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Abstract

Recent years have shown great merits in utilizing neuroimaging data to understand brain structural 

and functional changes, as well as its relationship to different neurodegenerative diseases and 

other clinical phenotypes. Brain networks, derived from different neuroimaging modalities, have 

attracted increasing attention due to their potential to gain system-level insights to characterize 

brain dynamics and abnormalities in neurological conditions. Traditional methods aim to pre-
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define multiple topological features of brain networks and relate these features to different 

clinical measures or demographical variables. With the enormous successes in deep learning 

techniques, graph learning methods have played significant roles in brain network analysis. In 

this survey, we first provide a brief overview of neuroimaging-derived brain networks. Then, we 

focus on presenting a comprehensive overview of both traditional methods and state-of-the-art 

deep-learning methods for brain network mining. Major models, and objectives of these methods 

are reviewed within this paper. Finally, we discuss several promising research directions in this 

field.

Keywords

Brain structural network; Brain functional network; Brain network analysis; Network 
representation learning; Deep learning

1. Introduction

In recent decades, brain studies have gained more and more attention for understanding 

brain structures and functions, as well as their changes related to different clinical 

phenotypes or neurodegenerative diseases. The advancement of neuroimaging technologies 

has provided a broad research perspective and foundation for the studies of brain structure 

and function. These neuroimaging technologies, such as functional magnetic resonance 

imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG), 

provide insights into brain inner working patterns, allowing us to capture detailed snapshots 

of brain activities, organizations, and architectures. One of the valuable resources to 

promote the development of neuroimaging studies is the neuroimaging data samples. 

Credit to the advancement of medical informatics technologies (e.g., picture archiving 

and communication system, or PACS1) and the contributions provided by the amount of 

neuroimaging communities, the longitudinal collections of neuroimaging data serve as a 

strong foundation of current brain imaging studies, particularly for the big-data imaging 

studies (e.g., machine learning and deep learning on neuroimaging studies). Another factor 

that boosts the progress of this field is the development and spread of high-performance 

computing technologies, such as super-computing servers with advanced Central Processing 

Units (CPUs) and Graphics Processing Units (GPUs), which provide powerful computation 

resources for neuroimaging data computing. Moreover, a large number of studies have been 

proposed to establish many computational methods for neuroimaging data analysis from 

different perspectives, which is the third significant impetus in this research field. This paper 

reviews the current neuroimaging studies from one of the significant perspectives of brain 

imaging computational methods, i.e., brain network methods, to summarize a few current 

studies and provide some potential future research directions.

1.1. Introduction to brain networks

Current neuroimaging studies can be roughly categorized based on the structure of utilized 

data. Some studies focus on time sequences obtained by different neuroimaging modalities 

(e.g., EEG signal, fMRI Blood Oxygen Level-Dependent, or BOLD signal) with signal 

processing techniques.2–5 Many other studies6–10 focus on using imaging features From 

Tang et al. Page 2

Meta Radiol. Author manuscript; available in PMC 2025 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



voxels or regions-of-interest (ROIs). However, increasing evidence11–14 indicates the brain 

is organized and functionalized based on the interactions among many brain regions, 

particularly in explaining various brain-related clinical phenotypes, resulting in more and 

more attention in using brain networks for these clinical phenotype predictions. Brain 

network15–17 represents a 3D brain graph model, comprising the nodes and the edges among 

brain nodes. The nodes are brain ROIs and the edges can be defined using DTI-derived fiber 

tracking or fMRI-derived correlation. Brain network has great potential to gain system-level 

insights into the brain dynamics related to different clinical phenotypes. The details of brain 

network definitions and constructions will be discussed in Section 2.

1.2. Traditional methods

We state that the term “traditional methods” here refers to methods distinct from deep 

neural network methods. The traditional methods aim to design novel algorithms to extract 

discriminative network features from brain networks and investigate specific clinical tasks 

based on these network features. The network features are pre-defined by researchers with 

different research purposes, and we may leverage these purposes to roughly categorize these 

traditional methods. Many research works aim to explore the heterogeneity of topological 

structures of brain networks from different groups (e.g., disease group and healthy group), 

which propose various network topological measures such as the betweenness centrality to 

measure the node centralities in brain networks.18 Some other studies19,20 aim to distinguish 

brain networks from different groups based on network similarities, which defines many 

distance metrics or kernels to measure the network similarity features. A few other studies 

focus on the frequency domain, which yields methods for spectrum feature analysis.21–24 

Typical dimension reduction methods, such as Principal Component Analysis, are also 

utilized to extract informative brain network features for different clinical prediction tasks. 

The details of traditional methods of brain network analysis will be discussed in Section 3.

