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The ‘‘white-opaque’’ transition in Candida albicans was discovered in 1987. For the next fifteen years, a

significant body of knowledge accumulated that included differences between the cell types in gene

expression, cellular architecture and virulence in cutaneous and systemic mouse models. However, it was not

until 2002 that we began to understand the role of switching in the life history of this pathogen, the role of the

mating type locus and the molecular pathways that regulated it. Then in 2006, both the master switch locus

WORI and the pheromone-induced white cell biofilm were discovered. Since that year, a number of new

observations on the regulation and biology of switching have been made that have significantly increased the

perceived complexity of this fascinating phenotypic transition.
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‘P
henotypic switching’ in Candida albicans was

first defined in 1985 as the capacity to undergo

spontaneous, reversible transitions between a

set number of colony morphologies (1). The definition

did not include the bud-hypha transition, which is also

considered a form of switching. Variability of colony

morphology had been seen in the past in aged colonies or

streaks of cells stored on agar at room temperature or in

cold rooms, for extended periods of time (2, 3). However,

in these earlier studies, reversibility, a trait of phenotypic

switching, was never tested. Two papers appeared simul-

taneously in 1985 which demonstrated that variability of

colony morphology included a set number of phenotypes,

could be reversible, occurred at high frequency and was

stimulated by low doses of UV. One of these systems

included switching between seven colony morphologies

(4) and another between a smooth and rough colony

morphology (5). However, the most interesting story of

switching, which has acquired significant attention be-

cause of its role in mating, was that of the ‘white�opaque

transition’ (6). Having realized that there was more than

one type of switching system among natural strains of

C. albicans, a massive plating experiment was performed

by Soll and colleagues (unpublished observations) that

included over 100 clinical isolates, in order to identify

new switching systems. Several switching systems were

identified, including the transition between a hyphal-

nonhyphal colony morphology, equivalent to the original

smooth�rough transition identified first by Pomes et al.

(5), variations of the 3153A switching system identified

by Slutsky et al. (4), a petite�large transition and the

white�opaque transition (6). Because the white�opaque

transition was spontaneous, reversible and between only

two phases, but most importantly, because the alternative

phenotypes were distinguishable by cellular morphology

and vital staining with phloxine B (6, 7), it was selected as

the model for studying the role of switching in the life

history and pathogenesis of C. albicans, and the genes

and regulatory networks that controlled the process (1).

Between 1987 and 2002, a variety of papers documented

the differences in cellular architecture (7�9), phase-

specific gene expression (10�16), adhesion and hydro-

phobicity (17), pathogenicity in mouse systemic and

cutaneous models (18, 19), recombination frequencies (20)

and surface antigenicity (7�9), between the alternative

phenotypes, as well as the role of histone modifications in

the regulation of switching in both directions (21, 22).

However, during the period preceding 2002, the role of

switching and the molecular mechanisms regulating it

remained unknown. Thus, the phenomenon was consid-

ered interesting, but an enigma.

It was the discovery of the role of white�opaque

switching in mating by Miller and Johnson (23) in 2002

that catapulted white�opaque switching to prominence in

the community of C. albicans researchers. The identifica-

tion of the mating type locus in 1999 (24) and the

demonstration of mating in 2000 (25, 26) preceded this

discovery. Miller and Johnson (23) then demonstrated
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that a/a cells of a laboratory strain had to undergo

homozygosis at the mating type locus (MTL) to switch

between white and opaque, and Lockhart et al. (27)

showed that this was a general rule for natural MTL-

homozygous strains. Miller and Johnson (23) also

demonstrated that a switch from white to opaque was

necessary for mating and this was again found to be a

general rule for most natural strains by Lockhart et al.

(28, 29). The white�opaque switch, therefore, represented

a unique phenotypic transition inserted as a step in the

mating program of C. albicans and the related species

Candida dubliniensis (30) and Candida tropicalis (31�33).

