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Many studies reported that spontaneous fluctuation of the blood oxygen level-
dependent signal exists in multiple frequency components and changes over time. By
assuming a reliable energy contrast between low- and high-frequency bands for each
voxel, we developed a novel spectrum contrast mapping (SCM) method to decode brain
activity at the voxel-wise level and further validated it in designed experiments. SCM
consists of the following steps: first, the time course of each given voxel is subjected to
fast Fourier transformation; the corresponding spectrum is divided into low- and high-
frequency bands by given reference frequency points; then, the spectral energy ratio of
the low- to high-frequency bands is calculated for each given voxel. Finally, the activity
decoding map is formed by the aforementioned energy contrast values of each voxel.
Our experimental results demonstrate that the SCM (1) was able to characterize the
energy contrast of task-related brain regions; (2) could decode brain activity at rest, as
validated by the eyes-closed and eyes-open resting-state experiments; (3) was verified
with test-retest validation, indicating excellent reliability with most coefficients > 0.9
across the test sessions; and (4) could locate the aberrant energy contrast regions
which might reveal the brain pathology of brain diseases, such as Parkinson’s disease.
In summary, we demonstrated that the reliable energy contrast feature was a useful
biomarker in characterizing brain states, and the corresponding SCM showed excellent
brain activity-decoding performance at the individual and group levels, implying its
potentially broad application in neuroscience, neuroimaging, and brain diseases.

Keywords: functional magnetic resonance imaging, spectrum contrast mapping, fast fourier transform, resting-
state, task-state, test-retest, Parkinson’s disease
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INTRODUCTION

Low-Frequency Fluctuations in Human
Brain Activity
Low-frequency fluctuation is an intrinsic property of human
brain activity. Biswal et al. (1995) used functional magnetic
resonance imaging (fMRI) technology to initially demonstrate
that spontaneous low-frequency fluctuation was synchronized
in the bilateral motor cortices of the brain at rest. Inspired by
this study, low-frequency fluctuations in the sensorimotor and
auditory cortices were also shown to have a high degree of
temporal correlation (Biswal et al., 1997; Cordes et al., 2001); this
phenomenon was also observed in many other brain areas such as
the visual network, default mode network, and others (Lowe et al.,
1998; Raichle et al., 2001; Greicius et al., 2003; Kiviniemi et al.,
2004). Several studies reported that low-frequency fluctuation
observed in fMRI signals was highly connected with spontaneous
neuronal activities (Logothetis et al., 2001; Goldman et al., 2002).
There is also growing research into low-frequency fluctuations,
and a well-known example provided the theoretical basis for
the spontaneous fluctuation referred to as resting-state networks
(Damoiseaux et al., 2006; De Luca et al., 2006; Robinson
et al., 2009; Zuo et al., 2010). Resting-state fMRI (rs-fMRI)
connectivity has also been applied to reveal abnormalities in
intrinsic connectivity of the salience network in patients with
psychiatric disorders (Dutta et al., 2014). For example, Yang et al.
(2016) found that the amplitude of low-frequency fluctuations
and functional connectivity based on resting-state data exhibited
consistent alterations in the bilateral anterior insula of subjects
with major depressive disorder. Another notable example is the
method of amplitude of low-frequency fluctuation (ALFF) (Zang
et al., 2007), and study has demonstrated that ALFF can be
used as a metric of brain diseases (Han et al., 2011) and for
decoding brain activity (Yang et al., 2018). Furthermore, low-
frequency fluctuation has been extensively applied in research
into mental illness (Cui et al., 2020), neurological disease (Dutta
et al., 2014), cognition (Fransson, 2005; Welsh et al., 2010), and
neuroplasticity (Lewis et al., 2009; Di et al., 2012; Wu et al., 2020).

