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ABSTRACT: HIV infects the central nervous system and causes HIV/neuroAIDS, which is predominantly 

manifested in the form of mild cognitive and motor disorder in the era of combination antiretroviral therapy. 

HIV Tat protein is known to be a major pathogenic factor for HIV/neuroAIDS through a myriad of direct and 

indirect mechanisms.  However, most, if not all of studies involve short-time exposure of recombinant Tat protein 

in vitro or short-term Tat expression in vivo.  In this study, we took advantage of the doxycycline-inducible brain-

specific HIV-1 Tat transgenic mouse model, fed the animals for 12 months, and assessed behavioral, pathological, 

and epigenetic changes in these mice.  Long-term Tat expression led to poorer short-and long-term memory, 

lower locomotor activity and impaired coordination and balance ability, increased astrocyte activation and 

compromised neuronal integrity, and decreased global genomic DNA methylation.  There were sex- and brain 

region-dependent differences in behaviors, pathologies, and epigenetic changes resulting from long-term Tat 

expression.  All these changes are reminiscent of accelerated aging, raising the possibility that HIV Tat 

contributes, at least in part, to HIV infection-associated accelerated aging in HIV-infected individuals.  These 

findings also suggest another utility of this model for HIV infection-associated accelerated aging studies. 
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HIV-1 infection of the central nervous system (CNS) 

often causes neurological symptoms that include motor 

and cognitive dysfunction [1], which are collectively 

called neuroAIDS.  In the era of combination anti-

retroviral therapy (cART), a more discrete form of CNS 

dysfunction so-called minor cognitive motor disorder 

(MCMD) has become more common [2-4].  At the 

cellular level, the primary cell targets for HIV infection 

are macrophages/microglia and, to a lesser extent, 

astrocytes [5-10].  Neurons that are mostly affected in the 

brain of HIV-infected individuals are rarely infected.  

Therefore, a number of indirect mechanisms have been 

proposed for HIV/neuroAID pathogenesis.   

Among these indirect mechanisms is HIV-1 Tat 

protein, a major pathogenic factor in HIV/neuroAIDS.  

Tat protein is detected in the brain of HIV-infected 

individuals without cART [11] and with cART [12].  Tat 

is secreted from HIV-infected-microglia/macrophages 

and astrocytes [13, 14].  Neurons or other brain cells can 

take up the extracellular Tat protein [15-17].  Tat can 

adversely affect neurons in both direct and indirect 

manners.  Direct exposure of Tat alters neuronal integrity, 

homeostasis, neuroexcitatory property, endoplasmic 

reticulum (ER) calcium load, and oxidative state [18-23].  

Tat can also affect neuron survival indirectly by recruiting 

monocytes/macrophages and lymphocytes into the CNS 
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[24-29], or by altering neuronal gene expression profiles 

and intracellular signaling cascades [17, 30, 31].  In 

agreement with these findings, Tat expression in or 

injection into the CNS in the absence of HIV-1 infection 

is sufficient to cause neuropathologies similar to most of 

those noted in the brain of HIV-infected individuals [29, 

32].  In addition, Tat interaction with other brain cells, 

astrocytes in particular, also plays a significant role in Tat 

neurotoxicity and HIV/neuroAIDS [33-45].  Tat alters 

astrocytes and neurons to form aggregates and the neurite 

processes to coalesce into fascicles in cultures [46].  Tat 

also induces expression of several other cytokines and 

chemokines in astrocytes, including IL-1, IL-6, Rantes, 

and CXCL10 [47-50].  We have shown that Tat activates 

glial fibrillary acidic protein (GFAP) expression in 

astrocytes and subsequently impairs astrocyte function 

and results in neuron death [35, 51, 52].  In addition, we 

have shown that the transcriptional co-activator p300 

regulates Tat-induced GFAP up-regulation through 

transcription factor early growth response 1 and p300 [52-

54].  Furthermore, using the doxycycline-inducible brain-

specific HIV-1 Tat transgenic mouse model, we and 

others have shown that Tat alters autophagy, ER stress, 

lysosomal exocytosis, neurite growth, and neurogenesis 

[55-59].  Besides these changes, Tat has been shown to 

induce abnormal behaviors in mice and rats, such 

as learning and memory deficits, sensorimotor 

impairment, anxiety, and depressive-like behavior [60-

69], which are accompanied by neuropathological 

changes such as astrocytosis and compromised neuronal 

integrity [32, 52, 62, 67].  It is important to note that most 

if not all these studies involved the use of short-term 

exposure of recombinant Tat protein in vitro or short-term 

Tat expression in vivo.  Thus, the effects of long-term Tat 

expression are not known.   