A similar transition was not a requirement for mating

amongst members of the Saccharomyces clade of the

hemiascomycetes, which includes Saccharomyces cerevisiae

and the pathogen Candida glabrata. The discovery that

white�opaque switching was a prerequisite for mating in

C. albicans was followed by the discoveries in 2006 that

the transcription factor Wor1, also referred to as Tos9, re-

presented the master switch gene for the white to opaque

transition (34�36), and in 2007 that WOR1 was regulated

by the additional transcription factors Czf1, Efg1, and

Wor2 (37). As this story continues to emerge, it continues

to accumulate new complexity. Rather than review many

of the detailed observations that have been covered in

prior reviews, especially those pertaining to the molecular

regulation of switching and mating (38�44), an attempt

will be made here to provide more of an overview of how

the rapidly accumulating observations have changed our

perception of switching in the last decade. Special consid-

eration will be given to the role that MTL-homozygous

biofilm formation may play in the life history of C.

albicans and why it may be the key to understanding why

the white�opaque transition originally evolved.

What is the relationship between switching
and mating?
The vast majority of natural strains of C. albicans, a

predominately diploid organism, are heterozygous at the

mating type locus (27, 45�48). To mate, diploid cells must

undergo homozygosis at the mating type locus to a/a or

a/a by either gene conversion, crossing over or the loss

of one copy of chromosome 5, followed by duplication of

the retained copy (49, 50). Then the resulting MTL-

homozygous cell must switch (23, 28) from a ‘white’ a/a

or a/a cell phenotype, architecturally similar to the a/a
yeast cell phenotype, to the unique oblong opaque cell

phenotype, with a giant vacuole and a cell wall contain-

ing pimple-like structures (Fig. 1A and 1B) (6, 7). The

subsequent mating process that takes place between

opaque a/a and a/a cells is then cytologically similar,

but not identical, to that of the highly studied species

Saccharomyces cerevisiae. Alternative mating types secrete

pheromones that stimulate cells of opposite mating type

to evaginate (29, 51�53). The evaginations elongate and

fuse and the nuclei migrate into the conjugation tube

(28, 54). The nuclei in turn fuse (54). A daughter cell forms

at the position of the fused, tetraploid nucleus (29, 54).

These events are similar to those in the mating process of

haploid a and a S. cerevisiae cells. However, unlike the

short mating evaginations formed by S. cerevisiae, C.

albicans is capable of forming long mating tubes (27, 28,

51, 52, 54) that can grow up to several cell diameters in

length (55), suggesting that C. albicans mating tubes

formed in the host may have to undergo chemotropism

over long distances to fuse. Second, instead of forming a

diploid daughter cell after a and a cell fusion, as is the

case for S. cerevisiae, C. albicans generates a tetraploid

(a/a/a/a). However, unlike the diploid fusion product of

S. cerevisiae, which undergoes meiosis to return to the

haploid state, the tetraploid fusion product of C. albicans

returns to the diploid state by random loss of chromo-

somes (56), which involves recombination and requires

Spo11, a protein involved in meiosis in other fungi (57).

Hickman et al. (45) recently demonstrated that diploid

strains can give rise to rare haploid strains that must

still undergo the white�opaque transition to mate. They

suggested that chromosome loss leading to haploids may

rid cells of recessive lethal alleles. Alby et al. (58) also

showed that a unisexual population, in the absence of the

extracellular protease that breaks down pheromone (i.e.

in the bar1- mutants), can undergo low levels of mating

through an autocrine-like system.

The discovery that MTL-haploid as well as MTL-

homozygous diploid strains normally must undergo a

switch from white to opaque to mate, reinforced the

importance of the switching prerequisite for mating in

C. albicans. But none of these observations explained why

C. albicans and related species in the Candida clade of the

hemiascomycetes, have added to their mating process so

extravagant a differentiation as white�opaque switching,

while members of the Saccharomyces clade have not. Why

not mate immediately when a cell becomes homozygous

at the MTL locus, as is the case for haploid S. cerevisiae?

Why undergo such a massive change in gene expression,

which appears to involve a unique and complex regula-

tory circuit? Why produce two phenotypes? And why

generate such a unique opaque phenotype (Fig. 1A and

1B) (7)? The answer may be, at least in part, related to

unique host�pathogen interactions and the role played by

pheromone-induced white cell biofilm formation in the

opaque cell mating process in the host (59).

