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Abstract: Mosquito-borne diseases constitute a large portion of infectious diseases, causing more
than 700,000 deaths annually. Mosquito-transmitted viruses, such as yellow fever, dengue, West
Nile, chikungunya, and Zika viruses, have re-emerged recently and remain a public health threat
worldwide. Global climate change, rapid urbanization, burgeoning international travel, expansion of
mosquito populations, vector competence, and host and viral genetics may all together contribute to
the re-emergence of arboviruses. In this brief review, we summarize the host and viral genetic
determinants that may enhance infectivity in the host, viral fitness in mosquitoes and viral
transmission by mosquitoes.
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1. Introduction

Humans have known about arboviruses since the 15th century when yellow fever was first
described as devastating the human populations in Africa, the Americas, and Europe [1]. From the
17th through 20th centuries, vector-borne diseases were the biggest cause of human diseases and
deaths than all other causes combined. In the 20th century, prevention and control were achieved by
managing the vectors through insecticides and removal of breeding sites. By the 1960s, the efforts had
proven to be successful and these diseases that had been considered a public health problem were
no longer causing devastation on a grand scale [2]. However, the past several decades have seen the
re-emergence of arboviruses in areas outside of Africa. Today, infectious diseases are the second-most
common cause of death worldwide and the first in developing countries, causing as many as 15 million
deaths each year according to the World Health Organization.

The most common arboviruses that have caused recent epidemics are the flaviviruses, including
yellow fever, dengue, West Nile, and Zika, and the Toga viruses, which include Chikungunya. The
Centers for Diseases Control and Prevention (CDC) of the United States estimates that yellow fever
virus (YFV) causes 200,000 cases and 30,000 deaths globally each year, primarily in Africa [3]. Some of
these urban epidemics may have been caused by globalization and travel, which makes it easier to
transmit YFV across borders [4]. Dengue virus (DENV) distribution has been growing for the past 40
years and now it is expected to infect 390 million people annually [5]. The emergent dengue disease
epidemic in the Americas in the 1990s was found to be similar in epidemic potential as occurred
in Southeast Asia 30 years before that epidemic [6]. West Nile Virus (WNV) reached the Western
Hemisphere in 1999 and quickly became one of the most widely circulating arboviruses worldwide [7].
By November 2018, as many as 1500 cases of WNV infection were reported in the European Union,
exceeding the total number of infections in the previous five years [8]. Chikungunya virus (CHIKV)
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reached the Americas in late 2013 and quickly spread to the surrounding countries. By 2017, it had
caused more than 1.8 million suspected cases in 44 different countries [9]. Zika virus (ZIKV) has caused
one of the most recent epidemics to be considered a public health crisis. ZIKV was present for decades
prior to 2007 outbreaks in Asia, and was introduced to the Americas by 2014. Over half a million
autochthonous and 3700 microcephaly cases had been reported by January 2018 according to the Pan
American Health Organization. In the United States and its territories, over 40,000 symptomatic ZIKV
infections were reported from 2015 through to October 2018 [10].

