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ABSTRACT
Objective  This study aimed to develop and externally 
validate a COVID-19 mortality risk prediction algorithm.
Design  Retrospective cohort study.
Setting  Five designated tertiary hospitals for COVID-19 in 
Hubei province, China.
Participants  We routinely collected medical data of 
1364 confirmed adult patients with COVID-19 between 8 
January and 19 March 2020. Among them, 1088 patients 
from two designated hospitals in Wuhan were used to 
develop the prognostic model, and 276 patients from three 
hospitals outside Wuhan were used for external validation. 
All patients were followed up for a maximal of 60 days 
after the diagnosis of COVID-19.
Methods  The model discrimination was assessed by the 
area under the receiver operating characteristic curve 
(AUC) and Somers’ D test, and calibration was examined 
by the calibration plot. Decision curve analysis was 
conducted.
Main outcome measures  The primary outcome was 
all-cause mortality within 60 days after the diagnosis of 
COVID-19.
Results  The full model included seven predictors of 
age, respiratory failure, white cell count, lymphocytes, 
platelets, D-dimer and lactate dehydrogenase. The simple 
model contained five indicators of age, respiratory failure, 
coronary heart disease, renal failure and heart failure. After 
cross-validation, the AUC statistics based on derivation 
cohort were 0.96 (95% CI, 0.96 to 0.97) for the full model 
and 0.92 (95% CI, 0.89 to 0.95) for the simple model. 
The AUC statistics based on the external validation cohort 
were 0.97 (95% CI, 0.96 to 0.98) for the full model and 
0.88 (95% CI, 0.80 to 0.96) for the simple model. Good 
calibration accuracy of these two models was found in the 
derivation and validation cohort.
Conclusion  The prediction models showed good model 
performance in identifying patients with COVID-19 with a 
high risk of death in 60 days. It may be useful for acute 
risk classification.

INTRODUCTION
The pandemic of COVID-19 has spread 
rapidly across the world since December 
2019. The number of confirmed cases is 
continuing to rise and the related deaths 

pile up, making it a great challenge for the 
healthcare resources to meet the increased 
demand for hospital beds and medical equip-
ment (eg, ventilators). A prediction model 
for prognosis is needed for the risk stratifica-
tion of confirmed cases. Early identification 
and intervention of patients with COVID-19 
can reduce mortality and morbidity as well 
as mitigating the burden on the healthcare 
system. There are two assessment tools to 
evaluate community-acquired pneumonia 
including CURB-65 and Pneumonia Severity 
Index for adults. However, these tools were 
not specific for COVID-19 and they do not 
include known risk factors for COVID-19-
related prognosis. Previous studies have 
well documented the association between 
laboratory indicators or comorbidities and 
COVID-19 severity. The reported risk factors 
associated with the poor prognosis include 
older age, cardiovascular metabolic diseases, 
respiratory disease and increased blood 
lactate dehydrogenase level.1–5 However, 

Strengths and limitations of this study

►► We involved all patients with COVID-19 in the de-
fined hospitals during the study period and followed 
them up for the coming 60 days at hospitals, which 
reduced the chance of selection or detection bias. 
An independent population was used to externally 
validate the prediction model.

►► A cross-validation strategy was used to assess 
model performance. Discrimination and calibration 
evaluation of the derivation and external validation 
cohort indicated a good performance of the model.

►► As the prediction algorithm was generated based on 
the COVID-19 cases from the Chinese population, 
model validation in other populations might be war-
ranted before its direct application.
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there are currently few models to predict mortality risk 
among patients with COVID-19, and these models had a 
high risk of selection and detection bias as well as model 
overfitting.6 Model calibration and external validation of 
risk prediction models are also lacking in the models.7–9 
Therefore, this study aimed to develop a valid and easy-
to-use risk prediction algorithm that estimates the risk of 
short-term mortality and to externally validate the model 
in an independent population.