Is white cell biofilm formation the reason for
switching?
When MTL-homozygous cells switch from white to

opaque, they become mating-competent (23, 27). Opaque

a/a cells secrete a-pheromone that induces the a/a cell

mating response and a/a cells secrete a-pheromone that

induces a/a cells to undergo a similar mating response

(29, 51�53). As in S. cerevisiae (60, 61), gradients of the

two pheromones then direct chemotropism (62), leading
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to fusion at the tips of the conjugation tubes of alter-

native mating types. Because white cells are mating-

incompetent, they do not undergo a mating response

when treated with pheromones of opposite mating type,

but Lockhart et al. (29) initially reported that they still

responded to pheromone by up-regulating several genes

involved in the pheromone signal transduction pathway.

Pheromone receptors were also demonstrated on the

surface of white cells (62). It was subsequently demon-

strated that a-pheromone stimulated adhesion in white

a/a cell populations (62�64) and that minority opaque

a/a cells, a presumed source of pheromone, when seeded

in a majority white a/a cell population developing a

conventional biofilm on silicone elastomer in RPMI

1,640 medium (65), increased the thickness of the white

cell biofilm (64, 66). It was further demonstrated that

homogeneous populations of white a/a cells to which no

minority opaque cells were added, autostimulated biofilm

formation by low level spontaneous switching to opaque

a/a cells that in turn secreted a-pheromone, in an

unorthodox paracrine system (67). Mutational analyses

revealed that the pathway for the pheromone-induced

Fig. 1. Scanning electron micrographs of white�opaque switching, which involves a dramatic change in cellular phenotype and

differences in the capacity to colonize skin. A. The transition is between the white (a/a or a/a) budding yeast cell and a unique

oblong, pimpled opaque (a/a, a/a) cell. The frequencies given vary according to the method used to measure them, the strains

used, environmental conditions, etc. B. Transmission electron micrograph of an opaque cell reveals wall pimples and a giant

vacuole. Arrow heads indicate pimples; V indicates a large vacuole. C. The transition from the white budding cell to oblong

opaque cell involves an elongate intermediate phenotype. D. Opaque cells, but not white cells, readily colonize the skin of a new-

born mouse, in many cases sinking into an induced cavity. E. Removal of opaque cells from skin reveals cavities (C) formed

under them in the skin cells.

The role of phenotypic switching

Citation: Journal of Oral Microbiology 2014, 6: 22993 - http://dx.doi.org/10.3402/jom.v6.22993 3
(page number not for citation purpose)

http://www.journaloforalmicrobiology.net/index.php/jom/article/view/22993
http://dx.doi.org/10.3402/jom.v6.22993


mating response in C. albicans was conserved in the

hemiascomycetes and hence was the same pathway as the

pheromone-induced mating response of S. cerevisiae (i.e.