High-Frequency Fluctuations in Human
Brain Activity
Two decades ago, there was a relatively small body of literature
regarding high-frequency fluctuations (>0.08 Hz) in brain
activity (Devrim et al., 1999). Animal research showed that
the cat’s primary visual cortex exhibited frequency fluctuations
(<0.3 Hz) (Steriade et al., 1993). Several studies were performed
that primary auditory cortex regions responded to acoustic
stimuli in the frequency domain of 0.1–0.5 Hz (Filippov and
Frolov, 2004; Filippov et al., 2007, 2008). In terms of high-
frequency fluctuations in human brain activity, Devrim et al.
(1999) reported that the sensory threshold of the human
visual system might be regulated by slow cortical potentials.
Moreover, Salvador et al. (2008) used a measure of functional
connectivity describing to show that the high- (0.17–0.25 Hz)
and middle- (0.08–0.17 Hz) frequency intervals are prominent
in several limbic and temporal regions. In recent years, there

has been an increasing number of publications on high-
frequency fluctuation (0.08–1 Hz) and progression of low-
frequency fluctuation (0.01–0.08 Hz) research. For example,
Gohel et al. (2018) found differences in the regions of the
visual cortex and dorsal attention in the frequency band of
0.027–0.25 Hz between healthy subjects and patients with
psychosis. Jiang et al. (2019) showed that the strength of dynamic
functional connectivity was weakened in the thalamus subregion
of patients with schizophrenia in the frequency domain of 0.073–
0.198 Hz. In an examination of frequency fluctuation, Jiang
et al. (2019) demonstrated new-onset, drug-naive (unmedicated)
increased functional connectivity in the rolandic network in the
frequency band (0.027–0.198 Hz). Furthermore, Yaesoubi et al.
(2017) found that structured spectro-temporal variability existed
in resting-state connectivity and can reveal differences and
similarities between clinical and healthy populations. Functional
connections in the high-frequency band gradually attracted
research attention, and several studies reported that the high-
frequency band had a similar network connection in the low-
frequency fluctuation (Boubela et al., 2013; Smith-Collins et al.,
2015; Trapp et al., 2018).

What Do We Propose?
The aforementioned studies indicated that this signal exists
in multiple frequency components and fluctuates over
time. However, they largely focused on low- or high-
frequency information of a given time course separately,
which ignored the relationship between the two frequencies.
Thus, in this paper, we first assumed that the energy contrast
between the low- and high-frequency band for each voxel
(in terms of the overall frequency spectrum band) is
relatively stable for a certain brain state. We proposed
a novel spectrum contrast mapping (SCM) method to
validate the assumption of energy contrast based on the
designed experiments.

The remainder of this paper is organized as follows: the theory
and methods related to SCM will be presented first, followed by
the experimental designs. We also describe the initial tests using
SCM on task-related, resting state, test-retest datasets and further
apply SCM to Parkinson’s disease (PD) resting-state dataset.
Finally, the results will be presented together with interpretations
and conclusions related to the advantages and limitations of
our proposed model.

THEORY AND METHODS

SCM Framework
The proposed SCM framework was displayed in Figure 1.
According to Figure 1, the experimental fMRI signals were first
preprocessed by temporal detrending, and then we performed
fast Fourier transformations to obtain the corresponding power
spectra of brain voxels. Segmentation of the spectral signal
yielded the low-frequency band (0.01–0.1 Hz) and high-
frequency band (0.1–0.25 Hz), and the latter was used as
the reference benchmark. Two representative values were,
respectively selected from the above two frequency bands.
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FIGURE 1 | The framework of the proposed SCM method.

Ultimately, SCM values were obtained by calculating the ratio of
two representative values of each brain voxel signal.