METHODS
Study design, participants and data collection
We performed a multicentre retrospective cohort study of 
1364 confirmed cases from designated tertiary hospitals 
in Hubei province, China. All confirmed 1088 cases of 
COVID-19 in the derivation cohort were from two desig-
nated tertiary hospitals in Wuhan (the Fifth Hospital of 
Wuhan and Hubei No. 3 People’s Hospital of Jianghan 
University) during the period of 8 January 2020–19 March 
2020. All diagnosed patients with COVID-19 (n=276) from 
three designated tertiary hospitals outside Wuhan (Jiayu 
People’s Hospital, Jingzhou First People’s Hospital and 
People’s Hospital of Nanzhang County) were included as 
an independent validation cohort.

All the patients were diagnosed by the confirmatory 
testing for COVID-19, a real-time reverse transcrip-
tion-PCR assay with nasal and pharyngeal swab specimens 
according to the WHO interim guidance.10 The virus 
detection was repeated two times for each patient. The 
patients were followed up for maximal 60 days after the 
diagnosis. We extracted the medical records and collected 
the information using a standardised case report form. 
Data collection included demographic factors (eg, age 
at diagnosis and sex), medical history (eg, COVID-19 
diagnosis date, death or discharge status and comorbid-
ities at diagnosis), symptoms and vital signs at admission, 
and laboratory indicators (eg, C-reactive protein and 
D-dimer) for each participant. Inclusion criteria were 
confirmed COVID-19 cases aged ≥20 years old during the 
study period.

Outcomes
The primary outcome was all-cause mortality, using the 
date of death recorded on the medical records. Patients 
were followed up for a maximum of 60 days until the 
occurrence of death or discharge.

Candidate predictor variables
We examined candidate predictor variables based on 
risk factors highlighted in related literature and routine 
blood laboratory tests.3 4 11–14 All demographic and epide-
miological variables (eg, age, sex and smoking status), 
symptoms at diagnosis (eg, fever, headache and cough), 
comorbidities (eg, hypertension, diabetes and respira-
tion failure), vital signs (eg, temperature, pulse rate and 
respiration rate) and laboratory indicators (eg, white cell 

count, neutrophils and lymphocytes) were collected at 
the time point for the patients’ first hospital admission.

Derivation of the models
For both the derivation cohort and external validation 
cohort, multiple imputations based on the multivariate 
normal distribution were conducted for variables with 
more than 5% missing rate.15–18 Ten imputations were 
conducted for missing variables. We identified potential 
auxiliary variables that had absolute correlations greater 
than 0.4 with variables with missing data.19 The conver-
gence of multiple imputation models performed well, 
and it was assessed by trace plots and autocorrelation 
plots. To explore the risk pattern of short-term mortality 
among patients with COVID-19, univariate logistic regres-
sion was conducted to estimate the odds ratio (OR) with 
a 95% CI for each of the 51 variables.

We initially included all predictor variables in a multi-
variate logistic regression model. Then the stepwise 
selection approach was applied for prediction selection, 
with a predefined nominal significance level of 0.05 for 
both model entry and retention.20 21 To avoid substantial 
improvement of the goodness of model fit in the likeli-
hood ratio test by the omitted predictors, the excluded 
predictors from the first step were later re-entered into 
the model and re-evaluated one by one. Age was included 
without any evaluation as older age has been reported to 
be strongly associated with death in patients with COVID-
19.2 22 23 Interaction terms of predictors were tested and 
added to the model. The risk equation for predicting the 
log odds of short-term mortality after COVID-19 infection 
was computed using the estimated β estimates multiplied 
by the corresponding selected predictors, along with the 
average intercept. The predicted log odds of mortality 
(marked as µ) from the derivative model were further 
used for computing the predicted absolute risk of short-
term mortality with the algorithm of predicted risk=1/
(1+e−µ).