There are a number of factors that may have contributed to the recent reemergence and spread of
arboviral diseases. Increased episodes of DENV infections are rooted in global population growth,
urbanization, lack of mosquito control measures, increased air travel, and decay in public health [11].
The 1979 DENV3 outbreak in Central Java, Indonesia, was characterized by low viremia. The mild
illness in human was proposed to be associated with the maintenance of different endemic strains,
which could give rise or co-circulate with the epidemic strains [12]. Similarly, the 2007 dengue outbreak
in Singapore showed serotype change and clade replacement, which empowered co-circulation of
several genotypes [13]. An additional factor considered to contribute is seroepidemiology. Most cases
of dengue resurgence in Singapore after 1986 emerged in the young adult population [14]. Another
study claimed that the combination of lowered herd immunity and the failure of vector control opened
the door to re-emergence [15]. The strategy suggested for the prevention of disease is an integrated
regional approach incorporating efficient surveillance, emergency response, and case management, as
all these factors contribute to a persistent disease cycle [16]. Severity of the disease was also found
to be greater with a prolonged interval between primary and secondary dengue infection in island
outbreaks [17]. During 2005 Dengue outbreak in Singapore ecological and immunological factors
were indicated to be responsible for epidemics [18]. Additional determinants of the re-emergence
include travel and transport, environmental factors, ecological cycles of vectors, host genetic factors,
viral evolution, human and mosquito population density, mosquito species, and vector competence
(Figure 1). In this review, we will discuss the host and viral genetic variations associated with increased
arboviral pathogenicity, infectivity, vector fitness, transmissibility, and epidemic potential.
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Figure 1. Factors contributing to the re-emergence of arboviruses. 
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severity of arboviral infection in humans. SNPs in an interferon stimulated gene (ISG) for 2’-5’-
oligoadenylate synthetase (OAS), an enzyme involved in the innate immune response to viral 
infection by destroying viral RNA, are likely associated with severe infections. In mice, a nonsense 
mutation, C820T, in the exon 4 of the Oas1b gene produced a truncated protein that inhibits the 
enzymatic activity of Oas1b. This allowed for greater replication of WNV in neurons with the 
mutated enzyme and enhanced viral infection [19,20]. A synonymous SNP in human OASL exon 2 
(rs3213545) that leads to a similar dominant negative OASL isozyme was more frequent in 
hospitalized WNV patients than control subjects [21]. A splicing variant (rs10774671) and an intron 
variant (rs34137742) of OAS1 were associated with severe WNV infection [21–23]. Additionally, a 
variant of OAS3, OAS_R381, was less effective in activating the RNase used to decimate viral RNA. 
This produced decreased antiviral activity toward DENV-2 and manifested as a more severe dengue 
infection [24]. SNPs in interferon regulatory transcription factor (IRF3), an important transcription 
factor for type I IFNs, and myxoirus resistance 1 (MX1), an interferon-induced dynamin-like 
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Figure 1. Factors contributing to the re-emergence of arboviruses.

2. Human Genetic Determinants of Viral Pathogenicity

Genetic diversity underlies individual differences in human disease pathogenesis and severity.
Not surprisingly, the outcomes of arboviral infection are associated with many genetic mutations
and single nucleotide polymorphisms (SNPs), the majority of which are related to immune pathways
(Table 1). The type I interferon (IFN) response is induced rapidly following a viral infection and is an
essential early antiviral mechanism. SNPs in the genes of the type I IFN pathway influence the severity
of arboviral infection in humans. SNPs in an interferon stimulated gene (ISG) for 2′-5′-oligoadenylate
synthetase (OAS), an enzyme involved in the innate immune response to viral infection by destroying
viral RNA, are likely associated with severe infections. In mice, a nonsense mutation, C820T, in
the exon 4 of the Oas1b gene produced a truncated protein that inhibits the enzymatic activity of
Oas1b. This allowed for greater replication of WNV in neurons with the mutated enzyme and
enhanced viral infection [19,20]. A synonymous SNP in human OASL exon 2 (rs3213545) that leads to
a similar dominant negative OASL isozyme was more frequent in hospitalized WNV patients than
control subjects [21]. A splicing variant (rs10774671) and an intron variant (rs34137742) of OAS1 were
associated with severe WNV infection [21–23]. Additionally, a variant of OAS3, OAS_R381, was less
effective in activating the RNase used to decimate viral RNA. This produced decreased antiviral activity
toward DENV-2 and manifested as a more severe dengue infection [24]. SNPs in interferon regulatory
transcription factor (IRF3), an important transcription factor for type I IFNs, and myxoirus resistance 1
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(MX1), an interferon-induced dynamin-like guanosine triphosphate (GTP)ase, were correlated with
symptomatic WNV infection; however, the mechanism is not well understood [23].

SNPs in viral recognition receptors that elicit immune responses or aid in viral entry into host cells
may also contribute to arboviral pathogenesis. Infection with CHIKV activates Toll-like receptors (TLR)
that initiate the innate immune response, including inflammatory cytokines and type I IFNs. Three
SNPs in human TLR-7 (rs179010, rs5741880, rs3853839) and one in TLR-8 (rs3764879) were potentially
associated with increased disease susceptibility, as well as the enhanced likelihood of developing fever,
joint pains, and rash in those infected with CHIKV [25]. The SNP in C-type lectin CLEC5A (rs1285933)
might render humans more susceptible to severe dengue diseases [26,27], and this was substantiated by
studies in Clec5a knockout out mouse [28]. The rs4804803 SNP (G) in the cluster of differentiation 209
(CD209) [(encodes Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin
(DC-SIGN)) promoter region could contribute to the pathogenesis of dengue hemorrhagic fever (DHF)
in Thai and Taiwanese populations [29,30]. The SNP (A to G in rs1801274 changes histidine to arginine)
in immunoglobulin heavy chain receptor FcγRIIa was correlated to more severe dengue infection in
Pakistani [31] and Cuban [32] populations. However, contrasting results were reported for the same
SNPs in CD209 and FcγRIIa in Mexicans [33]. These studies highlight the importance to interpret
human population genetics results in conjunction with the specific ethnic background.