In the study, we aimed to determine the effects of 

long-term Tat expression in the brain on behaviors, 

pathology, and epigenetic landscape.  We took advantage 

of the doxycycline (Dox)-inducible brain-specific HIV-1 

Tat transgenic mouse model (iTat) [70] and fed the 

animals with Dox-containing diet for 12 months 

(equivalent to people living with HIV infection for 50 

years). Then, we performed a series of behavioral tests, 

analyzed astrocyte activation and neuronal integrity by 

assessing GFAP, synaptophysin (SYP), and post-synaptic 

density protein 95 (PSD 95) expression in the brain, and 

performed genomic DNA methylation analysis. 

 

MATERIALS AND METHODS 

 

Animals 

 

Dox-inducible and astrocyte-specific HIV-1 Tat-

transgenic mice (iTat) were generated as previously 

described [32].  Both wild-type (C57BL/6) and iTat mice 

at postnatal day 21 were fed with DOX-containing diet 

(0.625g/kg, Envigo, Indianapolis, IN) for 12 months, and 

then were subjected to behavioral tests using a 

computerized video tracking system (Anymaze, Stoelting 

Co., Wood Dale, IL).  At the end of the behavioral tests, 

mice were euthanized, and the brains were collected.  All 

the animal procedures were approved by the Institutional 

Animal Care and Use Committee.  Mice were housed with 

a 12-hour light and 12-hour dark photoperiod and 

provided water and food ad libitum. 

 

Behavioral tests 

 

Three behavioral tests were performed: Morris water 

maze, open field test, and bridge walking test to determine 

spatial memory, spontaneous locomotor activity, and 

balance, respectively.  Morris water maze was performed 

using a slightly modified protocol [71] (Fig. 1A).  The test 

consisted of two stages (pre-training and 

acquisition/probe) with a hidden platform (1.5 cm below 

surface) in 24±1oC, opaque water.  The pre-training phase 

is set so that the mice can learn to swim and climb onto 

the hidden platform.  During pre-training, the mice were 

given a maximum of 60s to reach the platform at the end 

of a straight alley.  If the mice failed to reach to the 

platform within 60s, they would be directed towards the 

platform and allowed to stay on the platform for 15s.  

Each mouse had two pre-training sessions, one on day 1 

and one on day 2.  There were five trials in each pre-

training session with a 2-min interval between each trial.  

During the first pre-training stage, a black curtain was 

used to cover the tank to hide surrounding visual cues.  

The second stage comprised an acquisition phase 

followed by a delayed probe test.  All trials at this stage 

were conducted in the tank with no covering curtain, and 

the mice were expected to use the surrounding visual cues 

in the room for navigation.  For each trial, mice were 

randomly put into one quadrant and held facing to the tank 

wall before they were released to swim.  The maximum 

time allowed for mice to swim to reach the platform was 

90s and to stay on the platform was 10s.  If the mice failed 

to reach to the platform within 90s, they would be directed 

towards the platform and allowed to stay on the platform 

for 15s.  There were a total of nine training sessions, one 

every day (Day 3-13, except for the weekends), 

comprising five trials with 2-min intervals between each 

trial.  In addition to the training, probe trials (marked by 

arrows) were conducted on Day 4, 6, 9, 11, and 13 as the 

5th trials and lasted 30 seconds.  During the probe trial, the 

platform was removed to prevent the mice from climbing 

onto it.  The probe trial sessions on these days were used 

to determine the short-term memory.  After a 7-day break, 

the 10th session that only consisted of one probe trial was 
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conducted to determine the long-term memory.  For open 

field test, each mouse was placed into a clear acrylic 

chamber (40.5×40.5×30.5cm) and allowed to freely move 

around the chamber for 10 min. Travel distance and speed 

were recorded using the AnyMaze software.  For bridge 

walking test, four bridge beams with two sizes (small and 

large) and two shapes (round and square) were used to 

assess the balance ability at four levels of difficulties.  The 

test order from easy to hard in difficulties was large square 

(LS), large round (LR), small square (SS) and small round 

(SR).  The latency to fall or reach a safe platform was 

record after mice were placed on the beam, and the 

maximum time was set for 60s.  Each bridge was tested 

three times and the average latency to fall was calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Spatial memory of iTat mice by 

Morris water maze (MWZ).  Wild-type (Wt) 

and iTat mice of 21 days old were fed with Dox-

containing food pellets for 12 months and their 

short- and long-term spatial memory were 

determined.  (A) Scheme of MWZ test. Mice 

underwent pre-training for 2 days, then training 

every day and probe test (marked by thin arrows) 

every other day, and the data in last probe test 

(Day 13) was analyzed to determine short-term 

spatial memory.  After 7 days, the mice underwent 

another probe test (marked by a thick arrow) on 

day 18 to determine long-term spatial memory. (B 

and C) iTat short-term spatial memory (B) and 

long-term spatial memory (C).  Mice were 

grouped into males and females and assessed for 

spatial memory based on the Time at target 

quadrant % (I), Distance to target quadrant (II), 

Time at platform site % (III), Distance in platform 

site (IV), Platform entries (V), and Speed (VI). 