all of the tested components of the C. albicans mating

response pathway were orthologs of the S. cerevisiae

mating response pathway) (64, 68�73). The major regu-

latory pathway included pheromones (Mfa, Mfa), the

pheromone receptors (Ste2, Ste3), the trimeric G protein

complex (Cag1, Ste4, Ste18), the MAP kinase cascade

(Ste11, Hst7, Cek1, Cek2), the Ste5 scaffold and the

targeted transcription factor (Cph1). Surprisingly, muta-

tional analyses revealed that the pathway up to, but not

including, the transcription factor for white cell biofilm

formation on silicone elastomer in RPMI 1,640 medium,

was the same as the mating pheromone response pathway

(Fig. 2B) (64, 66). The transcription factor for white cells

forming a conventional biofilm (65) on silicone elasto-

mers in RPMI 1,640 medium was first identified as Tec1,

one of the transcription targets for a/a biofilm formation

(74), which in a/a cells is regulated by the Ras1/cAMP

pathway. Cph1 was found to play a role, but a minor one,

for white cells forming a biofilm in RPMI 1,640 medium

(64). Although this result was recently challenged by Lin

et al. (63), who presented evidence that the main targeted

transcription factor for the white cell biofilm response

was Cph1 and that Tec1 played a minor role, results

opposite those of Sahni et al. (74), the cell preparations

analyzed by Lin et al. (63) were incubated in Lee’s

medium rather than RPMI 1,640, on plastic rather than

elastomer, and developed for 24 hours rather than 48

hours. The conditions Lin et al. (63) employed were those

used in the original adhesion assay, not the biofilm assay,

of Sahni et al. (74). Daniels et al. (65) recently reported

that a/a biofilms formed in air in Lee’s medium, on plastic

Fig. 2. While formation of a ‘pathogenic’ MTL-heterozygous (a/a) biofilm is regulated by the Ras1/cAMP pathway, formation

of a sexual MTL-homozygous biofilm is regulated by the MAP kinase pathway (72). Regulation in this case was analyzed in a/a,

and alternatively in a/a or a/a biofilms, formed on silicone elastomer for 48 hours at 258C in air, in RPMI 1640 medium. Note

that even though the final biofilms are architecturally similar, the characteristics resulting from different matrices differ.
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or elastomer, for 24 hours, consisted of a yeast cell poly-

layer with no upper region of vertical hyphae embedded

in a dense matrix, the latter a major characteristic of con-

ventional C. albicans biofilms. These conflicting results

continued to be actively investigated when this review was

in preparation, but the outcome will have little bearing on

the main story that follows.

It has been proposed that the formation of white cell

biofilms in response to pheromone released by minority

opaque cells, may explain why the white�opaque transi-

tion evolved (44, 59, 75). In 2006, Daniels et al. (62)

demonstrated that when minority, mating-competent a/a

and a/a cells were seeded in majority white a/a�a/a cell

biofilms, they underwent chemotropism. They therefore

hypothesized that white cell biofilms formed to facilitate

mating of minority opaque cells, which arise in white cell

populations by spontaneous switching (6, 7, 76, 77). Park

et al. (78), using a complementation strategy recently

demonstrated that white a/a and a/a biofilms facilitated

mating between seeded minority opaque a/a and a/a
cells at frequencies 10 to over 100 times that obtained in

a/a biofilms. This led to the hypothesis that even though

the general architecture of MTL-homozygous biofilms

was similar to that of MTL-heterozygous biofilms, the

matrices were different, and only the a/a and a/a matrices

supported mating. Functional assays were consistent with

this hypothesis. While MTL-heterozygous a/a biofilms

were highly impermeable to low and high molecular

weight molecules, highly impenetrable by human poly-

morphonuclear leukocytes (PMNs) and highly resistant

to fluconazole, MTL-homozygous (a/a, a/a or mixed a/a�
a/a) biofilms were permeable, penetrable and fluconazole-

susceptible (64, 66, 67, 79). It was therefore proposed that

while MTL-heterozygous biofilms represented ‘patho-

genic biofilms’, MTL-homozygous biofilms represented

‘sexual biofilms’.

It was suggested that the functional distinction between

MTL-heterozygous and MTL-homozygous biofilms may

be related to the differences in matrix (44, 59, 74, 75). Both

MTL-heterozygous and MTL-homozygous biofilms that

form on silicone elastomer in RPMI-1,640 medium after

48 hours in air or in 20% CO2 at 378C, consist of a basal

polylayer of yeast cells and a thick upper layer of vertically

oriented hyphae embedded in a matrix (62, 64, 65, 73, 75).

The upper hyphae-matrix region represents 70�80% of

the volume of a biofilm formed on silicone elastomer in

RPMI 1,640 medium in air or 20% CO2, at 378C (65).