For a quick classification of patients with COVID-19 
with a high risk of short-term death, we also developed 
a simple model excluding laboratory tests but including 
comorbidities which had been previously reported to be 
associated with the poor prognosis among patients with 
COVID-19. The simple model was developed without 
any predictor evaluation because all included predic-
tors have been previously reported to be risk factors for 
mortality among patients with COVID-19.2 12 13 22–26 The 
model performance of both the full and simple models 
was assessed.

Test of model performance and external validation
The prediction accuracy of the model was assessed by the 
area under the receiver operating characteristic curve (AUC) 
and the Somers’ D statistic.27 The AUC assessed the model’s 
ability to distinguish patients with from patients without 
the outcome of interest. Somers’ D statistic measured the 
strength and direction of correlations between observed 
outcomes and predicted probabilities. To avoid model 
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overfitting, a leave-one-out cross-validation strategy was 
conducted to retest the model performance.28 Unbiased 
AUC and Somers’ D statistics were thus estimated with the 
predicted probability for each patient by a model ignoring 
this patient. Model calibration was assessed by comparing 
the predicted risk of 60 days of death with the observed 
risks by 10th of the predicted risk. To evaluate the predicted 
risk distribution in various centiles, we computed the sensi-
tivity, specificity, positive and negative predictive number of 
deaths in the model.

We applied the developed risk prediction algorithms 
on the independent validation cohort. We accessed both 
discrimination and calibration accuracies in these patients.

Decision curve analysis
To evaluate the clinical utility, a decision curve analysis 
was conducted in the external validation cohort.29 We 
assessed the net benefit of the prediction model by esti-
mating the differences between the proportion of true 
positive and false positive value and they were later multi-
plied by the risk odds. The decision curve evaluated the 
net benefit of correctly identifying patients who would 
have an event with the relative harms of a false-positive 
prediction across a wide range of threshold probabilities. 
The strategy of risk prediction model application was 
then compared with strategies of ‘treat all patients’ and 
‘treat no patient’.

This study followed the Transparent Reporting of a 
multivariable Prediction model for Individual Prognosis 
or Diagnosis guidelines and checklist.30 31 The statistical 
software package SAS 9.4 for Windows was used for statis-
tical analysis.

Patient and public involvement
No patients were involved in the study design or in setting 
the research questions or in the outcome measures 

directly. No patients were asked to advise on interpreta-
tion or the writing up of results.

RESULTS
Clinical characteristics of patients in the derivation cohort
In the derivation cohort, 50% of the inpatients were 
women, and the median age was 58 years (interquartile 
range [IQR], 46–66) (online supplemental table S1). 
About 82% of the patients had comorbidity, and the 
most common comorbidities were hypertension (31%), 
diabetes (17%), respiratory failure (7%), coronary heart 
disease (7%) and liver disease (7%). The most common 
symptoms at admission were fever, cough, fatigue and 
breathlessness (70%, 57%, 27% and 27%, respectively). 
A total of 103 deaths (9.5%) were reported from the 
patients in the derivation cohort (online supplemental 
table S2).

Predictor variables
The ORs and 95% CIs of 51 predictor variables in the 
univariable logistic regression models were shown in 
online supplemental table S3. The full model included 
predictors of age (per year increase, continuous), respi-
ratory failure (yes vs no), white cell count (per 109/L 
increase, continuous), lymphocytes (per 109/L increase, 
continuous), platelets (per 109/L increase, continuous), 
D-dimer (per 1 µg/mL increase, continuous), lactate 
dehydrogenase (per 1 U/L increase, continuous), and 
two interactions of white cell count with platelets and 
D-dimer with lactate dehydrogenase. In this model, an 
increased risk of mortality was markedly associated with 
respiratory failure (OR 53; 95% CI, 22 to 128) (table 1). 
The simple model included age, respiratory failure, 
coronary heart disease, renal failure, heart failure, and 

Table 1  Association between included predictor variables and 60-day mortality in the full model, expressed as ORs with 95% 
CIs and beta coefficients in the model