The number of mice in each group was shown in 

the bar. 
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5-methylcytosine ELISA 

 

Genomic DNA was extracted from mouse brain tissues or 

cultured cells using a DNA extraction kit (Promega, 

Madison, WI).  The quantity and quality of genomic DNA 

were determined by Nanodrop (ThermoFisher, Waltham, 

MA).  One hundred nanograms of genomic DNA were 

used to determine the 5-methylcytosine level using an 

ELISA kit (Zymo, Irvine, CA) according to the 

manufacturer’s instructions. 

 

Western blotting 

 

Brain tissues or cells were lysed in RIPA buffer 

containing protease inhibitor mixture (Roche, 

Indianapolis, IN) and briefly sonicated on ice.  Protein 

concentration was determined using a Bio-Rad DC 

protein assay kit (Bio-Rad, Hercules, CA).  Lysates were 

electrophoretically separated by 8% SDS-polyacrylamide 

gel and blotted, and probed with appropriate primary 

antibodies: DNMT3B (1:200, Santa Cruz 

Biotechnologies, Santa Cruz, CA), PSD95 (1:1000, 

Abcam, Cambridge, MA), SYP (1:500, Santa Cruz 

Biotechnologies), GFAP (1:1000, DAKO, Santa Clara, 

CA) and β-actin (1:2000, Sigma-Aldrich, St. Louis, MO).  

Proteins levels on the blots were quantitated using a Bio-

Rad ChemicDoc imaging system (Bio-Rad, Hercules, 

CA). 

 

Real-Time reverse transcription PCR (qRT-PCR) 

 

Total RNA was isolated from cells using TRIzol (Life 

Technology, Carlsbad, CA).  cDNA was synthesized from 

1 μg RNA using a Script II RT kit (Promega) and used as 

a template for qPCR using a SYBR Green kit (Bio-Rad).  

Bio-Rad CFX Manager Software was used to calculate 

gross-threshold (CT) values.  The 2(-△△CT) was calculated 

to represent the fold change of gene expression and 

normalized using β-actin as a reference.  All the primers 

was used as follows: DNMT1: forward: 5’-CTT CAC 

CTA GTT CCG TGG CTA-3’, reverse: 5’-CCC TCT 

TCC GAC TCT TCC TT-3’; DNMT3A: forward: 5’-TCC 

ATG AAA ATG GAG GGC TC-3’, reverse: 5’-TTG 

CTG ATG TAG TAG GGG TC-3’; DNMT3B: forward: 

5’-GAT GAG GAG AGC CGA GAA CG-3’, reverse: 5’-

CAG AGC CCA CCC TCA AAG AG-3’; β-actin: 

forward: 5’-AGA GAA GTG GGG TGG CTT TT -3’, 

reverse: 5’-AAA CTG GAA CGG TGA AGG TG -3’. 

 

Data analysis 

 

Unless stated otherwise, all the data were analyzed by 

two-way ANOVA and Fisher's Least Significant 

Difference (LSD) for post hoc tests.  p＜ 0.05 was 

considered significant and marked as *; p＜0.01 and p＜
0.001 were both considered highly significant and marked 

as ** and ***, respectively. 

 

 
Figure 2. Locomotor activity of iTat mice by open field test.  

The mice were placed into an open chamber and their movement 

was recorded for 10 min.  The trace was analyzed for total travel 

distance (A) and travel speed (B).  The number of mice in each 

group was shown in the bar. 

 

 

RESULTS 

 

Long-term Tat expression led to poor short- and long-

term spatial memory in iTat mice  

 

To determine effects of long-term Tat expression on 

spatial memory, iTat mice and wild-type control mice 

(Wt) were fed with Dox-containing diet for 12 months and 

subjected to Morris water maze test (Fig. 1A), which 

consisted of 2-day pre-training sessions, nine training 

sessions and 5 probe tests for short-term spatial memory, 

and a 7-day break, one probe test for long-term memory 
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[71].  Spatial memory was assessed by the percentage of 

the time spent in the target quadrant (Time at target 

quadrant %), path length travelled to the target quadrant 

(Distance to target quadrant), the percentage of time spent 

at the platform (Time at platform %), path length travelled 

to the platform (Distance to platform), the number of 

platform entries (Platform entries), and latency to 

platform.  After nine sessions training, all mice had good 

ability to find the platform, with showing more time and 

distance in target quadrant and platform site, shorter 

latency and more frequent entries to platform location 

(data not show).  Also, these intensive training cycles 

offered a chance to differentiate the short-term memory 

between Wt and iTat mice (probe test in day 13).  

