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Abstract

Background: Dropouts and missing data are nearly-ubiquitous in obesity randomized controlled trails, threatening validity
and generalizability of conclusions. Herein, we meta-analytically evaluate the extent of missing data, the frequency with which
various analytic methods are employed to accommodate dropouts, and the performance of multiple statistical methods.

Methodology/Principal Findings: We searched PubMed and Cochrane databases (2000–2006) for articles published in
English and manually searched bibliographic references. Articles of pharmaceutical randomized controlled trials with weight
loss or weight gain prevention as major endpoints were included. Two authors independently reviewed each publication for
inclusion. 121 articles met the inclusion criteria. Two authors independently extracted treatment, sample size, drop-out
rates, study duration, and statistical method used to handle missing data from all articles and resolved disagreements by
consensus. In the meta-analysis, drop-out rates were substantial with the survival (non-dropout) rates being approximated
by an exponential decay curve (e2lt) where l was estimated to be .0088 (95% bootstrap confidence interval: .0076 to .0100)
and t represents time in weeks. The estimated drop-out rate at 1 year was 37%. Most studies used last observation carried
forward as the primary analytic method to handle missing data. We also obtained 12 raw obesity randomized controlled trial
datasets for empirical analyses. Analyses of raw randomized controlled trial data suggested that both mixed models and
multiple imputation performed well, but that multiple imputation may be more robust when missing data are extensive.

Conclusion/Significance: Our analysis offers an equation for predictions of dropout rates useful for future study planning.
Our raw data analyses suggests that multiple imputation is better than other methods for handling missing data in obesity
randomized controlled trials, followed closely by mixed models. We suggest these methods supplant last observation
carried forward as the primary method of analysis.
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Introduction

‘‘Well conducted clinical trials are the fastest and safest way to

find improved treatments and preventions…’’ NIDDK [1].

Obesity is associated with and believed to cause adverse

conditions such as cardiovascular disease, stroke, type 2 diabetes

mellitus, certain forms of cancer [2], and decreased longevity [3].

It is estimated that over 50 million Americans are obese, and

recent data show no decreases in prevalence [4]. Currently

available treatments are only of moderate efficacy, and not all

treatments work for all individuals. Thus, it is critical to identify

and evaluate new alternative treatments for both efficacy and

safety. Several important questions about how to best design,

interpret, and analyze randomized controlled trials (RCTs) for
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obesity treatments remain unanswered (for video proceedings of

an NIH-funded conference on this topic, see: http://main.uab.edu/

Shrp/Default.aspx?pid = 97738#schedule).

One of the most challenging aspects of obesity RCTs is the

seemingly inevitable high rate of loss to follow-up (‘dropout’). A

recent editorial from NIH scientists began by praising one of the

largest, best-evaluated pharmaceutical obesity RCTs conducted

but concluded its opening with the remark that ‘‘an overriding

concern is the failure to obtain final weight measurements on

about half of the randomized participants.’’ Such high losses to

follow-up are not atypical and create several problems, including:

(A) reduced statistical power; (B) potential loss of internal validity if

data are not missing completely at random (MCAR); and (C)

challenges in analyzing the resulting incomplete datasets.

It is difficult to evaluate the scope of this problem and the

appropriateness of investigators’ responses to it because there

has been no formal quantitative integration of the published

information on dropout rates (DORs) and which methods are

most commonly used to accommodate missing data in obesity

RCTs. Hence, meta-analysis was employed to extract and model

DOR, while real raw data sets were used to evaluate the

performance of statistical strategies for handling missing data.

Although simulation studies and derivations of asymptotic

properties of some available statistical methods for accommo-

dating missing data in inferential testing are available, there is no

guarantee that the conditions simulated or under which the

asymptotic properties were derived effectively represent real

data in terms of factors such as the presence of outliers, degrees

of dropout, shape of marginal distributions (e.g., extent of non-

normality), or covariance structure among observations. There-

fore, the purpose of this project was to conduct two separate

evaluations to estimate the scope of the problem. First, we

conducted a meta-analysis of obesity RCTs. Second, we

analyzed multiple real raw datasets through various missing

data methodologies. The results of such analyses have implica-

tions for the design of future obesity RCTs, for the interpretation

of the relative rigor of individual past and future obesity RCTs,

and importantly, for the choice of statistical method for their

analysis.

Methods

Quantitative synthesis of published research: DORs and
methods used to accommodate them

Data Source. Published articles were retrieved using searches

performed on: 1) electronic databases (MEDLINE and Cochrane

database publications), 2) Cross-reference from original publications

and review articles, and 3) manual searching of bibliographic

references. We searched PubMed to identify publications for

inclusion, imposing the following limits: date, RCTs, human

studies, English language and peer-reviewed.

Inclusion Criteria. All studies used had to meet the

following inclusion criteria: 1) the data were from human

studies, 2) the study was an RCT, 3) the study reported DORs,

4) the study used one or more pharmaceuticals vs placebo, 5)

weight loss and/or weight gain prevention was a study outcome, 6)

the study was published in a peer-reviewed journal, 7) the study

was published in the English language, and 8) the study was

published between January 1, 2000 and December 31, 2006. One

study (44) published in print in 2007 was included in our analysis

because it showed up in our search in 2006 as an epub.