SCM Formulation
Given a signalf∈L1(R), whereAk(t)is the amplitude function, φk(t)is
the phase function, and k is the number of components. For the
time seriesf (t)of an individual element, it is expanded by Fourier
series:

f (t) =
K∑

k=1

Ak(t)ei2πφk(t)=

K∑
k=1

[
ak cos

(
2πfkt

)
+ bk sin

(
2πfkt

)]
(1)

whereak andbk are the amplitudes of the real frequency
components, fk is the frequency band,nis the number of different
frequency bands, value of k:1 to n, for the following definition
with SCM:
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(
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)
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(
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)
), (2)

HFRV=RVf ∈ (mid, high](
√
a2
k
(
fk
)
+ b2

k
(
fk
)
), (3)

SCM=LFRV/HFRV, (4)

where RV represents the representative value, LFRV represents
the value selected in the target low-frequency band, and HFRV
represents the value selected in the high-frequency reference
band. The low-, middle-, and high-frequency cut values in this
study are set to 0.01, 0.1, and 0.25 Hz, respectively.

Evaluating Indicator
The corrcoef indicator is introduced to evaluate the effectiveness
of the proposed SCM. For given matrices A and B, the correlation
coefficient can be calculated as in formula (5)

corrcoef (A,B) =
cov(vec(A), vec(B))

√
var(vec(A))var(vec(B))

, (5)

where A and B are two matrices with the same dimensions,
respectively; cov(•), var(•), andvec(•)represent the calculation
operation of covariance, variance, and vector transform,
respectively (Wang et al., 2016a).

EXPERIMENTAL DESIGNS

All the algorithms and toolkits used were implemented in the
Windows 10 operating system and configured as follows: Intel(R)
Core (TM) i7-7700HQ CPU @ 2.80 GHz and 16GB RAM. They
were run on the MATLAB 2019a platform, and all preprocessing
steps were performed using dpabi software (Yan et al., 2016). The
first ten time points were removed. The remaining volume images
were preprocessed sequentially by slice timing, realignment,
normalization, and spatial smoothing with an 8 mm full-width
half-maximum Gaussian kernel.

Visual Task-Related Dataset
In the visual task experimental test, six subjects were informed
of the purpose of this study before taking part in the visual task-
related experiment. The designed visual paradigm was OFF-ON-
OFF-ON-OFF-ON in a 40-s block. In the “ON” state, the visual
stimulus was a radial blue/yellow checkerboard, reversing at 7 Hz.
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In the “OFF” state, the participants were required to focus on a
cross at the center of the screen. More experimental details can
be found elsewhere (Ren et al., 2014; Wang et al., 2017).

Resting-State Dataset With Eyes Open
and Closed
The functional images were obtained using an echo-planar
imaging (EPI) sequence with the following parameters: 33 axial
slices, thickness/gap = 3.5/0.7 mm, in-plane resolution = 64× 64,
repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms,
flip angle 90◦, field of view (FOV) = 200 × 200 mm2.
Each condition consisted of 240 functional volumes. For this
experiment, 45 healthy and normal subjects were selected, with
eyes closed (EC) twice and once with eyes open (EO). The
T1-weighted MP-RAGE image was acquired with the following
parameters:128 sagittal slices, slice thickness/gap = 1.33/0 mm,
in-plane resolution = 256 × 192, TR = 2,530 ms, TE = 3.39 ms,
inversion time (TI) = 1,100 ms, flip angle = 7◦, FOV = 256× 256
mm2. The detailed protocol was described by Liu et al. (2013).

Test-Retest Resting-State Dataset
The test-retest resting-state fMRI dataset of 25 normal
participants is available by downloading from https:
//www.nitrc.org/projects/nyu_trt (Shehzad et al., 2009; Zuo
et al., 2010). Each participant was scanned three times at
rest with a Siemens Allegra 3.0 Tesla MRI scanner, and the
fMRI data for each subject consisted of 197 continuous EPI
functional volumes (TR = 2 s, TE = 25 ms, flip angle = 90◦,
slice number = 39, matrix = 64 × 64, FOV = 192 × 192 mm2,
voxel size = 3 × 3 × 3 mm3). A high-resolution T1-weighted
magnetization prepared gradient echo (MPRAGE) sequence was
also obtained for each participant, with the following acquisition
parameters: TR = 2,500 ms, TE = 4.35 ms, TI = 900 ms, flip
angle = 8◦, slice number = 176, FOV = 256× 256 mm2.