Compared to Wt male mice, iTat male mice showed 

significantly less Time at target quadrant (Fig. 1B-I) 

[F(1,43)=7.675, p=0.008] and shorter Distance to target 

quadrant (Fig. 1B-II) [F(1,43)=4.944, p=0.031].  There 

were no differences in Time at target quadrant 

[F(1,43)=0.285, p=0.596] and Distance [F(1,43)=0.486, 

p=0.489] to target quadrant between Wt female mice and 

iTat female mice.  iTat mice (both male and female) 

showed significantly less Time at platform (Fig. 1B-III) 

[F(1,43)=5.869, p=0.020], shorter Distance to platform 

(Fig. 1B-IV) [F(1,43)=6.674, p=0.013], and fewer 

Platform entries (Fig. 1B-V) [F(1,43)=6.947, p=0.012] 

than Wt mice (both male and female).  In all these three 

measures, both male and female iTat mice exhibited a 

lower trend than male and female Wt mice.  No difference 

in Speed was found between iTat mice (male and female) 

and Wt mice (male and female) (Fig. 1B-VI) 

[F(1,43)=0.368, p=0.547].  These results indicate that 

long-term Tat expression led to poorer short-term 

memory, particularly in male mice.  

For long-term spatial memory, iTat male mice 

showed significantly less Time in target quadrant than Wt 

male mice [F(1,43)=4.159, p=0.048], and iTat female 

mice showed a less but not significantly Time in target 

quadrant than Wt female mice (Fig. 1C-I) [F(1,43)=1.229, 
p=0.274], which gave rise to a significant difference in 

Time in target quadrant between iTat mice (both male and 

female) and Wt mice (both male and female) 

[F(1,43)=5.023, p=0.030].  In addition, sex difference was 

also evident in both Wt and iTat mice as male mice 

exhibited more Time in target quadrant [F(1,43)=7.273, 

p=0.010]. In both male and female mice, iTat mice only 

showed shorter Distance in target quadrant (Fig. 1C-II) 

[F(1,43)=3.867, p=0.056], less Time in platform site (Fig. 

1C-III) [F(1,43)=1.001, p=0.323], shorter Distance in 

platform site (Fig. 1C-IV) [F(1,43)=0.320, p=0.574], and 

fewer Platform entries (Fig. 1C-V) [F(1,43)=0.198, 

p=0.658].  But there was no difference in Speed between 

iTat and Wt mice (Fig. 1C-VI) [F(1,43)=1.512, p=0.226]. 

Moreover, there were significantly fewer iTat mice to 

reach to the platform site within 30 seconds than Wt mice 

in day 13 and 18 probe tests (Table. 1) (X2=5.232, 

p=0.022).  These results further confirmed that long-term 

Tat expression negatively affected both short and long-

term spatial memory. 

 

 
Figure 3. Motor coordination and balance ability of iTat mice by bridge walk test.  

The mice were placed into different types of raised beams, and the latency to fall from 

the beam was determined. The task was carried out with increasing difficulties and in 

the order of large square (LS), large round (LR), small square (SS), and small round 

(SR).  The number of mice in each group was shown in the bar. 
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Figure 4. Expression of GFAP, SYP and PSD95 in the brain of iTat mice.  Cortex (CORT, A), 

cerebellum (CERE, B), hippocampus (HIP, C) and caudate putamen (CPU, D) of the mice were 

dissected, homogenized for lysates, and analyzed for expression of GFAP, SYP and PSD95, by 

Western blotting.  β-actin was used as an equal loading control.  Six mice in each group were used for 

the analysis and three of them were randomly selected from the same SDS-PAGE for presentation.  

Protein expression in each group was normalized by Wt males and the relative level was shown at the 

right of the respective blots. 
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Long-term Tat expression led to lower locomotor activity 

and impaired motor balance and coordination in iTat 

mice  

 

The same mice were then subjected to open field test for 

the locomotor activity, which was assessed by the path 

length travelled (Total Distance) and the travel speed 

(Speed).  For both male and female mice, iTat exhibited a 

shorter, although not significantly, Total Distance than Wt 

(Fig. 2A) [F(1,43)=1.535, p=0.222] and a lower, although 

not significantly, Speed than Wt (Fig. 2B) 