Multiple publication biases (including the same subjects

reported in two or more papers) were avoided by carefully

examining each study for duplication. All articles were double-

checked independently for inclusion criteria by two of the authors

(M.E. and O.T). Discrepancies were resolved by consensus. D. W.

B. conducted final inclusion criteria verification (10%) on a

random sample of the identified articles and obtained 100%

agreement. One of three other authors (D.B.A, C.S.C., R.A.D)

checked the coded information obtained from each article and

again, discrepancies were resolved by consensus.

Study Searching. We divided our keyword search into four

categories: 1) ‘obesity’ OR ‘weight loss’ OR ‘weight gain

prevention’, which yielded 2111 studies, 2) sibutramine OR

orlistat OR topiramate OR rimonabant OR recombinant leptin,

which yield 286 studies, 3) combined categories 1 AND 2 of

weight-related outcomes and pharmaceuticals, which yielded 199

studies, and 4) combined category 3 AND ‘placebo’, which yielded

141 studies. The 141 studies were further screened for inclusion

and resulted in a final sample of 89 studies from our PubMed

search. Secondly, we searched the Cochrane databases for meta-

analyses of weight loss interventions using ‘weight loss’ and

‘obesity’ as keywords, which yielded 41 reviews of which 3 were

reviews of pharmaceutical trials with weight loss or weight gain

prevention as a major endpoint. Bibliographies of the Cochrane-

derived studies were searched for publications eligible for

inclusion. The search of all bibliographies yielded 32 additional

studies for inclusion. Although this search was not expected to

retrieve pharmaceutical obesity RCTs, it provided a sufficiently

large sample to yield reasonably precise estimates of DORs as a

function of study duration, which was our goal.

Data Extraction of study-level variables and

results. Two reviewers (M.E. and O.T.) extracted the following

data from all articles collected and resolved disagreements by

consensus (21, 26–145; Appendix S1). The variables of interest

included:

1) general information (authors and year of publication), 2)

duration of the trial, 3) total sample size defined as the number of

subjects randomized, 4) DORs defined as the total number of

subjects that dropped out from the trial from the time of

randomization to the time of completion, 5) methods used to

accommodate missing data; e.g. completer’s only, last observation

carried forward (LOCF), mixed model (MM), and multiple

imputation (MI), and 6) the specific drugs used for treatment.

Modeling DORs. In the meta-analyses for the ith published

article, the proportion of subjects remaining in the corresponding

study and on whom a final endpoint measurement was obtained at

time t, was recorded and denoted as p̂pi,t. We then fit an exponential

decay curve to these proportions using SPSS’ non-linear regression

and the model: p̂pi,t~e{lt, a simple model with a constant rate of

drop-out over time. We solved for the value of l by minimizing the

sum of squared model residuals. Models were run both unweighted

and weighted by the inverse of the variance for each observation.

Standard errors, confidence intervals and p-values were obtained by

bootstrapping with 1,000 bootstrap samples.

Analysis of Multiple Real Raw Datasets to Evaluate
Method Performance

Acquisition of RCT Raw Datasets. We obtained 12 real

raw datasets from obesity RCTs conducted by (M.P.S., K.M.G.,

S.B.H., and D.B.A.) and one data set from the NIDDK data

archive. All datasets were from an intervention for weight loss or

weight gain prevention (Table 1).

Generation of Plasmode Datasets. A plasmode is a

‘‘numerical scientific example, preferably derived from data in a

physical model, in which the relations generating measures are

controlled and known to fit an explicit theoretical model’’ [5]. It is

generally a ‘real’ data set in the sense that it is not a function of a
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computer simulation but has been obtained or manipulated in

such a way that some aspect of the truth is known. Plasmodes

constructed from real datasets have the advantage of real data in

that they can be, by definition, realistic in terms of marginal

distributions, covariance structures, presence of outliers, and

patterns of dropout. Yet at the same time, they retain a key

advantage of traditional simulations. Specifically, manipulation

can be done so that some aspects of the data generating process

are known with certainty. This allows one to empirically evaluate

performance characteristics of analytic methods by determining

the frequency with which a method obtains the known right

answers.

We generated plasmodes under both the null and alternative

hypotheses from the obtained 12 raw datasets. To generate

plasmodes under the null hypothesis of no treatment effect on

weight for each of the 12 datasets, we randomly permuted the

treatment assignment indicators. This perfectly preserved the real

data’s marginal distributions, covariance structures, presence of

outliers, and patterns of dropout, yet assured that all null

hypotheses of no effect of treatment were true. However, it does

not preserve any relation between missingness and treatment

assignment. By analyzing such permuted datasets and observing

the frequency that statistically significant results were obtained, we

were able to evaluate whether our procedures were properly

holding the type I error rate to the set level.

To generate plasmodes under the alternative hypothesis of some

treatment effect on weight, constants were added to the body

weights of each treatment group in each of the above randomly

permuted plasmodes. The added constants were meant to mimic

the treatment trajectory in Wadden et al. [6], which are

trajectories common in obesity research. This essentially simulates

data for power evaluation by imposing a treatment effect on the

permuted datasets. The treatment effect was generated to have

50% power for the datasets in the LOCF condition. Power of 50%

was chosen because at such middling levels it is relatively easy to

see differences among methods in power that would not be easily

apparent at very high power levels such as 90%. The LOCF

condition was chosen for two reasons. First, it is in a sense a

‘‘complete dataset’’, so when a dataset is analyzed with the missing

values added back, one can see how much power has been lost.

