008664.g004
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feeding conditions and treatments, the engorgement rate of R. sanguineus larvae (43%; 172/

400) in experimental group shown in the present study were lower than those (81% and

84.5%) reported in previous studies for I. ricinus [35, 41]. For this last tick species, it has been

demonstrated that blood origin (chicken or sheep) does not impact the proportion of engorged

ticks, the weight of engorged ticks or the duration of feeding [50]. It is therefore conceivable

that, despite we used different blood origin, the difference observed here is due to the tick spe-

cies, including for example differences in appetite for mice skin, or into the length of tick

mouthparts, which are 50 μm and 90 μm in the larvae of R. sanguineus and I. ricinus, respec-

tively [45].

B. henselae DNA was detected in pooled engorged and semi-engorged larvae fed on B. hen-
selae-infected blood, which supports the hypothesis that Rhipicephalus ticks could acquire Bar-
tonella or at least Bartonella DNA during their feeding, as already suggested in some

epidemiological studies [28, 30, 38]. In this study, the engorgement performance of larvae fed

on B. henselae-infected blood (43%) was higher than on non-infected blood (34%). This find-

ing has also been found for some other vector-borne pathogens, such as Plasmodium spp. and

Trypanosoma spp., suggesting that the infectious status of the hosts can enhance feeding

behavior of their vectors [51–54]. However, to the contrary, it has been reported that for I. rici-
nus, feeding on a B. henselae-infected blood meal through membrane feeding or on infected

mice decreased the proportion and the weight of engorged ticks, but did not affect tick feeding

duration [50]. The same trend is found here for the nymphs with a higher attachment rate for

the control group, which might suggest that tick infection perturbs their feeding. However,

experiments involving a higher number of ticks with sufficient time of feeding for their

completely engorgements would be necessary to confirm this hypothesis. In addition, obtain-

ing the weight of ticks by measuring the amount of ingested hemoglobin using spectropho-

tometry in future studies can provide a quantitative evaluation of the ticks’ fully engorged and

semi-engorged status and the pathogen uptake by ticks [55, 56].

The presence of B. henselae DNA in nymphs molted from larvae engorged on infected

blood suggests that B. henselae could be transstadially transmitted from larvae to nymphs dur-

ing the molting process. This possibility is supported by our results showing that nymphs

infected at the larval stage are able to inject the bacterial DNA into blood during their blood

meal. Indeed, such a result suggests that DNA is injected through the saliva, and that the

Fig 5. Detection by nested-PCR of B. henselae DNA in non-infected blood after feeding of nymphs infected at the

larval stage. M, DNA marker; B1—B4, blood samples collected from day 1 to 4, respectively (Experimental group); B1-

- B4-, blood samples collected from day 1 to 4, respectively (Control group); +, positive control (B. henselae DNA); -,

negative control (distilled water).

https://doi.org/10.1371/journal.pntd.0008664.g005
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bacteria is then present into the salivary glands of the tick infected as the previous life stage, as

demonstrated for both of B. henselae and B. birtlesii in I. ricinus ticks [35, 36]. It is therefore

more than likely that it is viable bacteria, which escaped from the tick digestive tract and then

invaded the salivary glands of nymphs. Transmitted pathogens need to effectively to hide or

defeat on defense mechanisms in tick midgut, which is the first tick-pathogen interaction [57,

58]. The pathogens eventually migrate to tick ovaries for promoting transovarial transmission,

or migrate to salivary glands for being transmitted to a host through tick saliva [57, 58]. Thus,

although the bacteria present in the blood from the feeders could not be cultivated, our results

provide strong assumptions about the ability of R. sanguineus to transmit B. henselae during

the bite.

One possible reason for failure to obtain bacterial colonies can be that the number of viable

bacteria from the collected sample was too low as only 10 μl out of the 4 ml of blood from each

feeder was used for culture. Once ticks are feeding on an artificial membrane, a few microliters

of tick saliva are mixed with the blood in the feeder, which possibly reduce the bacterial con-

centration below the detectable level [36]. In the study of Cotté and co-workers, some B. hense-
lae colonies were obtained from 10 μl of blood taken from the feeder 84 hours after I. ricinus
attachment, but that study concerned females infected at the nymphal stage, which inject more

saliva during their feeding than nymphs and then possibly more bacteria [35]. To validate or

not the viability of the bacteria presents into the blood of the feeder after R. sanguineus
nymphal feeding, a higher volume of blood should be then tested in culture. Another hypothe-

sis is that the bacteria, although alive to join the salivary glands, was however destroyed by the

tick immune system in the salivary glands, as for example, by the salivary 5.3kDa antimicrobial

protein (ISAMP), which has the ability to kill gram-positive and gram-negative bacteria [59].

In this case, this explanation echoed the hypothesis of selective adaptation of Bartonella spp. In

fact, several arthropod vectors may harbor a wide range of Bartonella spp. but may not be effi-

cient vectors for transferring all these Bartonella spp. to their hosts [60].

The presence of B. henselae DNA in larval feces samples also suggest that B. henselae-con-

taminated tick feces could be a potential source of Bartonella infection for humans or animals

as it is the case for fleas [5–9]. However, no B. henselae DNA was detected in nymphal feces

suggesting that bacteria may not stay in tick digestive system during the tick molting period.

However, further investigations, confirming the viability of B. henselae from tick feces by cul-

ture, are required to understand the role of tick feces in Bartonella transmission. In a previous

study, B. vinsonii subsp. berkhoffii DNA has been detected in R. sanguineus tick feces after

post-capillary tube feeding, but no viable Bartonella could be isolated because of bacterial and

fungal contamination [39]. Even if in vivo experiment has also showed that no dogs became

bacteremia nor seroconverted when inoculated with tick feces collected from Bartonella-fed

ticks, tick feces could not be ruled out as a potential source of Bartonella infection [39].

In conclusion, our findings demonstrated that the membrane feeding system could be suc-

cessfully used to engorge and maintain R. sanguineus colony in the laboratory. Such a develop-

ment now opens up real perspectives in the study of R. sanguineus, its biology, its vector

competence, as well as in the study of molecular interactions with the transmitted pathogens.

Our results also support that B. henselae could be transstadial transmitted from R. sanguineus
larvae to nymphs. However, future both in vitro and in vivo studies would need to be per-

formed to clarify more evidence of the vector competence of R. sanguineus larvae, nymphs,

and adults for B. henselae. Despite having probably low epidemiological importance, the dem-

onstration of such competence would first emphasize, another time, broad arthropod host

range for bartonellae. Secondly, it would explain some cases of bartonellosis in patients, espe-

cially to include the diagnosis of bartonellosis following R. sanguineus tick bites, which is the

most widespread tick in the world.
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