[F(1,43)=1.498, p=0.228].  The third behavioral test for 

these mice was bridge walk, in which latency to fall 

(Latency) was used to measure the motor balance and 

coordination.  For both male and female mice, iTat 

showed worse performance in all four tasks LS 

[F(1,40)=27.581, p ＜ 0.001], LR [F(1,40)=4.809, 

p=0.034], SS [F(1,40)=17.668, p ＜ 0.001] and SR 

[F(1,40)=6.091, p=0.018] than WT (Fig. 3).  Specifically, 

iTat female mice performed significantly worse in all four 

tasks LS [F(1,40)=29.392, p＜0.001], LR [F(1,40)=4.232, 

p=0.046], SS [F(1,40)=9.724, p=0.003] and SR  

[F(1,40)=8.224, p=0.007] than Wt female mice, while 

iTat male mice performed significantly worse than Wt 

male mice in two task LR [F(1,40)=4.877, p=0.033] and 

SS [F(1,40)=8.134, p=0.007] (Fig. 3).  These results 

suggest that long-term Tat expression impaired locomotor 

activity and motor balance and coordination, particularly 

more on female mice.  In addition, there is a significant 

difference between male and female mice in task SR 

[F(1,40)=5.069, p=0.030], which indicates female mice 

have a better motor balance and coordination. 

 

 

Table 1. Latency to platform within 30s. 

 

Probe test Day Genotype Sex Success Failure Total p 

 

13/18 

iTat Male 5 5 20  

0.022* 

 

 

Female 6 4 

Wt Male 9 3 27 

Female 14 1 
 

In probe tests on day 13 and 18, the success frequencies for reaching the platform within 30s in every mouse 
group were used to assess memory difference (day 13 for short-term memory and day 18 for long-term memory). 

*: iTat total vs Wt total, ＜0.05. Pearson chi-square test was performed for Latency to platform in the water 

maze.   

 

Differential effects of long-term Tat expression on 

different brain regions 

 

Acute and short-term HIV-1 Tat expression in iTat mice 

have been linked to astrocytes activation (astrocytosis), 

compromised neuronal integrity, and neurobehavioral 

deficits [57, 63, 72].  To determine the effects of long-

term Tat expression on astrocytes activation and neuronal 

integrity, the brain of iTat mice was harvested at the end 

of the neurobehavioral studies, the cortex (CORT), 

striatum (caudate and putamen, CPU), hippocampus 

(HIP) and cerebellum (CERE) were dissected and 

analyzed for expression of glial fibrillary acidic protein 

(GFAP), a marker for astrocytes activation, 

synaptophysin (SYP), a pre-synaptic marker, and post-

synaptic density protein 95 (PSD95), a post-synaptic 

marker.  In CORT, GFAP [F(1,20)=26.908, p＜0.001], 

SYP [F(1,20)=4.783, p=0.041] and PSD95 

[F(1,20)=9.609, p=0.006] were all expressed at a 

significantly higher level in iTat female mice than Wt 

female mice (Fig. 4A).  GFAP [F(1,20)=4.421, p=0.048] 

expression was significantly higher in iTat male mice than 

WT male mice, but SYP [F(1,20)=0.006, p=0.941] and 

PSD95 [F(1,20)=0.010, p=0.992]  showed no differences 

between iTat male mice and Wt male mice.  In CERE, 

GFAP expression was significantly lower in iTat male and 

female mice than Wt male and female mice (Fig. 4B) 

[F(1,20)=6.686, p=0.018], although iTat male mice 

[F(1,20)=4.286, p=0.052] or iTat female mice 

[F(1,20)=1.851, p=0.189] alone were lower, but not 

significantly, than Wt male mice or Wt female mice.  SYP 

expression were significantly lower in iTat male mice 

than WT male mice [F(1,20)=10.035, p=0.005], but 

showed no differences between iTat female mice and WT 

female mice [F(1,20)=0.462, p=0.504].  PSD95 

expression showed no differences between iTat mice and 

Wt mice [F(1,20)=0.432, p=0.518], but PSD95 expression 

was significantly higher in female mice than male mice 

[F(1,20)=5.885, p=0.025]. In HIP, GFAP expression was 

significantly lower in female mice than male mice (Fig. 

4C) [F(1,20)=14.216, p=0.001].  There were no other 

differences in GFAP expression between iTat and Wt 

mice [F(1,20)=1.225, p=0.282].  There were also no 
differences in SYP [F(1,20)=0.067, p=0.789] and PSD95 

[F(1,20)=0.002, p=0.968] expression between iTat mice 

and Wt mice, or between male mice and female mice 
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[SYP: F(1,20)=1.387, p=0.253; PSD95: F(1,20)=0.129, 

p=0.723].  In CPU, GFAP expression was significantly 

higher in iTat male [F(1,20)=13.171, p=0.002] and female 

mice [F(1,20)=13.782, p=0.001] than Wt male and female 

mice (Fig. 4D).  There were no differences in SYP 

[F(1,20)＜0.001, p=0.991] and PSD95 [F(1,20)=0.191, 

p=0.667] expression between iTat mice and Wt mice, or 

between male mice and female mice [SYP: 

F(1,20)=0.850, p=0.368; PSD95: F(1,20)=0.492, 

p=0.491].  Taken together, these results provide the 

evidence for the first time that long-term Tat expression 

showed differential effects on different brain regions, 

which may contribute to specific behavioral changes of 

iTat mice. 