Second, generating a 50% power under the completer’s only

condition caused the power when analyzing the data under the

LOCF condition to be as high as 100% in some dataset.

Statistical Analysis of Real & Plasmode RCT

Datasets. Four different strategies for analyzing data with

missing values were used to analyze the 12 real datasets and

generated plasmodes. Plasmode simulations and all analyses of real

and plasmode datasets were performed on SAS 9.1. With the

exception of the intent-to-treat last observation carried forward

(ITT-LOCF) method (defined below), patients in all of these

methods had a baseline measurement and at least one post

baseline measurement. Additionally, weight loss is calculated as

the difference between weight at the end minus weight at the

beginning of the trial. It should be noted that multiple imputation

(MI), mixed model (MM), and completers only analysis (but not

necessarily LOCF) will provide consistent parameter estimates (a

consistent estimator is one that converges in probability to its

estimate asymptotically in the sample size) if the missing values are

MCAR. However, only MI and maximum likelihood (ML) will

provide consistent parameter estimates when the missing values

are missing at random (MAR), a less restrictive and more realistic

situation (for further reading see Gadbury et. al. [7]).

Completers Only. In the completers only analysis, we used

only the data for patients who came in for the baseline visit and the

last follow up visit; that is, any patients who were missing any visits

in the middle were still included.

Last Observation Carried Forward. In the LOCF analysis,

if a subject’s weight was missing at a visit, then the weight from the

most proximal prior visit was used. For example, if a study has 5

visits and the participant only missed visit 3, then the value from

visit 2 would be used as the participant’s weight for visit 3. LOCF

was conducted under two methods.

Intent- To- Treat Last Observation Carried

Forward. This method preserved the most data in that it

allowed for the possibility of carrying the baseline measurement

forward to the end of the trial if a subject dropped out immediately

Table 1. Real Datasets Acquired.

Study
Number Reference

Number
Randomized

Number of
completers

Duration
(weeks) Treatment

Number of post-baseline
measurement points

1 RCT 1[17] 186 154 12 Herbal Supplement
contain Ephedrine

6

2 RCT 2 [18] 102 87 12 Herbal Supplement
contain Ephedrine

7

3 RCT 3 [19] 96 68 12 Acupressure device
for weight loss

7

4 RCT 4 [20] 60 51 32 Zonisamide 6

5 RCT 5 [21] 30 21 12 Atomoxetine 5

6 RCT 6 [22] 75 47 12 Meal Replacement (Soy) 6

7 RCT 7 [23] 135 84 12 Herbal Supplement Contain
Garcinia Cambogia

7

8 RCT 8 [24] 100 30 40 Meal Replacement (Soy) 3

9 RCT 9 [25] 100 58 12 Meal Replacement (Soy) 11

10 DPP [6] 2103 242 48 months Metformin 9

11 NPY-1 [26] 206 159 12 Neuropeptide Y5R 5

12 NPY-1 [26] 1661 854 52 Neuropeptide Y5R 11

Abbreviations: RCT, randomized controlled trial; DPP, Diabetes Prevention Program; NPY-1, neuropeptide-Y-1.
doi:10.1371/journal.pone.0006624.t001
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after the baseline visit and before any follow up weights were taken.

Therefore, it is possible to have some cases with only baseline

measurements.

Last Observation Carried Forward. In this LOCF

method, patients with only baseline measurements were not

used. That is, all patients have a baseline and at least one post-

baseline measurement of weight.

Multiple Imputation. MI is a missing data technique that

imputes plausible values for the missing values. One generates m

datasets with plausible values imputed for the missing values. Each

of the m datasets is separately analyzed using the desired model (i.e.

regression, ANOVA, etc.), generating m sets of parameter estimates.

The m sets of parameter estimates are then combined using standard

rules for MI analyses [8,9]. The combined parameter estimates are

then used for hypothesis testing and inference. For this study, the

degrees of freedom for the combined parameter estimates were

adjusted as outlined by Barnard and Rubin [10]. Additionally, only

group membership (i.e., treatment or placebo) and measurements

over time were used in the imputation process. Imputations were

conducted using two methods.

MI for Monotone Missing Value. This imputation was

conducted by first imputing enough data to impose a monotone

missing data pattern on the original data via a Markov Chain

Monte Carlo (MCMC) algorithm. A dataset with variables X1, X2,

…, Xp has a monotone missing data pattern when Xi is missing

and subsequently Xj for j.I is missing for a patient. If the missing

data pattern was already monotone, then this step was skipped.

Monotone missing data occurs frequently in longitudinal studies.

The data were then imputed by assuming a monotone missing

data pattern using the regression method proposed by Rubin [11].

MI for General Missing Data Pattern. In this imputation

scheme, no assumption was made about the pattern of missing

values except that they are MAR. The data were imputed via an

MCMC algorithm with multiple chains and 1200 burn-in iterations.

The MCMC algorithm used here is a two-step iterative process that

begins by imputing plausible values for the missing values given the

observed values in order to generate a complete data set [9].