Another study performed on blood donations in Guadeloupe and Martinique found increased
susceptibility to Chikungunya infection in people with blood group A, Rh positive. This link between
blood groups and CHIKV susceptibility may be related to several factors that are not well understood,
such as different capacities to eliminate viruses by innate immune responses or being more prone to
mosquito bites [34]. Mutations in Musashi (MSI1) proteins, important for progenitor cell growth and
differentiation, may also be related to brain abnormalities caused by ZIKV infection. Polymorphisms
in the 3′ UTR of these proteins may disrupt protein binding and facilitate viral replication. Malfunction
of MSI1 led to deregulation of expression of factors required for normal neural stem cell function and
embryonic brain pathology [35].

Another set of mutations that affect the host susceptibility to viruses and severity of infection
are those in the human leukocyte antigen (HLA) alleles, which encode the major histocompatibility
complex (MHC) proteins of the adaptive immune system. This association may be related to the ability
of class I and class II alleles to provoke a strong CD4+ or CD8+ T-cell response. Weaker responses were
correlated with susceptibility to symptomatic disease [36]. A study on WNV in Greece found that
the patients with DQA1*01:02 had increased susceptibility to infection due to deficient MHC-II. This
was also true for patients in Brazil with HLA-DQ1 [37]. HLA-A*68 and C*08 could be associated with
severe WNV infection in Caucasians in Canada and the United States [38]. In Vietnam, it was found
that children with HLA-A*24 were at an increased risk of developing DHF or dengue shock syndrome
(DSS) [39,40]. The researchers theorized that this may be due to a heightened CD8+ response that
could affect vascular permeability and cause tissue damage by viral mimicry of host proteins [40]. In a
larger study on Thai patients, researchers discovered that HLA-A*0207 and HLA-B*51 were associated
with severe DHF in patients with secondary DENV-1 and DENV-2 infections, while a number of other
genotypes were protective against developing severe symptoms during the secondary infections [41].
In a study on the Cuban population, researchers found that polymorphisms in Class I, HLA-A*31 and
HLA-B*15, were associated with symptomatic dengue infection [42]. Genotypes HLA-DQB1*0302 and
-DQB1*0202 were positively linked to DHF and DF susceptibility, respectively [43]. Sri Lankans with
HLA-A*31 and HLA-DRB1*08 might be more susceptible to DSS, during the secondary infection, and
people with HLA-A*24 and HLA-DRB1*12 were more likely to have DHF during the primary dengue
infection [44].
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Table 1. Human single nucleotide polymorphisms/mutations associated with increased risk for severe
disease outcomes.

Cellular Pathway Gene/Mutation Outcome of Infection Reference

Type I IFN response

OAS1B/C820T Increased susceptibility to WNV infection [21]

IRF3, MX1/SNPs Increased susceptibility to WNV infection [23]

OAS1/TT, rs34137742 Increased susceptibility to WNV infection [23]

OAS3/SNP, rs2285933 Increased dengue infection [24]

Viral recognition

TLR7, TLR8/SNPs Increased susceptibility to
CHIKV infection [25]

CLEC5A-CT/TT
(rs1285933)

Increased risk for DENV diseases and
TNF levels [26,27]

CD209-336A/G
Associated with DHF P and correlated to

DC-SIGN expression and
immune augmentation

[29,30]

Immunoglobulin FCGR 2A Severe dengue infection [31,32]

Blood type Type A, RH+ Increased susceptibility to
CHIKV infection [34]

Neuron progenitor cell
growth and differentiation MSI1/wild type Increasing ZIKV replication by binding to

3′-UTR in neural precursors [35]

MHC-I/II, T cell activation

DQA1*01:02 Increased susceptibility to WNV infection [37]

HLA-A*24 Increased risk for DHF and DSS [40]

HLA-A*0207, HLA-B*51 Increased risk for DHF [41]

HLA-A*31, HLA-B*15 Symptomatic dengue infection [42]

DQB1*0302, DQB1*0202 Increased risk for DHF and DF [43]

HLA-A*31 and
HLA-DRB1*08 Increased risk for DSS [44]