Parkinson’s Disease Resting-State
Dataset
There were a total of 45 participants involved in this dataset,
which had three contrast groups, i.e., cognitively normal PD
with severe hyposmia (PD-SH) with 15 subjects, cognitively
normal patients with PD with no/mild hyposmia (PD-N/MH)
with 15 subjects, and healthy controls (HCs) with 15 subjects.
Each participant was scanned at rest with a Siemens Magnetom
Verio 3.0 T scanner with a 32-channel head coil. A high-
resolution T1-weighted magnetization prepared gradient echo
sequence was obtained for each participant. Meanwhile, the rs-
fMRI scans (8 min, eyes closed) were also acquired with the
following parameters: TR = 2.5 s, TE = 30 ms, slice number = 39,
thickness = 3 mm, FOV = 192× 192 mm2, matrix = 64× 64, flip
angle = 80◦. The detailed protocol was described by Yoneyama
et al. (2018). This dataset with accession number ds000245 was
obtained from the OpenfMRI database.1

1https://openfmri.org/

RESULTS AND ANALYSIS

Visual Task-Related Experiment
The proposed SCM was applied to extract the visual task-
related voxel-wise brain activity maps of six subjects and to
generate the corresponding SCM maps. The z-scored SCM maps
were transformed with Z-score operation and were displayed
in Figure 2. Most subjects had strong SCM values in visual
task-related areas such as the occipital, fusiform, calcarine, and
lingual gyri. Unlike many brain network separation models under
the assumption of statistical independence or sparse distribution
(Wang et al., 2012, 2013, 2016b, 2015; Yaesoubi et al., 2017; Yao
et al., 2013; Shi et al., 2017; Shi and Zeng, 2018), the SCM paid
more attention to the spectrum energy contrast of each voxel.

Resting-State Experiment With Eyes
Open and Closed
The proposed method was used in resting-state experiments
for extracting brain networks in the EC and EO conditions
among 45 subjects, and the corresponding SCM maps for EC
and EO states were generated. The one-sample t-test SCM maps
with false discovery rate (FDR) correction (Genovese et al.,
2002) were calculated and displayed in Figure 3. Notably, SCM
highlighted the famous default mode networks involving areas
such as the medial prefrontal cortex and posterior cingulate
cortex/precuneus for both the EC and EO conditions (Fransson,
2005; Buckner et al., 2008). Furthermore, parts of the dorsolateral
prefrontal cortex, occipital cortex, cuneus, calcarine, lingual,
fusiform, and cerebellum showed significant enhancement in the
EO state compared to the EC state. Paired t-tests were performed
to quantitatively analyze differences in SCM maps between the
EC and EO conditions. The paired t-test maps in Figure 4 show
that there were significant differences in bilateral visual areas for
EC versus EO. The main differences were in the bilateral visual
cortices (Brodmann areas 18 and 19) involving the occipital_mid,
lingual, occipital_sup, calcarine, and cuneus. There were also
differences in the fusiform and cerebellum_6 areas. These results
indicated that energy contrast could be a useful biomarker to
characterize the degree of activity of brain regions at rest under
different conditions.

Test-Retest Resting-State Experiment
The proposed SCM method was subjected to test-retest
reproducibility validation in decoding brain activity for three
sessions at rest among 25 subjects, and individual SCM maps
were generated. The interval between sessions 1 and sessions
2 and 3 were 5–16 months (mean 11 ± 4 months). The
intercorrelation results among the SCM maps of each subject
derived from different sessions were shown in Figure 5. The
SCM maps of a given subject had close correlations among
three sessions, especially in the intrasession scan (<1 h apart) of
sessions 2 and 3. The marked mean and SD values in Figure 5
clearly showed that the proposed SCM had good individual
reproducibility in test-retest resting-state experiments.