While the formation of the basal layer and formation of

long hyphae in the upper layer of both MTL-heterozygous

and MTL-homozygous biofilms appear to be regulated

by the transcription factor Tec1, the matrix of the former

appear to be regulated primarily by Bcr1 (73, 79�81),

while that of a/a and a/a biofilms is regulated by a

still unidentified transcription factor (Fig. 2A and 2B)

(73, 79). Bcr1 has been shown to regulate a variety of

genes in a/a biofilms involved in impermeability and

impenetrability (79). Hence it was proposed that the

MTL-heterozygous biofilm matrix may have evolved to

resist penetration by antibodies and phagocytic cells,

but these characteristics proved incompatible with che-

motropism in the mating process. For the white MTL-

homozygous biofilm matrix to have evolved to facilitate

chemotropism and mating between minority opaque a/a

and a/a cells, it would have to be permeable enough to

allow gradients of pheromone to form for chemotropism

and penetrable enough to allow conjugation tubes to

move readily up these gradients. Hence a/a and a/a
biofilms must be permeable and penetrable. And indeed

Park et al. (78) have shown that seeded minority opaque

cells form longer mating tubes and mate at far higher

frequencies in MTL-homozygous biofilms than MTL-

heterozygous biofilms. While this hypothesis makes sense,

the proof for it lies exclusively in the results from in vitro

models of biofilm formation. It still remains to be de-

monstrated that it reflects natural situations in the host.

How is switching regulated?
Slutsky et al. (6) discovered the white�opaque transition

in an isolate from a blood stream infection, obtained

from an immunosuppressed patient at the University of

Iowa Hospitals and Clinics in 1986, but it was not until

the early 2000s that any observations pertaining to regu-

lation emerged. During the intervening 15-year period,

reversible genetic mechanisms as well as epigenetic

mechanisms were considered equally, as candidates for

the regulation of switching. In 2001, it was first demon-

strated that an inhibitor that targeted the histone

deacetylase Hda1 and deletion of the histone deacetylase

gene HDA1 promoted the transition from white to

opaque (21), and then that deletion of the deacetylase

gene RPD3 resulted in a decrease in the frequency of

switching in both the white to opaque and opaque to

white direction (22). These results indicated that transi-

tions in chromatin state, and hence the activation�
deactivation of a particular gene, or sets of genes, through

chromatin modification might be the basis of reversible

switching. In 2002, Lan et al. (10), using cDNA micro-

arrays, showed that roughly 5% of the identified genes in

the C. albicans genome were up or down regulated, to

different degrees, in the transition, and that the patterns

suggested fundamental changes in metabolism. The list

of regulated genes was reassessed by Tsong et al. (82) in

2003, verifying that approximately 400 genes were regu-

lated in the transition. But it was in 2006 that a potential

‘master switch gene’ was discovered. In that year, three

laboratories simultaneously identified, by different ap-

proaches, the master switch locus WOR1 (also referred to

as TOS9), which encoded a transcription factor (34�36).

Deletion of WOR1 blocked the spontaneous transition

from white to opaque, indicating that the white phase was
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the default phenotype. Evidence provided primarily by