HLA-A*24 and
HLA-DRB1*12 Increased risk for DHF [44]

Chemokine, immune cell
recruitment CCR5/∆32 Increased susceptibility to WNV infection [45]

Inflammatory cytokine,
tumor necrosis alpha

TNFA -308A Increased risk for DHF [46–49]

TNFA-238A, -238GA Increased risk for DHF and DSS [50]

Anti-inflammation,
interleukin 10

IL10 (-1082/-819/-592)
ACC/ATA Increased risk for DHF As above

Tryptase TPSAB1/homozygous
alpha allele Increased risk for DSS [51]

Phospholipase PLCE1 Increased risk for DSS [52,53]

DHF: dengue hemorrhagic fever, DSS: dengue shock syndrome, UTR: untranslated region, *: Locus of SNP.

SNPs in gene encoding cytokines and chemokines also contribute to infection outcomes. There is
an increased likelihood of symptomatic WNV infection in people with a C-C chemokine receptor 5
(CCR5)∆32 mutation. CCR5 promotes transport of leukocytes into the infected brain in order to contain
and clear the virus. In the CCR5∆32 carriers, WNV replication could not be controlled in the brain,
leading to symptomatic infection [45]. TNFA (-308, rs1800629) A allele and IL10 (-1082/-819/-592)
ACC/ATA haplotype were significantly associated with DHF in Cubans [46], Sri Lankans [47], and
Venezuelans [48,49]. TNFA -238A allele and -238GA genotype were associated with DHF/DSS in
Malaysians [50]. The homozygous form of an α-tryptase allele of TPSAB1 was associated with DSS in
the Vietnamese and Filipino populations [51], SNPs in phospholipase C epsilon 1 PLCE1 (rs3765524
and rs3740360) with DSS in the Thai [52] and Vietnamese populations [53].
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3. Viral Genetic Determinants of Infectivity in the Host

A significant cause of viral re-emergence is the evolution and genetic mutations of the viruses that
make them more virulent and allow for widespread epidemics (Table 2). RNA viruses acquire genetic
diversity because of error-prone RNA-dependent RNA polymerase and a large population of infected
vectors and hosts [54]. This fosters high mutation rates and recombination that support adaption to
changes in the environment or host immunity [55]. For instance, by the Bayesian method, the overall
evolutionary rate of DENV was 7.6 × 10−4 substitution/site/year [56]. The role of viral genetics in
DHF is supported by the fact that two distinct genetic makeups led to the difference in disease severity
in DENV3, subtype III [57]. A new method was developed during 1981 for virological surveillance,
which included the use of mosquito C6/36 cell culture and specific anti-dengue monoclonal antibody
for isolation and identification techniques. It allowed rapid monitoring of circulating DENV strain
and prediction of epidemic potential [58]. An epidemiological study carried out during the 1989
DHF outbreak in Sri Lanka confirmed that the emergence was not correlated with the transmission
or the distribution of DENV serotypes. It was proposed that the viral strain and the small genetic
changes caused the intransigent and active disease cycle [59]. Similar observations were found in
Tonga DENV2 outbreak in 1975. The severe disease pathogenesis was not related to viral profusion,
host susceptibility or vector competence, but was suggested due to viral virulence [60].

Few studies were carried out to deduce the role of viral molecular evolution in driving the
epidemics. The phenotypic effect of genetic substitutions depends on the gene function and the
advantage of the substitution for the virus in the vector or host. DENV4 lineage turnover in 1998
Puerto Rican epidemic was distinguished by three non-conservative amino acids changes in NS2A [61].
The Puerto Rican DENV2 subtype IIIb was replacing the subtype V in the outbreak in 1980. It was
associated with molecular changes in the envelope protein. Amino acids were found to be under
positive selection, namely E91 and E129 substitutions were conservative; E-131 was non-conservative;
E491 was conservative; while E359 changed from T to A [62]. In Managua, Nicaragua, it was found
that the severity of dengue infection was associated with the replacement of predecessor DENV2 NI-1
clade by NI-2B clade. The circulating NI-1 clade was known to be of Asian/American origin with
substitutions in capsid R97K, NS1-K94R, and NS3 P245T. A single mutation of N245S in NS4B led NI-1
evolution into the NI-2 clade. Further five mutations namely-M492V in the envelope, L279F in NS1,
and K200Q, T290I, and R401K in NS5 were shown to drive NI-2 into a more infective strain, NI-2B [63].
During 2001–2002, severe DHF cases were increased in DENV2 outbreak in Taiwan. Genome analysis
between two outbreaks within a year revealed five nucleotide changes in E, NS1, NS4A, and NS 5
gene, suggesting molecular evolution of the virus [64]. However, some spontaneous mutations may
make DENV less advantageous in the host. One study investigating phylogenetic events that occurred
in a DENV-2 1971 South Pacific outbreak revealed that substitutions in prM and non-structural genes
NS2A and NS4A led to attenuation of infection [65].