Second, the complete data set is then used to compute the

parameters of the posterior distribution. These parameters are then

fed back into the first step to imputing plausible values for the

missing values, which are then used in the next posterior step, etc.

The process iterates long enough to reach the stationary or desired

distribution, which in this case is multivariate normal.

Mixed Model. In this strategy, when a dataset has missing

values all available data are used to directly estimate model

parameters via ML. More specifically, restricted maximum

likelihood (REML) was used in these applications. No participant

is dropped from the analysis because all available data are used to

obtain parameter estimates. The REML methods were conducted

with a mixed model treating time as continuous or categorical and

modeling V, the variance of y, in two ways (for further details see

[12]). When time was treated as continuous, V was modeled as a

function of the covariances of the random effects and random

errors. In this particular case, the covariance of the random effects

was unstructured, and the random errors were assumed

independent and constant (homogenous). When time was treated

as categorical, V was modeled as a function of the unstructured

covariance of the random errors. The one exception was RCT 9.

Large amount of missing data in RCT 9 led to unstable estimates

with use of an unstructured covariance matrix, so unstructured

covariances were replaced with autoregressive lag 1 [AR(1)]

covariances when treating time as continuous or categorical.

Results

Scope of Missing Data Due to Dropouts
Our search identified 121 articles meeting inclusion criteria. The

unweighted mean DORs of the 121 studies was 26.3%. DORs

varied substantially among studies and, not surprisingly, as a function

of study duration. The exponential function fitted to the meta-

analysis data was statistically significant. In the unweighted analysis,

the exponential coefficient (i.e., ‘hazard’) was .0088 (asymptotic p-

value = 3.2*10228; 95% bootstrap CI: .0076 to .0100) and in the

weighted analysis was .0069. The data and the fitted curves are

shown in Figure 1. As can be seen, at 1-year, we would expect 37%

(SE<1.76%) of patients to have dropped out. This curve can be used

Figure 1. Scatter plot of dropouts over time with fitted exponential decay curve. Drop-out rates for six small (N = 18 to 60) studies that
reported zero drop-outs were set to 1% to allow the analyses to proceed.
doi:10.1371/journal.pone.0006624.g001
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to crudely estimate dropout rates when planning future pharma-

ceutical studies. In doing so, it should be noted that the unweighted

and weighted predictions are quite similar and appear to fit the data

in an unbiased fashion through approximately 75 weeks. After that,

these predictions diverge and appear a bit biased. Hence, their use in

trials extending beyond 75 weeks is questionable, and more evidence

from very long trials is needed.

Type of methods to adjust for attrition bias. Figure 2

displays the methods used to accommodate missing data in the

published RCTs. As can be seen, it has now become the norm to

do some type of intent-to-treat (ITT) analysis, though roughly 14%

of studies still use only a completers analysis. The vast majority of

studies that do ITT analyses use nothing more sophisticated that

some variant of LOCF, and those few that do almost universally

used some variation of a mixed model.

Performance of Methods. Table 2 displays the amount of

observed and missing data points in each of the 12 real dataset.

Table 3 displays mean differences (MD), and p-values for the

actual analysis, type-1 error rates under the permutation-

constructed nulls, and power for the ITT-LOCF, LOCF and

completers only. Table 4 and 5 display the results for the MI

methods. Lastly, Table 5 and 6 show the results of the Mixed

Model methods treating time as continuous and categorical,

respectively.

Performance with Actual Data. Two components were

assessed with respect to the actual data. First, we examined

whether the overall conclusions are affected by the choice of

analysis method. Second, we examined how robust the conclusions

were by comparing the p-values obtained for the standard t-test

and the permutation test.

In general, regardless of the analysis method chosen, the overall

conclusion of whether or not a significant effect was observed did

not change if a result was deemed to be significant (i.e. the p-value

was below the standard 5% level). The one exception was RCT 10

in which both completers only and Mixed II Cat (defined in

Table 6) obtained non-significant results, whereas all other

methods obtained significant results. This illustrates, among other

things that the conventional wisdom that completers only analyses

are liberal and that LOCF is conservative does not necessarily hold

in all datasets.

As can be seen in Table 3, all of the permuted p-values were close

to observed p-values, with the exception of RCT 8 under completers

only in which the permutation test gave a slightly higher p-value.

This suggests that the datasets considered in this work were very

robust to the underlying assumptions of the t-test for these three

approaches. The results in Table 4 suggest that the MI methods

Figure 2. Percent of published studies using methods to
accommodate drop-outs. For this chart, when an article reported
using more than one analytic procedure, it was coded as having used
the ‘best’ of the procedures it employed where the ranking was in
ascending order: Completers only, LOCF (any variation on last
observation carried forward); an unspecified intent to treat (ITT)
analysis; any of several mixed model analyses (mixed), or multiple
imputation (MI). ‘Completers’ denotes completer only analysis, ITT-NOS,
ITT not otherwise specified, ‘No Drop Outs’, no dropouts reported, and
NS, not specified.
doi:10.1371/journal.pone.0006624.g002

Table 2. Percent of Observed and Missing Data Points from the 12 Obesity RCT Datasets.