The one-sample t-test SCM maps at the group level for each
session were calculated and displayed in Figure 6. The visual

Frontiers in Human Neuroscience | www.frontiersin.org 4 September 2021 | Volume 15 | Article 739668

https://www.nitrc.org/projects/nyu_trt
https://www.nitrc.org/projects/nyu_trt
https://openfmri.org/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-739668 September 1, 2021 Time: 12:14 # 5

Yu et al. SCM for FMRI Data Analysis

FIGURE 2 | Extracted SCM maps for six subjects in the visual task-related dataset.

FIGURE 3 | One-sample t-test SCM maps under the EC (n = 45, t > 6.0, p < 0.0005, FDR corrected) and EO (n = 45, t > 6.0, p < 0.0005, FDR corrected)
resting-state conditions.
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FIGURE 4 | Paired t-test SCM maps between the EC and EO resting-state conditions (n = 45, t value > 2.0, p < 0.05, FDR corrected).

areas, default network, and frontal lobe were simultaneously
active, and there were no noisy regions in ventricles or large blood
vessels. We also calculated the correlation coefficients between
group-level SCM maps from three sessions. The intercorrelation
coefficients of the group-level SCM maps were 0.90 (sessions
1 and 2), 0.92 (sessions 1 and 3), and 0.95 (sessions 2 and
3), demonstrating high reproducibility. Based on the test-retest
validation results, the spectrum contrast feature was an effective
biomarker with high reproducibility at both the individual
and group levels.

Resting-State Experiment in Parkinson’s
Disease
The proposed SCM method was firstly applied to PD dataset
to decode the aberrant neuronal energy contrast of brain
activity among three groups of participants, generating the
individual SCM maps in each group, i.e., PD-SH, PD-N/MH,
and HCs. Further, these corresponding SCM maps were analyzed
with analysis of variance (ANOVA) model with a post hoc
Tukey-Kramer correction, and the results were shown in
Figure 7.

By observing Figures 7A,B, compared to PD-N/MH and
PD-SH, the values of SCM in many regions were significantly
enhanced in HCs, including the supplementary motor area,
frontal cortex, postcentral gyrus, caudate nucleus, rolandic
operculum, precentral gyrus, etc. Compared to HCs, PD-N/MH
and PD-SH showed extensive differences in regions such as
vermis, cerebellum, insula, etc. Notably, PD-SH highlighted
regions of the frontal and parietal gyrus compared to HCs
(showed in Figure 7B), while PD-N/MH highlighted the regions
of the precuneus and superior temporal gyrus compared to
HCs (showed in Figure 7A). Further, to investigate the effects
of severe hyposmia in Parkinson’s disease, a comparison was
made between PD-N/MH and PD-SH, where the results were
displayed in Figure 7C. The results showed that compared
to PD-N/MH, PD-SH differed in the frontal, parietal and
temporal gyrus; in contrast, PD-N/MH showed significant
differences in the part regions of the cerebellum and thalamus,
etc. These results were well consistent with previous studies
(Yoneyama et al., 2018; Han et al., 2019), which demonstrated
that the proposed SCM could capture the aberrant neuronal

energy contrast between the patients of PD-N/MH and PD-SH
compared to HCs.

DISCUSSION

Discussion of Experimental Results
The results of the visual task experiment in Figure 2
demonstrated that the proposed SCM could be effective to
decode block task-evoked brain activity under the assumption
that the energy contrast between low- and high-frequency
bands for each voxel is reliable. However, in our task-
related experiment, the stimulus task was modulated by the
block design. In the future, we will fully explore SCM
performance under event-related, block design, and natural
stimulus conditions.