Subgenomic flaviviral RNA fragment (sfRNA), an extension of the 3′-UTR of flaviviral genomes,
accumulates during replication and plays an essential role in replication and pathogenesis in both the
host and vector [66]. The PR-2B DENV-2 clade, which was fitter than PR-1 DENV2 and caused a severe
epidemic in Puerto Rico in 1994, produced more sfRNA than genomic RNA during replication in the
human host. sfRNA suppressed the type I IFN response by inhibiting TRIM-25, an E3 ubiquitination
ligase, leading to epidemiological fitness [67].

Variations in epidemic potential are also attributable to a virus’ capacity to interfere with the host
immune system. TSV01 strain of DENV2 activated a robust type I IFN response; while NGS strain
suppressed it via signal transducer and activator of transcription 1 (STAT1) and STAT2 [68]. In Brazil,
the L6 lineage of DENV1 remained persistently circulating even after the introduction of a more fitting
L1 lineage into human and vector. The reason could lie in moderate immune stimulation of the B cell
and T cell responses by L6, which allowed for increased systemic replication and viremia [69].

Some genetic changes can influence virulence, making the virus more infective or cause worse
symptoms. Mutations in the domain III of the ZIKV envelope protein may be an important factor in
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viral fitness as V603I and D679E substitutions were only seen in the recent epidemic ZIKV strains but
not in pre-epidemic strains [70]. Mutation in the viral precursor membrane protein (prM) has been
shown to intensify symptoms of ZIKV infection. The S139N substitution arose before the 2013 outbreak
on the French Polynesia Island and has been consistently present in the subsequently epidemic
American strains. The mutant prM might increase infectivity in neural progenitor cells and promote
apoptosis, possibly producing the microcephaly and other pathologies seen in pregnant women during
the most recent epidemic [71].

4. Viral Genetic Determinants of Vector Fitness and Transmissibility

Mutations have been discovered to assist an arbovirus in its acquisition by a vector as well as
adapting to a new one. The nonstructural protein (NS) 1 of a number of flaviviruses including YFV,
WNV, Japanese encephalitis, tick-borne encephalitis, DENV, and ZIKV is secreted out of host cells
and is present in the host blood [72–76] in a large amount [77] during acute infection. In addition to
aiding in flaviviral pathogenesis in the host, NS1 when acquired together with virions enhances viral
infectivity in mosquitoes by overcoming the gut immune barrier. This feature of NS1 can increase
the chance of viral acquisition by mosquitoes during a short viremic phase and viral prevalence in
nature. This might be a survival strategy that arboviruses have evolved to cycle efficiently between
two strikingly different host environments [76]. Mutations in the viral genome that influence NS1
secretability may thus impact viral transmission from the vector to host and/or vice versa. Indeed, an
alanine to valine substitution at the 188th position (A188V) in NS1 of the recent American ZIKV isolates
enhanced viral infectivity and prevalence in mosquitos. This mutation made NS1 highly secretable
in the mammalian host, increasing ZIKV transmissibility from the host to vector. This could partly
contribute to recent epidemics in South America [78].