Intent-to-Treat Baseline-Post-baseline Imposed Treatment Mean

Data Set
Total Data
Points

Observed
Data Points

Proportion
Missing

Total Data
Points

Observed
Data Points

Proportion
Missing

Last Time
Point

RCT 1 1116 1029 .08 1116 1029 .08 1.90

RCT 2 714 672 .06 714 672 .06 2.18

RCT 3 658 538 .18 644 536 .17 1.33

RCT 4 360 334 .07 348 332 .05 2.35

RCT 5 150 126 .16 130 122 .06 6.10

RCT 6 450 330 .27 354 314 .11 1.65

RCT 7 945 716 .24 833 700 .16 2.75

RCT 8 300 239 .20 249 222 .11 2.65

RCT 9 1089 586 .46 913 570 .38 2.30

RCT 10 18927 13133 .31 18639 13101 .30 0.64

RCT 11 1030 922 .10 1030 922 .10 0.23

RCT 12 18271 13344 .27 17105 13238 .23 0.66

Abbreviations: RCT, randomized controlled trial.
doi:10.1371/journal.pone.0006624.t002
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may not be quite as robust, with more noticeable differences

observed between the permuted and observed p-values. The biggest

differences were observed with RCT 9, which had a large amount of

missing data. For the plasmode datasets derived from RCT 9, the

observed p-values are noticeably smaller than the permuted p-

values. However, the noticeably smaller observed p-values were still

nowhere near significant and more importantly even for RCT 9, the

empirical type-1 error rates when MI is used at the .05 alpha level

were well preserved (see below). In contrast, for mixed models,

Table 5 and 6 reveals that this same concern exists with RCT 9.

However, in the case of mixed models with RCT 9 and RCT 10, the

empirical type-1 error rates at the .05 alpha levels were not well

preserved (see below). Hence, these results suggest that mixed model

approaches should be viewed with skepticism in conditions similar

to those prevailing in RCT 9 and RCT 10 which includes modest

sample size (for RCT 9), a large proportion of missing data (for both

RCT 9 and RCT 10), and a high ratio of measurement time-points

to completing patients.

Table 3. Analysis of ITT-LOCF, LOCF, and completers for handling missing data in the 12 raw datasets using ordinary least squares.

Actual Analysis Null Imposed Treatment Effect

ITT-LOCF Observed Mean Difference Observed p-value Permuted p-value Empirical a Mean Difference Power

RCT 1a 4.07 161025 ,1025 .0479 1.99 .539

RCT 2 a 2.60 .0103 .0113 .0522 2.13 .528

RCT 3 0.62 .2827 .2837 .0510 1.19 .515

RCT 4 5.01 ,1025 ,1025 .0505 2.26 .489

RCT 5 7.17 .0022 .0005 .0469 5.29 .482

RCT 6 0.03 .9551 .9561 .0510 1.17 .414

RCT 7 1.66 .2344 .2252 .0478 2.55 .429

RCT 8 1.66 .4133 .4270 .0485 3.71 .413

RCT 9 0.71 .3881 .3971 .0517 1.57 .443

RCT10 1.90 ,1025 ,1025 .0474 0.56 .537

RCT 11 a 1.30 .0009 .0006 .0531 0.82 .541

RCT 12 1.05 .0001 .0003 .0496 0.53 .481

LOCF

RCT 1a 4.07 161025 ,1025 .0479 1.99 .539

RCT 2 a 2.60 .0103 .0113 .0522 2.13 .528

RCT 3 0.61 .2964 .2976 .0509 1.21 .515

RCT 4 4.95 ,1025 ,1025 .0497 2.34 .502

RCT 5 9.12 .0005 ,1025 .0459 6.09 .511

RCT 6 0.39 .5906 .5868 .0498 1.50 .498

RCT 7 1.81 .2075 .2015 .0471 2.87 .508

RCT 8 2.09 .3731 .3825 .0471 4.48 .457

RCT 9 0.83 .3702 .3730 .0483 1.87 .500

RCT10 1.93 ,1025 ,1025 .0468 0.57 .537

RCT 11 a 1.30 .0009 .0006 .0531 0.82 .541

RCT 12 1.10 .0002 .0004 .0492 0.57 .484

Completers

RCT 1 4.72 261025 ,1025 .0474 1.90 .390

RCT 2 2.71 .0140 .0133 .0513 2.18 .480

RCT 3 0.65 .3767 .3759 .0523 1.34 .424

RCT 4 5.32 ,1025 ,1025 .0470 2.37 .451

RCT 5 9.34 .0038 .0011 .0484 6.12 .375

RCT 6 0.44 .6058 .6052 .0505 1.66 .468

RCT 7 2.14 .1880 .1842 .0475 2.74 .389

RCT 8 0.56 .8261 .8531 .0379 5.28 .512

RCT 9 1.58 .4435 .4403 .0512 2.27 .176

RCT10 0.88 .3411 .3497 .0500 0.65 .107

RCT 11 1.39 .0029 .0021 .0537 0.92 .490

RCT 12 1.42 .0030 .0038 .0500 0.66 .279

Abbreviations: ITT-LOCF, intent-to-treat-last observation carried forward; RCT, randomized controlled trial.
aIndicates missing data pattern is the same for ITT-LOCF and LOCF. Each permutation test is based on 10,000 permutations of each dataset.
doi:10.1371/journal.pone.0006624.t003
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Because different approaches for analyzing data using mixed

models were considered, we also compared the Akaike information

criteria (AIC) and Bayesian information criteria (BIC) for the

mixed models in order to see whether one of the methods led to a

consistently better fit. AIC and BIC measure the goodness of fit of

an estimated model and favor models that best explain the data

using the fewest free parameters. Smaller AIC and BIC values

indicate better fit. This analysis confirmed that treating time as a

continuous variable is the preferred approach when there are

many missing data coupled with many time points. Conversely,

treating time as categorical better fits the data when there are

fewer missing data and fewer time points.