Factors OR (95% CI) P value β coefficients

Age (per year increase) 1.07 (1.03 to 1.10) 0.0001 0.069800

Respiratory failure 4.120200

 � No Reference <0.0001

 � Yes 52.60 (21.54 to 128.47)

White cell (per 109/L increase) 1.03 (0.83 to 1.27) 0.8000 0.034600

Lymphocytes (per 109/L increase) 0.13 (0.05 to 0.37) 0.0001 −2.045900

Platelets (per 109/L increase) 0.98 (0.97 to 0.99) 0.0021 −0.016800

D-dimer (per 1 µg/mL increase) 0.96 (0.88 to 1.05) 0.4000 −0.048500

Lactate dehydrogenase (per 1 U/L increase) 1.00 (1.00 to 1.00) 0.6900 0.0000910

Interaction terms

 � White cell count×platelets 1.00 (1.00 to 1.00) 0.0306 0.001150

 � Lactated hydrogenase×D-dimer 1.00 (1.00 to 1.00) 0.0295 0.000322

Constant intercept −4.795000

https://dx.doi.org/10.1136/bmjopen-2020-044028
https://dx.doi.org/10.1136/bmjopen-2020-044028
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interaction between age and renal failure. Both risk 
prediction algorithms can be found in the supplemental 
document.

Model performance
The receiver operating characteristic curves for the 
prediction models were shown in figure  1 and table  2. 
The AUC statistics without cross-validation based on the 
derivation cohort were 0.97 (95% CI, 0.96 to 0.97) for 
the full model and 0.92 (95% CI, 0.90 to 0.95) for the 
simple model. After cross-validation, the AUC statistics 
were lightly declined to 0.96 (95% CI, 0.96 to 0.97) in the 
full model and 0.92 (95% CI, 0.89 to 0.95) in the simple 
model, indicating the comparable performance of the 
simple model with the full model.

A good performance was observed between the 
observed and predicted proportion of events in both 
the full and simple models from the derivation cohort 
and external validation cohort, indicating that the 
algorithms were well calibrated (figure 2). The sensi-
tivity, specificity, positive predictive value and negative 
predictive value of the risk prediction model across 
various risk thresholds based on the derivation cohort 
were shown in online supplemental table S4. For 
example, with a risk threshold of 30%, the model has a 
sensitivity for identifying deaths of 74.2%, a specificity 
of 97.2%, a positive predictive value of 71.7% and a 
negative predictive value of 97.5%.

External validation
In the validation cohort, 55% of the patients were 
women (online supplemental table S1). The median 
age was 49 years (IQR, 36–62) and the proportion of 
death was 5.1% (14/276) (online supplemental table 
S2). About 39% of the patients had comorbidity, and 
the most common comorbidities were hypertension 
(18%), liver disease (8%) and diabetes (5%). The AUC 
statistics based on the external validation cohort were 
0.97 (95% CI, 0.96 to 0.98) for the full model and 0.88 
(95% CI, 0.80 to 0.96) for the simple model.

Decision curve analysis
The decision curve analysis showed the net benefit in 
60 days after COVID-19 diagnosis in adults using the 
short-term mortality algorithm of the full model. The 
figure indicated an overall higher net benefit of the risk 

Figure 1  The receiver operating characteristic curves 
(ROCs) for the full model and simple model. (A) The full and 
simple models after cross-validation; (B) the full and simple 
models in external validation. AUC, area under the receiver 
operating characteristic curve.

Table 2  Performance of prediction model for COVID-19 mortality risk

Model

Original without cross-validation Leave-one-out cross validation External validation

AUC
(95% CI) Somers' D

AUC
(95% CI) Somers' D

AUC
(95% CI) Somers' D

Full model
(7 variables)

0.97
(0.96 to 0.97)

0.94 0.96
(0.96 to 0.97)

0.92 0.97
(0.96 to 0.98)

0.93

Simple model
(5 variables)

0.92
(0.90 to 0.95)

0.85 0.92
(0.89 to 0.95)

0.84 0.88
(0.80 to 0.96)

0.76

AUC, area under the receiver operating characteristic curve.