Aedes Aegypti was a primary vector for CHIKV in India and other countries during the 2006 to
2010 epidemics. The K211E in the envelope protein E1 and V264A in E2 were reported to increase
CHIKV adaptation to Ae. Aegypti [79,80]. In the recent 2016 CHIKV outbreak in Brazil, researchers
discovered two new substitutions in the virus, K211T in E1 and V156A in E2, which could enhance
mosquito fitness, allowing the outbreak to become an epidemic as they did for a similar epidemic in
India in 2006 [81]. In CHIKV, a change at the position 226 of E1 protein from “A” version (in the strains
before 2005) to “V” version (in 90% strains after 2005 epidemics in the Indian Ocean) rendered the
virus independent of cholesterol to infect host cells. This is particularly critical for CHIKV prevalence
in Aedes albopictus mosquitoes that often have insufficient cholesterol to support productive viral
replication [82]. Other mutations such as L210Q in the E2 region of the Indian Ocean lineage could
enhance transovarial transmission of CHIKV by Aedes albopictus [83]. These mutations together may
account for the rapid spread of CHIKV by enhancing CHIKV prevalence in Aedes albopictus mosquitoes,
a vector populating in Southeast Asia, and by facilitating viral spread to urban centers and regions with
colder climates [84]. A T249P amino acid substitution in the NS3 helicase of North American WNV
increased virulence in American crow, a major natural reservoir for WNV [85]. On the other hand, a
V159A substitution in the envelope protein of NA/WN02 strain, which replaced the initial New York
NY99 strain in 2002 as the prevalent WNV strain in North America, reduced the extrinsic incubation
period in Culex spp. mosquitoes, facilitating WNV prevalence in mosquitoes. These mutations, when
combined together, may contribute to WNV rapid spread and persistence in North America [86,87].

Genome-wide comparative analysis of the pre-epidemic ZIKV strains (before the year 2007) and
recent epidemic strains revealed that the structural changes in the 3-terminal untranslated region
(3′-UTR) stem-loop might increase ZIKV transmissibility and virulence [88]. Additionally, the amount
and function of sfRNA are determined by point mutations in the 3′-UTR. In mosquitos infected
with DENV-2, sfRNA accumulated in the salivary glands and increased efficient transmission to the
host [89].
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Table 2. Viral genetic mutations/polymorphisms that enhance infectivity, pathogenicity, fitness,
and transmissibility.

Virus Gene/Mutation Outcome Reference

DENV

NS2A 1998 DENV4 Puerto Rican
epidemic strain [61]

E/T359A 1980 DENV2, subtype II Puerto Rican
epidemic strain [62]

C/R97K-NS1/K94R-NS3/P245T Asian/American to NI-1 clade [63]

NS4B/N245S NI-1 to NI-2 clade Same as above

E/M492V-NS1/L279F
NS5/K200Q, T290I, R401K NI-2 to NI-2B clade Same as above

NS5 DENV2 -more pathogenic to human host [64]

prM/NS2A/NS4A Attenuation of Togan strains [65]

3′-UTR/sfRNA polymorphism Increased infectivity and pathogenicity in
humans, transmission by mosquitoes [66,67,89]

NS5/A811V Increased disease severity [90]

ZIKV

E/V603I, D679E Recently epidemic strains,
unknown outcome [70]

PrM/V153M Recently epidemic strains,
unknown outcome [70]

prM/S139N Increased infectivity in neural
progenitor cells [71]

NS1/A188V
Enhanced NS1 secretability in the host

blood, immune suppression in
mosquitoes

[78]

CHIKV

E1/K211T Increased fitness in Ae. aegypti mosquitoes [79,81]

E2/V264A Increased fitness in Ae. aegypti mosquitoes [80]

E1/A226V
Increased fitness in Ae. albopictus

mosquitoes, reduced dependence on
cholesterol for replication

[82]

E2/L210Q Enhanced transovarial transmission by
Ae. albopictus [83]

WNV
NS3/T249P Increased adaption to American crow [85,91]

E/V159A Increased fitness in Culex spp. mosquitoes [86,87]

sfRNA: subgenomic flaviviral RNA, DHF: dengue hemorrhagic fever, E: envelope, NS: nonstructural, UTR:
untranslated genomic region.

5. Conclusions and Perspectives

It is difficult to predict which arbovirus, and when and where it will resurge next because
an outbreak depends on multiple factors. While factors such as climate, travel/transportation,
human/vector population density, and vector competence are important, genetic changes in viruses
are the most unpredictable element. These changes happen quickly and each season can present
a new challenge. Development of vaccines has been hampered by immune interference between
multiple circulating serotypes, genotype, limited animal models, and a lack of knowledge about
immune responses to these viruses and the association between secondary infection and risk of
severe diseases [92]. Although population genetics studies have revealed an association of many
host factors/SNPs with infection outcomes, in-depth understanding of their mechanism of action
and robust validation of these clinical results are still missing. This knowledge could allow us to
take more precautious measures for those vulnerable populations. Similarly, functional validation of
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viral mutations in infectivity and disease pathogenesis following each epidemic will need significant
research efforts and could help us develop broader and more efficacious vaccines and antiviral drugs.
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