Zordan et al. (36) suggested that high levels of Wor1

induced the transition from white to opaque. Zordan

et al. (37) subsequently showed that Wor1 was regulated

by additional genes in an interacting network of activa-

tion and repression that included autoregulation, by all of

the identified regulatory components, which included

Wor1. The initial transcription factors found to regulate

WOR1 included Czf1, Efg1 and Wor2 (37). Subsequently

it was discovered that additional regulators of Wor1,

Ahr1 and Wor3, were involved in controlling expression

of the alternative phenotypes, resulting in a minimum of

six regulators in the interacting networks (83). This led

to a model in which expression of Efg1 supported the

white phenotype, while expression of Wor1 supported the

opaque phenotype, and that each of these were in turn

regulated by an alternative interacting regulatory net-

work in the two cell phenotypes. The network compo-

nents, Czf1 and Ahr1 regulated Efg1 in the white phase,

and Efg1, Czf1, Ahr1, Wor2 and Wor3 regulated Wor1 in

the opaque phase (83). ChIP-chip analyses indicated

binding of each factor with the promoters of the other

factors, as well as to their own promoters (36, 37, 83). In

2010, Tuch et al. (84) found, using RNA-sequencing, that

three times as many transcripts were regulated by switch-

ing than was previously reported, many non-coding

sequences and many encoding short proteins. Some of

the non-coding regions appeared to encode antisense

sequences to mRNAs. Lohse et al. (85) then demon-

strated that a 300 amino acid region of Wor1 represented

a unique binding region, a WOPR box. This regulatory

sequence was conserved among the fungi, and in

Histoplasma capsulatum, it was involved in the binding

of Ryp1, a regulator of the yeast�mycelium transition

(86). In addition, Wang et al. (87) showed that Zcf37, a

zinc finger protein, stabilized the white phenotype. These

increasingly complex regulatory networks and individual

regulatory components presumably are influenced by

environmental cues or specific genetic configurations,

such as that of the mating type locus. The models for

these networks were based on elegant binding data and

expression profiles, and in some cases await verification

through functional analyses in which a series of deletion

derivatives of each promoter are generated in frame with

a reporter gene. The 2,300 bases immediately upstream of

EFG1 had been functionally characterized in this way

by generating 22 promoter deletion derivatives fused to

the reporter gene RLUC (88). Unfortunately, this study

covered only one eighth of the intergenic region between

the closest upstream gene and the open reading frame of

EFG1, an intervening region composed of 10,000 base

pairs. Even so, one discrete cis acting activation sequence

was identified for white phase expression, but no discrete

cis acting activation sequences were observed for opaque

phase expression. Srikantha et al. (89) also found that the

transcription start sites differed for white and opaque

phase expression, suggesting overlapping white and opa-

que EFG1 promoters, and demonstrated differences in

the 3’ ends of the alternative transcripts. Hence, regula-

tion of the components of the transcription factor

networks regulating WOR1 and EFG1 appear to be

complex, and may involve a variety of additional genes,

results consistent with those of Tuch et al. (84).

And as noted, in addition to transcription factors,

general regulators of chromatin structure through histone

and DNA modification have been implicated in the

regulation of switching. Programmed changes in chro-

matin structure increase the complexity of the models of

regulation, as first noted by Hnisz et al. (90). In addition

to the initial observation that the histone deactylases

Hda1 and Rpd3 played a role in switching frequencies

(21, 22), Hnisz et al. (90) showed that the Set3/Hos2

histone deactylase complex regulated switching, depend-

ing on the methylation status of H3. Tscherner et al. (91)

showed that the acetyltransferase Hat1 was involved in

the white to opaque transition, and Stevenson and Liu

(92) showed that the acetyltransferase Rtt109 and the

deactylase Hst3 were also involved in switching and that

nucleosome assembly factors Caf-1 and Hir were in-

volved (93). Interestingly, they showed that overexpres-

sion of WOR1 could override some of the mutant defects,

suggesting that the chromatin effectors target the WOR1

locus. And finally Mishra et al. (94) have presented

evidence that methylation of genes regulated by switching

differ between the white and opaque phase. These results

provide a second level of complexity to the binding

networks of transcription factors regulating WOR1 and

EFG1 expression in the white�opaque transition.

And in the face of such complexity at the level of gene

regulation, it seems likely that different components of

the networks are influenced by the environment. Indeed,

Tong et al. (95) recently found that deletion of WOR2 did

not block switching from white to opaque when cells

were induced to undergo the transition by substituting

glucose with GlucNAc in Lee’s medium in 5% CO2.

Hence, a change in environmental conditions could

obviate a major component of the network regulating

activation of WOR1. Moreover, regulation of switching

may not solely be a function of the expression levels of

the transcription factors. Indeed it may involve modifica-

tion of such factors, most notably through kinases and

phosphatases. Srikantha et al. (35) identified a putative

protein kinase A (PKA) binding site consensus sequence

encoded in the region surrounding base pair 190 of the

open reading frame of WOR1. If all of the transcription

factors were in turn regulated by secondary modifica-

tions, one wonders how complex the regulatory networks

could be, when expanded to include modification path-

ways. The sheer complexity of the networks now emerg-

ing argues that switching was not simply an evolutionary
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event based on a single genetic alteration, but rather a

complex evolutionary process involving the recruitment

of hundreds of genes into complex, interacting networks,

in order to undergo a complex differentiation to a new

cell type and to undergo opaque-induced or autostimu-

lated white cell biofilm formation.