Performance Under the Null. As can be seen in Tables 3–5,

most of the empirical a values are close to .05, which is

theoretically expected and desired. Four cases had values of

empirical a,.05: RCT 8 under completers only, RCT 9 under MI

(monotone), RCT 5 under Mixed I Cont., and RCT 5 under

Mixed I Cat. Only the mixed model approaches led to some

conditions with values of empirical a..05, i.e., excess type-1 error

rates. For certain conditions, both RCT 9 and RCT 10 had higher

than expected empirical values under the null. These datasets

represent two of the datasets with the largest amounts of missing

data. Additionally, RCT 9 had one additional problem because an

unstructured covariance could not be fit. Whenever this was

attempted, the program gave either a covariance matrix that was

not positive definite or an infinite likelihood. For that reason, we

chose to impose an AR(1) covariance structure as has been done in

prior studies. It is possible that the difficulty in specifying the

covariance matrix with many time points and much missing data

may contribute to the increased type I error rate.

These results suggest that, at least when missingness is unrelated

to treatment assignment, all of the approaches we evaluated for

handling missing data are adequate for protecting the desired type

I error rate in the majority of realistic cases. However, mixed

model test statistics are prone to increased type I error rates,

particularly if utilized with large amounts of missing data. This is

not too surprising since mixed model test statistics are based on

asymptotic approximations, and others [13,14] have raised

concerns about inflated type I error rates when using these tests.

Performance Under the Alternative Hypothesis:

Power. Tables 3–5 and Figure 3 summarize the results

regarding statistical power. The completers only method has the

least power and worsens with greater DOR. The LOCF methods

have slightly greater power and less variability across datasets. This

appears to be a function of simplicity and stability of the

imputation process. Tables 4 and 5 suggest that the multiple

imputation and mixed model approaches had comparable power,

except in cases with substantial missing data (RCT 9 & RCT 10)

where the mixed model approaches appear more powerful.

Unfortunately, this apparent power advantage of mixed models

Table 4. Analysis of ITT-LOCF, LOCF, and completers for handling missing data in the 12 raw datasets using Multiple Imputation.

Actual Analysis Null Imposed Treatment Effect

MI (Monotone) Observed Mean Difference Observed p-value Permuted p-value Empirical a Mean Difference Power

RCT 1 4.17 461025 ,1025 0.0482 1.92 0.43

RCT 2 2.63 0.0161 0.0146 0.0483 2.18 0.468

RCT 3 0.92 0.2377 0.1688 0.0455 1.32 0.416

RCT 4 5.16 261025 ,1025 0.0473 2.35 0.456

RCT 5 10.08 0.0006 ,1025 0.0453 6.02 0.42

RCT 6 0.47 0.582 0.74 0.0461 1.65 0.503

RCT 7 1.66 0.3014 0.2052 0.0469 2.75 0.399

RCT 8 2.34 0.3242 0.3821 0.0445 5.3 0.592

RCT 9 1.11 0.6768 0.8025 0.0354 2.28 0.205

RCT 10 1.43 0.0369 0.0481 0.0562 0.65 0.144

RCT 11 1.5 0.0011 0.0009 0.0503 0.93 0.486

RCT 12 1.13 0.0281 0.0168 0.0508 0.66 0.375

MI (MCMC)

RCT 1 4.18 0.0006 0.0005 0.0506 1.92 0.431

RCT 2 3.06 0.0055 0.004 0.0488 2.18 0.473

RCT 3 0.91 0.1817 0.2277 0.0484 1.32 0.429

RCT 4 5.22 161025 ,1025 0.0479 2.35 0.459

RCT 5 10.14 0.0005 ,1025 0.0478 6.02 0.428

RCT 6 0.3 0.7139 0.6776 0.0481 1.65 0.512

RCT 7 1.89 0.2236 0.1646 0.0492 2.75 0.402

RCT 8 2.22 0.3571 0.3628 0.044 5.3 0.589

RCT 9 1.96 0.2473 0.6461 0.0432 2.26 0.228

RCT 10 1.62 0.0399 0.0198 0.0568 0.65 0.145

RCT11 1.45 0.004 0.0029 0.0498 0.93 0.492

RCT 12 1.21 0.0035 0.0034 0.0506 0.66 0.376

Abbreviations: RCT, randomized controlled trial; MI, multiple imputation. Each permutation test is based on 10,000 permutations of each dataset.
doi:10.1371/journal.pone.0006624.t004
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in these two RCTs is not legitimate because the mixed models did

not adequately hold the type 1 error rate in those situations.