 

 

 
Figure 5. DNA Methyltransferase expression and genomic DNA methylation in the brain of iTat 

mice.  qPT-PCR was used to screen the mRNA expression of DNMT1 (A-I) DNMT3A (A-II) and 

DNMT3B (A-III) in whole brain lysates, followed by Western blots to determine DNMT3B expression 

in different brain regions including CORT, CERE, HIP and CPU (two close bands were recognized by 

DNMT3B antibody in some brain regions) (B).  Next, two brain regions, CORT and CERE, were selected 

to elucidate the genomic DNA methylation level by 5-methylcytosine ELISA.  The number of mice was 

shown in the bar, except for Western blots where six mice were used in every group and three were 

randomly selected from the same SDS-PAGE for presentation.  All data was normalized by Wt males 

and shown as a relative level.  The internal control of Western blots in (B) was β-actin which was same 

to figure 4 in different brain regions.  



Zhao X., et al                                                                                          HIV-1 Tat expression led to accelerated aging 

Aging and Disease • Volume 11, Number 1, February 2020                                                                              101 

 

Table 2. Summary of comparisons between different mice/sex and different 

brain regions. 

 
 

  Male 

iTat vs Wt 

Female 

iTat vs Wt 

Total 

Male vs Female 

Behavior 

MWZ ↓↓ - ↑ 

OPT - - - 

BW ↓↓ ↓↓↓↓ ↓ 

CORT 

GFAP ↑ ↑ - 

SYP - ↑ - 

PSD95 - ↑ - 

DNMT3B - ↑ - 

5-MC ↓ - ↑ 

CERE 

GFAP - - ↓ 

SYP ↓ - - 

PSD95 - - ↓ 

DNMT3B ↓ - - 

5-MC - ↓ - 

HIP 

GFAP - - ↑ 

SYP - - - 

PSD95 - - - 

DNMT3B - - - 

CPU 

GFAP ↑ ↑ - 

SYP - - - 

PSD95 - - - 

DNMT3B - - - 

↑: significantly higher; ↓: significantly lower.  The number of arrows indicates the number of 

indices in every behavioral test that have reached significant differences. 

 
 

Alterations of DNA methyltransferase expression and 

global genomic DNA methylation in the brain by long-

term Tat expression 

 
HIV infection or Tat expression alone has been shown to 

alter DNA methyltransferase (DNMT) expression [73, 

74].  To determine effects of long-term Tat expression on 

DNMT expression in the brain, total RNA was isolated 

from the brain of iTat and Wt mice and analyzed for 

DNMT1, DNMT3A and DNMT3B mRNA expression 

using qRT-PCR.  DNMT1 expression was significantly 

lower in female mice than male mice [F(1,17)=5.256, 

p=0.035],  but showed no differences between iTat mice 

and Wt mice (Fig. 5A-I) [F(1,17)=0.381, p=0.545].  

Similar results were obtained for DNMT3A expression 

(Fig. 5A-II) [male vs female: F(1,18)=8.328, p=0.010; 

iTat vs Wt: F(1,18)=2.563, p=0.127] and DNMT3B (Fig. 

5A-III) [male vs female: F(1,18)=7.639, p=0.013], except 

for that DNMT3B was significantly higher in iTat male 

mice than Wt male mice [F(1,18)=8.657, p=0.009].  Thus, 

we then determined DNMT3B protein expression in each 

of the brain regions CORT, CERE, HIP and CPU.  In 

CORT, DNMT3B protein was significantly higher in iTat 

female mice than Wt female mice [F(1,20)=6.831, 

p=0.017] but showed no difference between iTat male and 

Wt male mice (Fig. 5B) [F(1,20)=1.018, p=0.325].  In 

CERE, DNMT3B protein expression had higher trend in 

female mice [F(1,20)=4.170, p=0.055] than male mice 

and was significantly lower in iTat male mice than Wt 

male mice (Fig. 5B) [F(1,20)=5.248, p=0.033].  There 

were no differences in DNMT3B protein expression in 

HIP [F(1,20)=0.471, p=0.500] and CPU [F(1,20)=0.087, 

p=0.771] between iTat mice and WT mice or between 

male mice and female mice (Fig. 5B) [HIP: 

F(1,20)=1.311, p=0.266; CPU: [F(1,20)=3.764, p=0.067].  