In a more inclusive description presented in Fig. 3, I have

layered the different aspects of regulation as shells

impacting Wor1, which may still prove to be the central

off (white)�on (opaque) regulatory switch. As I have

already alluded to, molecules regulating the general state

of chromatin, transcription factor networks, secondary

modifiers of transcription factors, signal transduction

pathways regulating these changes, the genes encoding

the proteins directly involved in the mechanics of switching

and finally, the configuration of the MTL locus, all appear

to play roles in regulating the white�opaque transition.

And superimposed on all of these layers of regulation are

the various characteristics of the environment (i.e. the

signals) and the genetic backgrounds of strains other than

that of the MTL locus. As discussed in the next section,

some environmental signals can override the exclusivity of

switching in an MTL-homozygous background, and, as

already noted, the exclusivity of the components of the

established networks regulating WOR1. Environmental

conditions that can influence the frequency of switching

and the stability of the opaque phenotype include the level

of CO2 in the environment (96, 97), the sugar source (95,

98), temperature (6, 14, 77), low doses of UV irradiation

(99), genotoxic and oxidative stress (100), and in vitro

oxidants and white blood cell metabolites (101).

Finally, a caveat is missing from all recent studies of

regulation. While the opaque cell can immediately form a

white daughter cell in the opaque to white transition, white

cells appear to undergo a developmental transition to the

opaque phenotype through an intermediate phenotype, at

least when incubated as single cells on an agar cushion

(Fig. 1C) (76). This transition has not been studied at the

molecular level, suggesting that the regulation of WOR1

may be even more complex, given it may include complex

multiphenotypic developmental transitions in one direc-

tion. And that temporal complexity may involve incre-

mental changes at the regulatory level in the opaque to

white direction. This kind of analysis has been performed in

the white to opaque direction. A study by Lohse and

Johnson (102) has revealed that opaque cells change to a

white regulatory signature before they commit to the white

cellular phenotype. And to make the story even more

complex, Zhang et al. (103) recently demonstrated that a

conserved mediator complex, which has been shown in

animal cells to transmit regulatory signals to transcription

machinery, plays a fundamental role in regulating the

white�opaque transition in C. albicans. Deletion of the

Med3 subunit of the large complex destabilizes switching,

even with a fully operational Wor1-based circuit, affecting

the frequency of the white to opaque transition and

blocking the capacity to mate.

Switching in a/a cells
Originally, it was believed that switching was a character-

istic only of MTL-homozygous cells (23, 27). However,

present descriptions of the regulation of the white�opaque

Fig. 3. The evolving complexity of the regulation of the white�opaque transition. The arrows denote upregulation (�) or down

regulation (¡).
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transition rarely include the role of the a1�a2 co-repressor

complex. Miller and Johnson (23) first showed that this

complex suppressed switching by deleting a1 or a2, and

Lockhart et al. (27) subsequently showed it to be the case

for most natural strains by correlating switching with

MTL homozygosity. Soon afterwards, Pendrak et al. (104)

showed that the hemoglobin response gene (HBR1) is in

a signaling pathway that regulates switching. They con-

cluded at that time that it affected switching through

regulation of the a1�a2 co-repressor complex. They were

able to delete this gene and show that deletion down-

regulated MTLa1, leading to a switch to the opaque

phenotype in an a/a strain. More recently, Xie et al. (105)

showed that at physiological levels of CO2 (5%) with

GlcNAc, rather than glucose, as the sole carbon source,

select clinical a/a strains underwent white�opaque switch-

ing without undergoing MTL-homozygosis. Hence, the

idea that white�opaque switching was restricted to MTL-

homozygous cells has to carry the restriction ‘under select

conditions’ � i.e. in air and with a sugar source other than

Fig. 4. Landmark discoveries directly related to the white�opaque transition in C. albicans. This represents an incomplete list

based on this author’s view of the field.
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GlcNAc. Moreover, in a study by Pande et al. (106), it was

demonstrated that a/a cells injected into the gastrointesti-

nal tract of a mouse exhibited a cell morphology that was

elongate like opaque cells, but lacked opaque cell pimples.