Discussion

Our quantitative survey of the literature on obesity RCTs shows

that missing data are a very substantial problem. Moreover, the

overwhelming majority of published reports use either completers

only or LOCF techniques that have more stringent assumptions

(i.e., completers only) or no theoretical foundation (i.e., LOCF)

and are known to produce biased estimates in many circumstanc-

es. Reasons for this are likely manifold but may include skepticism

on the part of many non-statistician (and some statistician)

investigators’ that the ‘fancier’ techniques such as mixed models

and MI will produce reliable results with real data. Our results

with the analyses of real data show that these more sophisticated

and theoretically well-founded methods generally do not give

wildly different results than the more primitive techniques.

Moreover, in our plasmodes where the right answers are known

yet the data distributions and amounts of missing data are realistic,

MI and the mixed models performed well, except when there were

very large amounts of missing data. These results should provide

reassurance to applied investigators and journal editors and

reviewers that these more sophisticated and theoretically-founded

methods can be used in real obesity RCTs with reasonable

confidence. That being said, when sample sizes are modest, many

data points are missing, and the ratio of measurement points to

patients is high, permutation tests should be encouraged when

using MI or mixed model approaches to analyze weight loss data.

In interpreting our results, several limiting factors should be

kept in mind. First, we only examined the performance of tests at

alpha (type 1 error rate) levels of 0.05. This is a sensible choice

because it seems to be the most commonly used alpha level in

obesity RCTs. However, it is well known that statistical tests that

depend on asymptotic properties, as do many of those that we

evaluated, may perform well at higher alpha levels and be far less

robust at lower alpha levels. Second, anecdotally, we are informed

by several colleagues that since publication of the editorial by

Simons-Morton [15], there has been a great increase in

investigators’ efforts to secure final weights on patients in obesity

RCTs, even for patients who dropout of treatment. In contrast,

this practice did not appear to be used in any of the trials we

analyzed. Finally, we did not construct plasmode datasets in a

manner that preserved any relationship between missing values

and unobserved variables. This is because the nature of such

relationships is not well-understood. We believe that studying

such relations and incorporating models thereof into future

plasmode or simulation studies of the kind we have conducted

Table 5. Mixed Models via Restricted Maximum Likelihood (RML) Treating Time as Continuous.

Actual Analysis Null Imposed Treatment Effect

Mixed I Observed Estimate Observed p-value Permuted p-value Empirical a Estimate Power

RCT 1 4.02 861025 ,1025 0.0435 2.01 0.47

RCT 2 2.88 0.0056 0.0075 0.0602 1.97 0.455

RCT 3 0.79 0.2796 0.2626 0.0493 1.31 0.42

RCT 4 5 ,1025 ,1025 0.0454 2.41 0.488

RCT 5 8.99 0.0009 0.0004 0.0323 6.14 0.442

RCT 6 0.37 0.6285 0.6465 0.0569 1.75 0.605

RCT 7 2.44 0.121 0.1163 0.0468 2.37 0.315

RCT 8 2.3 0.3333 0.3339 0.0424 5.32 0.588

RCT 9 0.42 0.7923 0.8026 0.0561 2.2 0.285

RCT 10 1.61 0.0012 0.0064 0.0947 0.72 0.328

RCT 11 1.51 0.001 0.0006 0.0516 0.92 0.498

RCT 12 1.2 0.0038 0.002 0.0031 0.62 0.3

Mixed II

RCT 1 4.78 ,1025 ,1025 0.0487 1.86 0.429

RCT 2 2.44 0.0176 0.0228 0.0604 1.61 0.34

RCT 3 0.85 0.2203 0.24 0.0662 1.34 0.475

RCT 4 4.73 161025 ,1025 0.0602 2.61 0.617

RCT 5 9.28 0.0004 0.0003 0.0584 6.07 0.494

RCT 6 0.14 0.8394 0.8517 0.0676 2.21 0.84

RCT 7 2.37 0.1229 0.1354 0.0601 1.88 0.238

RCT 8 2.29 0.3327 0.3366 0.0462 5.32 0.6

RCT 9 0.45 0.6728 0.7853 0.1824 2.3 0.549

RCT 10 1.26 0.0161 0.0171 0.0567 0.75 0.303

RCT 11 1.47 0.0015 0.0013 0.0526 0.93 0.505

RCT 12 1.16 0.0025 0.0041 0.0542 0.62 0.365

Abbreviations: RCT, randomized controlled trial; I, modeling V (variance matrix of y) as a function of G (variance matrix of random effect) and R (random errors); II,
modeling V = R. Each permutation test is based on 10,000 permutations of each dataset.
doi:10.1371/journal.pone.0006624.t005
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would be wise. Thus, generalization of our results to alpha levels

less than .05, RCTs in which investigators secure final weights on

patients in obesity RCTs even for patients who drop out of

treatment, and studies with informative missingness must be made

with caution.

Implications for Study Design
To our knowledge, this is the first study to conduct a

comprehensive analysis of DORs in obesity RCTs as a function

of study duration. Landers effectively modeled subject retention in

12-week weight loss trial using survival analysis. The overall

probability of completing that trial was 60% [16]. In our analysis

of published pharmaceutical RCTs, the mean survival rate across

121 studies was 77.7%. Using study duration alone, we predicted

that a study of 52 weeks would have a mean survival (retention)

rate of 63%. The prediction equation (e2.0088*weeks) may prove

helpful in determining needed sample size and estimating

statistical power in future obesity RCTs that employ pharmaceu-

tical agents. The extent to which this meta-analysis of DORs from

pharmaceutical studies also applies to non-pharmaceutical weight

loss studies remains open to question. Future research is also

needed to examine the impact of study design and study-level

patient characteristics on the prediction of DORs in obesity

RCTS.