Figure 2  Calibration plots in the study cohorts for prediction 
models. (A) Calibration plot of the derivation cohort based on 
the full model; (B) calibration plot of the external validation 
cohort based on the full model; (C) calibration plot of the 
derivation cohort based on the simple model; (D) calibration 
plot of the external validation cohort based on the simple 
model.

https://dx.doi.org/10.1136/bmjopen-2020-044028
https://dx.doi.org/10.1136/bmjopen-2020-044028
https://dx.doi.org/10.1136/bmjopen-2020-044028
https://dx.doi.org/10.1136/bmjopen-2020-044028
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prediction algorithm compared with the approaches 
based on considering either no patients or all patients 
for intervention, across all risk thresholds (figure 3).

Model presentation
We constructed an interactive excel sheet that integrated 
the risk prediction algorithms based on either the full 
model or the simple model (online supplemental risk 
calculator). For COVID-19-confirmed cases, the risk 
calculator provides the probabilities of mortality in 60 
days with a numerical scale.

DISCUSSION
This study developed a full model to predict individual 
risk of short-term mortality after COVID-19 diagnosis, 
with predictors of age, respiratory failure, white cell count, 
lymphocytes, platelets, D-dimer and lactate dehydroge-
nase. The model showed good performance regarding 
discrimination and calibration accuracy in both the deri-
vation and validation cohorts. We also developed a simple 
and easy-to-use model with only five readily available vari-
ables including age, comorbidities of respiratory failure, 
coronary heart disease, renal failure and heart failure, 
which can be used as a clinical risk stratification tool. A 
higher net benefit of the prediction model was observed 
compared with treat-all or treat-none approaches at 
various risk thresholds, indicating the potential clinical 
usefulness. The risk prediction algorithms were inte-
grated as an online risk calculator.

Strengths of this study included the cohort design 
with complete follow-up and limited bias from patients’ 
selection or disease detection. We involved all patients 
with COVID-19 in the defined hospitals during the study 
period and followed them up for the coming 60 days at 
hospitals. An independent population from other cities 
was applied for external validation of the prediction 
model. The model performance was assessed using a 
cross-validation strategy, and the calibration plots of both 
the derivation and external validation cohorts indicated a 
good performance of the full model. The calibration plot 

was preferred over the Hosmer-Lemeshow tests because 
the latter are powerless in detecting the overfitting of 
predictor effects and sensitive to sample size.32–34

There are also limitations. Misclassification is unavoid-
able for self-reported variables, for example, smoking 
history. Yet they were not selected in the full model and all 
the final included predictors were clinically relevant data 
that were directly retrieved from clinical medical records, 
which ensured its accuracy. Both the mortality and comor-
bidity rates were higher in the derivation cohort compared 
with the validation cohort because the derivation cohort 
was based on the data from Wuhan, which was the centre 
of the COVID-19 outbreak and had more severe patients. 
The differences in mortality and comorbidity rate might 
affect the calibration of the validation cohort. Missing 
predictor variables from both the derivation and valida-
tion cohorts were reported. Although these variables with 
a missing rate of more than 5% were imputed for 10 times 
by the multiple imputations approach, potential infor-
mation bias cannot be ruled out. Co-linearity was iden-
tified, which complicated the full model. Therefore, we 
introduced the interaction terms. In addition, concerns 
of representativeness of the validation cohort might be 
possible given the cohort sample size. Since the predic-
tion models were developed based on the Chinese popu-
lation, model validation in other populations might be 
necessary before its direct application.