This opaque-like a/a cell expressed WOR1 at elevated

levels, raising the question of what other roles are played

by the opaque phenotype or portions of it. Previously,

Ramirez-Zavala et al. (97) found that passing MTL-

homozygous white cells through the gastrointestinal tract

of a mouse resulted in increased levels of switching to

the opaque phase, adding weight to the notion that

phenotypic characteristics shared by the opaque-like,

MTL-heterozygous cell (106) and the opaque MTL-

homozygous opaque cells (97) may provide adaptive value

for colonizing the gastrointestinal tract of mammals.

What then does switching have to do with
commensalism and pathogenesis?
The white�opaque transition, therefore, may have evolved

not only to facilitate mating, an apparently rare but

important event in the life history of C. albicans, but also

to host colonization. A number of additional, intriguing

aspects of white and opaque cells related to commensal-

ism and pathogenesis bare on this point. First, although

white cells are more virulent than opaque cells in a

systemic mouse model (19), the reverse is true in a

cutaneous model of infection (18). Opaque cells more

readily colonize skin (Fig. 1D) than white cells, causing

cavities in the skin surface (Fig. 1E) (18). Misexpression

in white cells of SAP1, an aspartyl protease gene up-

regulated in opaque cells (12, 107, 108), confers in white

cells the capacity to colonize skin and cause cavitation

(18), perhaps by exposing adhesins and weakening the

cortex of skin cells. But perhaps what may be the most

intriguing phenotypic characteristic of opaque cells, is

that they lose the capacity to release a potent chemoat-

tractant for PMNs (109). This attractant is released only

by white cells. In practical terms, the lack of attractant

could make opaque cells, but not white cells, invisible to

PMNs. This may represent a way of protecting mating-

competent cells from phagocytosis. Sasse et al. (110)

further demonstrated that when opaque and white cells

were mixed together with human PMNs, the PMNs only

engulfed white cells, even though they physically encoun-

tered opaque cells. And Lohse and Johnson (111)

demonstrated that both mouse and Drosophila phagocy-

tic cells had a preference for white cells over opaque cells.

And let us not forget the biofilm story (59, 75). If white

a/a and a/a cell biofilms are there to protect mating,

why are they so much more permeable to low and high

molecular weight molecules, so much more penetrable by

human PMNs and so much more susceptible to anti-

fungal agents than a/a biofilms? Could it be, as suggested,

that forming a sexual biofilm requires a matrix that lacks

pathogenic traits, because these traits are incompatible

with mating (59, 75)? While the explanations for the roles

of white�opaque switching in commensalism and patho-

genesis are quite interesting, they will remain specula-

tive until we demonstrate they play such roles during

commensalism and pathogenesis in humans. Models in

which the initial inocula are large and introduced in a

very short time frame through an unnatural portal such

as injection into the mouse tail vein, may not reflect an

in vivo scenario. And the use of inbred or immunosup-

pressed mice may complicate interpretations related to

the human commensal state. It therefore seems appro-

priate to argue that it is time to test whether the pheno-

typic, developmental, metabolic and regulatory states of

C. albicans and related species, including white�opaque

switching, that have been elucidated and characterized

in vitro and to a lesser extent in animal models, are

valid representations of events in the human host. At a

minimum, in vitro conditions should be altered to mimic

more accurately conditions in the human host.

Concluding comments
At this writing, well over 130 articles have been published

on various discoveries related directly to the white�
opaque transition since its discovery 26 years ago (6).

What may be deemed some of the landmark discoveries

and subsequent studies that expanded or modified them,

are presented in Fig. 4. It is clear that the discovery of

switching ignited interest in scientists with a variety of

expertise. Interest in switching continues to grow rapidly,

as evidenced by the fact that well over 15% of the articles

directly pertaining to the white�opaque transition, written

since 1987 were published in the first 9 months of 2013.

Thus, this story is far from over.
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