With regard to the resting-state experiment under the EC
and EO conditions, the results of the two-sample paired t-tests
in Figure 5 revealed differences in activated regions for the
two different states in terms of the energy contrast between
the low- and high-frequency bands. Generally speaking, under
the EO condition, the low-high frequency energy contrast
of the brain activity in several areas (i.e., the occipital,
cuneus, calcarine, lingual, part of fusiform, and cerebellum) was
significantly enhanced compared to the EC condition. These
findings further verified that the low-high frequency energy
contrast used in SCM is an effective biomarker for characterizing
resting brain activity.

Reproducibility in neuroimaging has gained more and
more attention (Zeng et al., 2009; Wang et al., 2016b;
Chen et al., 2018; Zuo et al., 2019; Cohen et al., 2021).
In this paper, a public test-retest resting-state dataset was
used to test the repeatability of the proposed SCM method.
As shown in Figure 5, the mean individual reproducibility
of the SCM maps from three sessions across 25 subjects
was within [0.9528, 0.9713], which showed a high degree
of reliability. Figure 6 showed that the group-level SCM
maps from three separate sessions were highly correlated
with the smallest correlation coefficient equal to 0.90, further
demonstrating good reproducibility of the proposed SCM at
the group level.
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FIGURE 5 | Correlation coefficients of SCM maps among three sessions for 25 subjects in the test-retest resting-state dataset.

Application of SCM in Parkinson’s disease demonstrated
that PD-SH and PD-N/MH compared to HCs extensively
differed in several areas (i.e., the vermis, cerebellum, insula,
etc.). As shown in Figure 7, the spontaneous neuronal
energy contrast captured by SCM can be sensitive, and
these aberrant regions can be utilized as an effective
biomarker to distinguish diseased individuals from the
healthy, which may be related to the pathology of brain
diseases. In the future, we will apply the SCM to explore
the energy contrast biomarker of more mental illnesses and
neurological diseases.

Discussion of Preprocessing Impact
In recent years, head movements were found that can introduce
artifactual differences in spectral power (Kim et al., 2014)
and test-retest reproducibility (Yan et al., 2013). Thus, to
demonstrate clearly all effects of head motion and global signal
regression (GSR) on the proposed SCM, we explored the
effects on SCM from the aforementioned two preprocessing
operations. The head motion parameters and global signal
were regressed out using multiple linear regression analysis
in EC-EO and test-retest resting-state datasets, respectively.
Specifically, Supplementary Figures 1–4 showed the differences
in the head motion regression (without GSR and with
GSR) by one-sample test and paired t-test. It revealed
that head motion regression significantly impacted regions
involving part of the frontal, temporal, lingual, and occipital
cortex, cerebellum and fusiform, etc. (Kim et al., 2014),
especially under the condition of the GSR. However, test-
retest reproducibility analysis in Supplementary Figure 5

showed no significant effect of head movement regression
(without GSR and with GSR) on reproducibility in SCM
(Yan et al., 2013).

Discussion of Frequency Bands
Selection
According to Section 2 Theory and Methods, the proposed
SCM method assumes that the energy contrast between the
low- and high-frequency bands for each voxel is reliable and
credible. Thus, SCM performance mainly depends on the
band selection of the reference frequency. In this study, the
high-frequency band (0.1–0.25 Hz) was empirically selected
as the reference due to the low-frequency oscillation of
brain activity measured by fMRI, which was also used
in previous studies (Luo et al., 2020; Yang et al., 2020).
Theoretically, the proposed SCM highlights the signals with
a more concentrated low-frequency property and higher
energy contrast value, which can form different functional
regions, representing biometric features of brain activity
from BOLD signal.

Additionally, stable energy distribution in sub-bands of the
frequency domain has been reported by Yuen et al. (2019),
which implies that the SCM may be used to locate these
areas by setting different target and reference frequency bands.
Specifically, Supplementary Figure 6 showed results of the
energy contrast between two intrinsic mode functions frequency
bands (Yuen et al., 2019) (target bands: 0.01–0.05 Hz, 0.05–
0.1 Hz) and the high-frequency bands (reference benchmark
bands: 0.1–0.25 Hz). It provided clear evidence that reliable
energy contrast existed between the intrinsic mode functions
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FIGURE 6 | One-sample t-test SCM maps separately derived from three sessions in the test-retest resting-state dataset (n = 25, t > 3.0, p < 0.001, FDR corrected).