Lastly, we determined global genomic DNA methylation 

in CORT and CERE.  Genomic DNA was isolated from 

CORT and CERE, the global genomic DNA methylation 

was analyzed for the percentage of methylated cytosine, 

i.e., 5-methylcytosine using ELISA.  In CORT, 5-

methylcytosine was significantly lower in iTat male 

[F(1,17)=38.754, p＜0.001] and lower trend in female 

mice [F(1,17)=4.249, p=0.055] than Wt male and female 

mice and also significantly lower in female mice than 

male mice (Fig. 5C-I) [F(1,17)=12.115, p=0.003].  In 

CERE, 5-methylcytosine was significantly lower in iTat 

female mice than WT female mice [F(1,16)=10.944, 

p=0.004] but showed no differences between iTat male 

mice and WT male mice (Fig. 5C-II) [F(1,17)=2.072, 

p=0.169].  Collectively, these results indicate that long-

term Tat expression altered DNA methyltransferase 

expression and genomic DNA methylation, which likely 
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result in genomic remodeling, epigenetic changes, and 

changes of gene expression, and behaviors.  

 

DISCUSSION 

 

In the study, we aimed to determine the relationship 

between long-term HIV Tat expression and 

neurobehavioral, pathological, and epigenetic changes in 

the brain using iTat mice.  iTat mice were fed with Dox-

containing diet for an extended period of 12 months and 

first analyzed for the behavioral changes. Long-term Tat 

expression led to poorer short-and long-term memory, 

lower locomotor activity and impaired coordination and 

balance ability (Fig. 1-3, Table 2).  The effects of long-

term Tat expression on memory were more pronounced in 

male mice and on coordination and balance ability were 

more pronounced in female mice (Fig. 1, Table 2).  Then, 

astrocytes activation and neuronal integrity were assessed 

in the brain of those mice.  Different neuroanatomical 

regions showed differential effects of long-term Tat 

expression on astrocyte activation and neuronal integrity.  

Long-term Tat expression resulted in more 

astrocytes activation and more loss of neuronal integrity 

in CORT and CERE, more astrocytes activation in CPU, 

and little effects in HIP (Fig. 4, Table 2).  Lastly, DNMT 

expression and genomic DNA methylation were 

analyzed.  DNMT1, DNMT3A and DNMT3B mRNA 

expression was significantly more in male mice than 

female mice (Fig. 5A).  DNMT3B mRNA was 

significantly higher in iTat male mice than Wt male mice, 

while DNMT3B protein in CORT was significantly 

higher in iTat female mice than Wt female mice and 

DNMT3B protein in CERE was significantly higher in 

female mice than male mice (Fig. 5B).  Tat-induced 

changes in DNMT3B protein expression appeared to be 

consistent with the changes in synaptic markers, 

specifically in CORT and CERE (Fig. 4).  Meanwhile, a 

significantly lower level of 5-methylcytosine, an indicator 

of genomic DNA methylation was found in CORT in iTat 

male mice than Wt male mice and in CERE in iTat female 

mice than Wt female mice, while a lower level of 5-

methylcytosine was found in CORT in iTat female mice 

than Wt female mice (Fig. 5C).  All the differences may 

account for the differential effects of long-term Tat 

expression on behaviors between male and female mice, 

as CORT is important for learning and memory process 

while CERE is important for coordination and balance.   

Aging is associated with physical, physiological and 

behavioral changes.  In the study, we employed Morris 

water maze, open field and bridge walking to assess 

changes in learning, memory and motor function resulting 

from long-term HIV-1 Tat expression in the brain.  Long-

term HIV-1 Tat expression in the brain led to impaired 

short- and long-term memory but with more impairment’s 

male mice (Fig. 1, Table 1 and 2).  Across species studies 

show that males perform better in spatial memory test than 

females in human [75] and that the sex difference in 

spatial memory is more pronounced in older mice [76], 

which implicates that males’ spatial memory is more 

sensitively suffered by HIV-1 Tat. Moreover, aging-

associated menopause, accompanied by estrogen decline 

may be related to the worse memory in all females [77, 

78], which may further fade the impact of HIV-1 tat on 

female mice.  Our studies found that female mice 

appeared to travel longer distance in open chamber and 

stayed more time in bridge beam than male mice, and that 

female iTat mice performed worse than male iTat mice in 

bridge walking test (Fig. 2 & 3, Table 2).  One of the 

confounding factors for the behavioral studies is the body 

weight, as body weight likely affects balance and 

coordination ability [79, 80]. Specifically, there is a 

negative correlation between body weight and balance 

and coordination ability at same age, and less body weight 

indicates better performance. We found that female mice 

weighed less than male mice at the end of 12 months of 

the Dox-diet (data not shown), meanwhile, females 

performed better in bridge task (Fig. 3), which suggests 

with the higher level of balance and coordination 

performance female mice are vulnerable to HIV-1 Tat-

induced damage. Similar differences have been noted in 

HIV transgenic rat and Tat transgenic mice [67, 81], 

which may be due to selective neuronal vulnerability to 

HIV Tat [82].    