Implications for Interpreting Past and Future Obesity
RCTs

Our synthesis of DORs may also be helpful in interpreting

individual RCTs. While we can always (justifiably) note anything

less than perfect follow-up and complete data collection on all

patients as a limitation in any RCT, knowing how that RCT fares

relative to some norm helps put the magnitude of any

accompanying criticism in perspective.

Implications for Selection of Analytic Methods
It is well-established from theory that neither completers only

analyses nor LOCF are guaranteed to return unbiased or consistent

estimates of population effects even under conditions in which MI

and mixed models will return consistent estimates. Thus, given that

MI and mixed models are available, we could only see these ad hoc

methods as justifiable as primary analytic strategies if empirical

evidence showed MI and mixed models to perform poorly with data

structures typical of obesity RCTs. We have now provided an

evaluation of the possibility and found that MI and mixed models

generally perform quite well with data structures typical of obesity

RCTs. Therefore, we think that MI or mixed models should now be

de rigueur in obesity RCTs with missing data.

This stands in contrast to the FDA’s draft Guidance for Industry

Developing Products for Weight Management which states ‘‘The analysis

Table 6. Mixed Models via Restricted Maximum Likelihood (RML) Treating Time as Categorical.

Actual Analysis Null Imposed Treatment Effect

Mixed I Observed Estimate Observed p-value Permuted p-value Empirical a Estimate Power

RCT 1 4.18 561025 561025 0.0424 1.89 0.422

RCT 2 2.87 0.0061 0.0061 0.063 2.17 0.514

RCT 3 0.73 0.2968 0.2883 0.0503 1.32 0.449

RCT 4 5.12 ,1025 ,1025 0.0467 2.35 0.458

RCT5 9.81 0.0005 0.0002 0.031 6.14 0.411

RCT 6 0.31 0.6811 0.7004 0.0617 1.65 0.557

RCT 7 2.03 0.2056 0.1926 0.0457 2.76 0.405

RCT 8 2.32 0.3297 0.3312 0.0428 5.32 0.588

RCT 9 0.18 0.9107 0.9129 0.0525 2.31 0.304

RCT 10 1.61 0.0071 0.0249 0.1031 0.63 0.241

RCT 11 1.45 0.0016 0.0012 0.0527 0.93 0.501

RCT 12 1.14 0.0068 0.0039 0.0345 0.66 0.333

Mixed II

RCT 1 4.22 461025 561025 0.0455 1.89 0.433

RCT 2 2.8 0.0101 0.0061 0.052 2.17 0.486

RCT 3 0.82 0.2374 0.2883 0.0555 1.33 0.466

RCT 4 5.21 ,1025 ,1025 0.0506 2.35 0.474

RCT 5 9.86 0.0004 0.0002 0.048 6.14 0.464

RCT 6 0.3 0.6987 0.7004 0.0563 1.65 0.531

RCT 7 2.03 0.1925 0.1926 0.0504 2.76 0.428

RCT 8 2.32 0.3284 0.3312 0.0466 5.32 0.598

RCT 9 1.17 0.2681 0.9129 0.1786 2.32 0.557

RCT 10 1.28 0.042 0.0249 0.0565 0.64 0.183

RCT 11 1.42 0.0021 0.0012 0.0516 0.93 0.505

RCT 12 1.13 0.0034 0.0039 0.051 0.66 0.402

Abbreviations: RCT, randomized controlled trial; I, modeling V (variance matrix of y) as a function of G (variance matrix of random effect) and R (random errors); II,
modeling V = R. Each permutation test is based on 10,000 permutations of each dataset.
doi:10.1371/journal.pone.0006624.t006
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should be applied to the LOCF on treatment in the modified ITT

population defined as patients who received at least one dose of

study drug and have at least one post-baseline assessment of body

weight. Sensitivity analyses employing other imputation strategies

should assess the effect of dropouts on the results.’’ (See: http://

www.fda.gov/cder/guidance/7544dft.pdf). We believe that our

results coupled with established theory suggest that MI and mixed

models should be methods of choice and LOCF and completers

analysis used only as secondary or sensitivity analyses. That being

said, our results do suggest caution in using mixed models when

sample size is small, time points are many, and the proportion of

data that are missing is high. In such situations, we recommend

coupling mixed models with permutation testing for robustness.

MI seems to have some robustness advantages over mixed models,

and therefore we would recommend it as a method of choice.

Additionally, MI does have other advantages. First, although not

done for this study, MI can use as much of the data as possible by

including other variables that are not explicitly in the model of

interest. Second, once data have been imputed, the imputed data

can be used to conduct a variety of analyses. Lastly, even if the MI

model is incorrect, inferences made from the model of interest

tend to remain valid [9]. That being said, the amount of data

amassed herein suggesting the superiority of MI over mixed

models in the context of RCTs is modest and further research is

warranted.
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