FIGURE 7 | (A) Z–statistical difference maps between the HCs (warm color) and PD-N/MH (cool color) (n = 15, z > 2.0, p < 0.05, Tukey-Kramer correction).
(B) Z–statistical difference maps between the HCs (warm color) and PD-SH (cool color) (n = 15, z > 2.0, p < 0.05, Tukey-Kramer correction). (C) Z–statistical
difference maps between the PD-N/MH (warm color) and PD-SH (cool color) (n = 15, z > 2.0, p < 0.05, Tukey-Kramer correction).

frequency bands in the form of ratios instead of the amplitude
values. Moreover, the proposed SCM can be treated as a new
feature extraction method based on quantifying the reliable
energy contrast of the voxel’s time course, which can be applied
to feature extraction, pattern classification (Savio et al., 2011;
Sridhar et al., 2017), etc.

Discussion of SCM V.s. ALFF, fALFF, and
PerAF
With regard to low-frequency fluctuations, Zang et al. (2007)
proposed the amplitude of low-frequency fluctuation (ALFF)
as a characterization of the spontaneous brain activity at the
frequency domain. Zou et al. (2008) reported fractional ALFF
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(fALFF) for rs-fMRI signal analysis, which can be regarded as a
standardized ALFF-like metric at each voxel. Recently, Jia et al.
(2020) proposed the percent amplitude of fluctuation (PerAF) for
rs-fMRI, focusing on the percent change compared to the mean
value for each voxel time series.

Theoretically, the proposed SCM is fundamentally different
from the three methods mentioned above, but in terms of
metric representation, the proposed SCM is related to fALFF.
Indeed, fALFF is an inspiring study with wide application in
analyzing rs-fMRI signals, but the SCM method proposed in
this paper is theoretically different to fALFF. For example,
fALFF concerns the percentage of low-frequency bands over the
entire frequency domain. By contrast, SCM mainly considers
the reliable energy contrast between the target bands and
the reference ones.

To compare the test-retest reliability of SCM and
fALFF, the intraclass correlation coefficient (ICC) was
calculated between each pair of the three sessions in the
test-retest resting-state dataset. As shown in Supplementary
Figures 7, 8, we could observe that the reliability of gray
matter was significantly higher than the one of white
matter; also, the short-term reliability was higher compared
to the long-term one in the metrics of fALFF and SCM.
Further, the reliability of SCM was significantly higher
than the one of fALFF in both the short- and long-term
test-retest, especially in the cingulate, occipital cortex,
and frontal gyrus.

By comparing the results of the one-sample test between
SCM and fALFF, as, respectively, shown in Figure 3 and
Supplementary Figure 9, it was demonstrated that the proposed
SCM effectively decoded the difference of brain activity in
visual areas under the EC-EO rest conditions, consistent
with fALFF. Additionally, the main difference was marked
by the yellow box in Supplementary Figure 9, including
temporal and precentral gyrus. Further, we performed the
paired t-test to detect the differences in voxels between the
fALFF and SCM maps under the EC-EO conditions (showed
in Supplementary Figure 10). Under the EC condition,
compared to fALFF, SCM significantly enhanced regions,
including precuneus cortex, frontal and fusiform gyrus, and
rectus, while fALFF highlighted regions of temporal, postcentral,
occipital, precentral, frontal gyrus compared to SCM. Under
the EO condition, SCM showed extensive differences in areas,
such as frontal, temporal, fusiform gyrus, and precuneus
cortex, while fALFF highlighted areas, such as temporal,
frontal, postcentral, precentral, cingulum, parietal gyrus, caudate
nucleus, and putamen. Additionally, numerous regions were
located by fALFF in the white matter under both the EC
and EO conditions.