Aging-related increases in astrocyte activation, 

determined by GFAP mRNA and protein expression, have 

been found in several areas of the brain including CORT 

[83, 84], CERE [83], striatum [85], and hippocampus 

[86].  We showed in this study that long-term Tat 

expression led to increased GFAP expression in both 

CORT and CPU, decreased GFAP expression in CERE 

and no changes in HIP (Fig. 4).  In addition, we showed 

that GFAP expression in HIP of male mice was higher 

than that in HIP of female mice. As a sign of astrogliosis, 

GFAP is upregulated by aging, but downregulation also 

can be found entorhinal cortex [86]. Actually, astrocytes 

are highly heterogeneous with different phenotypes [87, 

88], which may play different roles in aging process or the 

impact by HIV-1 Tat, further contributing to diversified 

results in different brain regions. SYP and PSD95, which 

modulate the synaptic plasticity and are involved in 

memory formation, have also been studied in aging 

process but their exact relationship to the aging process 

remain inconclusive [89-91].  We showed in present study 

that long-term Tat expression had no effects on SYP and 

PSD95 expression in HIP and CPU but differential effects 

in CORT and CERE depending on the sex (Fig. 4).  A 

three-month Tat induction study has also shown no clear 

effects of Tat on HIP in a similar mouse model [92].  
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Treatment of recombinant Tat protein and short-term (21 

days) Tat expression have led to decreased PSD95 and 

SYP expression in vitro [59, 93] and in CORT [94]. The 

findings from the current studies clearly show that Tat-

induced neurotoxicity is brain region- and sex-dependent 

and suggest that long-term Tat expression could result in 

neuropathological changes similarly to aging-related 

changes in terms of GFAP, SYP and PSD95 expression in 

the brain. 

Changes in DNMT3B expression have been detected 

in different cells and tissues during the aging process [95-

98] as well as in B cells of HIV-infected individuals [74].  

Our studies demonstrated that long-term Tat expression 

only led to increased DNMT3B mRNA expression in 

male mice (Fig. 5A).  We further found that long-term Tat 

expression resulted in significant differences in DNMT3B 

protein expression in CORT of female mice (Fig. 5B).  

Interestingly, there appeared to be a paralleled change 

between SYP, PSD95, or both and DNMT3B (Table 2), 

which supports the hypothesis that the Tat-DNMT3B axis 

may be directly involved in accelerated aging process. 

Although DNMT1 and DNMT3A also have been shown 

associated with aging process and HIV positive people 

[73, 74, 95, 98], we only found the sex difference which 

not influenced by Tat. This discrepancy may due to 

species, tissue difference and more other factors 

involvement (such as HIV-1 gp120, Rev, and Nef 

proteins).  We next showed that long-term Tat expression 

led to decreases in genomic DNA methylation in CORT 

of both male and female mice and in CERE of female 

mice (Fig. 5C).  Genomic DNA hypomethylation has been 

linked to the aging process [99-101].  It is also of 

important note that a higher level of global DNA 

methylation has been detected in HIV-infected 

individuals [102], SIV-infected Rhesus macaques [103], 

and in Tat-treated microglia [103].  Sex differences in 

DNA methylation have been well documented [104-107].  

It is clear that there are other DNMTs and other 

mechanisms such as demethylation involved in genomic 

DNA methylation during the Tat-induced accelerated 

aging process. Also, the dysregulation of global DNA 

methylation may further influence some aging related 

gene expression to accelerate aging process. 

In conclusion, in this study we demonstrated that 

long-term Tat expression in the brain led to poorer 

memory and motor functions, and brain region- and sex-

dependent dysregulation of neuropathological marker 

expression, DNMT3B expression, and genomic DNA 

methylation.  HIV infection has been shown to accelerate 

biological aging process of HIV-infected individuals by 

five years in blood cells [108] and seven years in the brain 

[109].  The findings from our current study, along with the 

finding about the presence of Tat protein in the HIV-

infected individuals under cART [12] raises the 

possibility that HIV-1 Tat contributes, at least in part, to 

accelerated aging process in HIV-infected individuals.  
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