A recent systematic review of prediction models for 
diagnosis and prognosis of COVID-19 pointed out that 
the existing prognostic models had high or unclear risks 
of both bias and overfitting.6 Moreover, the mortality 
prediction models did not present any applicable equa-
tions or risk calculators, which made it impossible to use 
or verify. Among eight mortality prediction models, only 
one model assessed the calibration.7 8 35–40 It has been 
found that the predicted mortality risk of that model was 
too high for low-risk patients and too low for high-risk 
patients when applied to new patients.38 The disagree-
ment between the observed and predicted proportion 
of events may be due to the small size of cases and the 
selection bias in a case-control setting. A mortality model 
based on 117 000 confirmed cases was developed using 
artificial intelligence, and the accuracy of the predic-
tion rate was 93%. However, the predictors included in 
the final model were unclear, and no application equa-
tion was provided.36 Although comorbidities have been 
reported to be associated with the worse outcome, only a 
few comorbidities have been screened during the model 
development in these studies. Specifically, the simple 
model developed in this study was based on the well-
known risk factors of prognosis of COVID-19 (ie, indi-
vidual comorbidities conditions such as coronary heart 
disease and renal failure). This model also presented a 
good model performance and is easy to use with only five 
readily available predictors.

Our full model included seven key determinants of 
death after COVID-19 infection, such as age, respiratory 
failure, white cell count, lymphocytes, platelets, D-dimer 

Figure 3  Decision curve analysis for the risk prediction 
algorithm of COVID-19.

https://dx.doi.org/10.1136/bmjopen-2020-044028
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and lactate dehydrogenase. These variables have been 
documented to be associated with the mortality risk of 
COVID-19.2 4 22 23 25 26 41–47 The data from different regions 
suggest that the risk of severity and mortality of COVID-19 
increases with age.1 2 22 It has been reported that the average 
death rate for adults over 80 was about 9.3%, but the death 
rate for adults under 60 was less than 0.2%.2 Despite the 
higher OR found among men in the univariate analysis 
of this study, sex was not included in the full model after 
multivariate analysis as it did not reach the predefined 
nominal significance level of entry and retention criteria. 
COVID-19 mainly affected the respiratory system, and 
the mortality risk significantly increased in patients who 
had severe respiratory failure.25 26 The mortality rate in 
critical cases of COVID-19 with respiratory failure has 
been reported between 26% and 61.5%.41 42 46 Lympho-
penia, D-dimer and lactate dehydrogenase have also been 
shown as independent risk factors associated with the 
severity and mortality of COVID-19.4 43–45 47 Lymphopenia 
was associated with a 2.99-fold higher risk of COVID-19 
severity and an increase per 1 U/L of lactate dehydroge-
nase was independently related to 1.012 higher risk for 
disease severity.5 41 The OR of COVID-19 mortality was 
2.14 higher when D-dimer reached 0.5 µg/ml or higher.4 
These laboratory predictors themselves might also serve 
as indicators of other severe diseases, such as heart failure 
or renal failure.

This prediction model might be useful for clinicians to 
identify confirmed patients with COVID-19 who are at a 
very high risk of mortality. We have provided a novel algo-
rithm to predict the 60-day mortality risk of confirmed 
patients with COVID-19, which may help clinicians do 
the objective decision-making based on medical and 
epidemiological evidence. The excel-based risk calcu-
lator is freely accessible and could serve as a resource to 
support patient education and inform discussions around 
outcome expectations and management, including reha-
bilitation needs. It can also serve as a data-driven tool to 
enable patients and their relatives to effectively participate 
in making clinical decisions together with clinicians. Our 
simple model including age, respiratory failure, coronary 
heart disease, renal failure and heart failure is potentially 
useful for the quick risk classification of patients at admis-
sion. The laboratory markers included in the algorithm 
indicated that these indicators might be involved in the 
pathophysiological mechanism of COVID-19 infection.

CONCLUSION
In this study, we developed the prediction algorithms 
of 60-day mortality risk among patients with COVID-19. 
The easy-to-use model presented good discrimination 
and calibration ability and was well externally validated 
in an independent population. The online risk calculator 
could provide immediate risk prediction for clinical use.
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