The paired t-test plots of SCM comparing with both ALFF and
perAF for EC and EO conditions were shown in Supplementary
Figure 11, respectively. The results showed that the SCM
mainly highlighted temporal, occipital, frontal, parietal, gyrus,
cuneus, cerebellum, and the precuneus cortex, compared to
the perAF under the EC condition. Compared to the SCM
under the EC condition, the perAF mainly enhanced part of
regions in the frontal, lingual gyrus, cerebellum, and many

ventricles. Comparing ALFF with SCM, ALFF particularly
highlighted the ventricles and the lingual gyrus, while SCM
mostly enhanced the temporal, occipital, frontal, parietal,
gyrus, cuneus white matter areas in the EC condition. The
difference between SCM and perAF and ALFF in the EO
condition was similar to the EC condition, clearly seen in
Supplementary Figure 11.

Discussion of Physiological Explanation
of Energy Contrast
Regarding the interaction of signals of different frequency bands,
there existed many shreds of evidence in electroencephalogram
(EEG) (Lindsley, 1952) studies, and this phenomenon was called
cross-frequency coupling (CFC), including three categories:
phase-phase coupling, phase-amplitude coupling, amplitude-
amplitude coupling. CFC phenomenon can be observed in
brain regions, such as the hippocampus, prefrontal, and sensory
cortex, and CFC was considered as a potential mechanism
for higher cognitive functions such as spatial and temporal
memory encoding and integration of perceptual information
(Händel and Haarmeier, 2009; Canolty and Knight, 2010; De
Hemptinne et al., 2013; Chaieb et al., 2015; Hyafil et al., 2015).
Furthermore, Rosso et al. (2001) proposed the relative wavelet
energy (RWE) to represent information about the corresponding
degree of importance of the different frequency bands present
in the EEG. Then, Rosso et al. (2006) showed that the epileptic
recruitment rhythm observed during seizure development is well
described in terms of the RWE. Furthermore, Rosso (2007)
applied RWE to epileptic EEG and found significantly decreasing
activity in RWE associated with the frequency band 0.8–3.2 Hz
(δ activity) at seizure onset, indicating a predominance of
the mid-frequency band 3.2–12.8 Hz (theta and alpha bands)
at seizure onset. Besides, in terms of fMRI signal, Wang
et al., 2015 used the relative wavelet packet energy (RWPE)
criterion to select the threshed wavelet tree nodes and to
form the sparse approximation coefficients set of original fMRI
signal, which helped to improve the brain functional networks
identification. In addition, the fALFF also can be treated as
a special energy contrast method for decoding brain activity
from fMRI signals. In terms of the proposed SCM, it can be
viewed as a general energy contrast based method to explore
the changes in energy contrasts between different frequency
bands under the assumption that the energy contrast between
the frequency bands of voxels is stable during spontaneous brain
activity. In the future, the other modalities of vivo brain imaging
technologies such as EEG, functional near-infrared spectroscopy
(fNIRS) (Naseer and Hong, 2015), magnetoencephalography
(MEG) (Hansen et al., 2010), etc., will be used to help reveal the
more concrete physiological explanation of energy contrasts in
SCM by the concurrent EEG-fMRI, fNIRS-fMRI, or integrated
MEG-fMRI.

CONCLUSION

We proposed a novel but simple voxel-wise brain activity
decoding model (SCM), which assumed reliable energy contrast
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between low- and high-frequency bands for each voxel. The
results of the visual task, rest with eyes open and closed, test-retest
resting-state, and Parkinson’s disease experiments confirmed
that SCM was good at characterizing the energy contrast and
showed excellent reliability in decoding brain activity. Indeed,
the energy contrast between low- and high-frequency bands was
an effective biomarker in characterizing the brain states at both
individual and group levels, and can be utilized to reveal the
aberrant regions which might relate to the pathology of brain
diseases. The proposed SCM method has potential application for
neuroscience, neuroimaging and brain diseases.
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