1.3. Deep learning methods

Though great progress has been achieved, there are several limitations existing in the 

traditional methods for brain network analysis. Traditional methods may be sub-optimal 

since the pre-defined brain network features contain less information than the original 

whole networks, which may also ignore important brain network attributes. Meanwhile, 

a few traditional methods, due to the algorithm complexity, may not be utilized for large-

scale brain network studies. To analyze the large-scale complex network data (e.g., brain 

networks), deep graph learning techniques25–31 have gained significant attention. A few 

outstanding review papers32,33 have summarized recent deep learning methods on brain 

network analysis, where the reviewed studies are categorized based on the methodologies 

proposed in their works. However, our survey paper reviews the current studies from another 

perspective, where we categorize current deep learning methods in brain network studies 

based on their research objectives. We conducted a comprehensive review of a series of 

papers published in top-tier journals and conferences about deep learning on brain networks 

over the past three years. Particularly, we collected 126 papers in this direction mainly from 

Medical Image Computing and Computer Assisted Interventions (MICCAI), Information 
Processing In Medical Imaging (IPMI), Knowledge Discovery and Data Mining (KDD), 
IEEE Transactions on Medical Imaging (TMI), IEEE Transactions on Neural Networks and 
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Learning Systems (TNNLS), Medical Image Analysis, and Nature Neuroscience published 

in the year of 2020, 2021 and 2022. Based on their research objectives, these papers can 

be broadly summarized into 4 categories including multimodal brain network representation 

learning, multiscale brain network representation learning, dynamic brain network modeling, 

and interpretable brain network learning models. The details of deep learning methods on 

brain network studies will be discussed in Section 4.

The following sections of this review paper are organized as follows. We provide an 

overview of the brain network data, including the data constructions and publicly available 

datasets in Section 2. In Section 3 and Section 4, we provide a taxonomy for the traditional 

methods and deep neural networks on brain network studies, respectively. In Section 5, we 

propose a few potential challenges and future research directions for brain network studies. 

And we conclude our paper in the Section 6.

2. Brain network overview

In this section, we first introduce some preliminaries of graph-structured data which is a 

standard mathematical model utilized to represent the brain network. We then introduce 

different types of typical brain networks as well as their construction methods. Finally, we 

summarize several public brain network datasets that are widely utilized in current brain 

network studies.

2.1. Preliminaries of graph structured data

We denote an attributed graph with N nodes as G = V , E = A, X , where V  is the set 

of graph vertices (or nodes) and E is the set of the graph edges. Let vi ∈ V  denote 

a graph node (i.e., i − tℎ node) in the graph and eij ∈ E denote a graph edge pointing 

from the node vi to vj. Particularly, eij equals eji in an undirected graph, while this may 

not true in the directed graph. Given a node vi, its neighbor nodes can be defined as 

N(v) = {u ∈ V ∣ (u, v) ∈ E} . A ∈ ℛN × N is the adjacency matrix of G, where the element aij

of A is the weight of the edge eij. Particularly, A is a symmetric matrix for an undirected 

graph, while is an asymmetric matrix for a directed graph. X ∈ ℛN × c is the node feature 

matrix of G, where xi ∈ ℛ1 × c of X is a c-dimensional feature vector of vi.

2.2. Construction of brain networks

Due to the vast number of neurons, synapses, and fibers existing in the human brain 

that will cause a computationally expensive task, it may be intractable to construct the 

brain network based on each signal brain neuron. Generally, a node in brain networks 

represents a brain region-of-interest (ROI) that consists of a group of brain neurons, while 

an edge in brain networks represents anatomical or functional connections among these 

ROIs.34 Different types of brain networks (e.g., functional networks, structural networks, 

morphological networks) can be derived from the corresponding neuroimaging modalities 

(e.g., functional magnetic resonance imaging, diffusion tensor imaging, T1-weighted MRI). 

Here, we mainly introduce 4 different types of brain networks including structural networks, 

functional networks, morphological networks, and effective networks.
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2.2.1. Structural networks—A structural network is formulated through the abstraction 

of a graph originating from diffusion tensor imaging (DTI)35 or diffusion spectrum imaging 

(DSI).36–38 These neuroimaging techniques gauge the diffusion patterns of water molecules 

to create contrast in MRI scans, facilitating the differentiation between gray matter and 

the underlying white matter. With the preprocessed DTI data, 5 key steps are involved in 

constructing a structural network:

• Estimate the diffusion tensor based on the preprocessed DTI data at each voxel. 

The diffusion tensor provides information on the local orientation and anisotropy 

of white matter tracts.

• Perform fiber tracking or tractography (e.g., deterministic algorithms or 

probabilistic algorithms39–43) to identify white matter pathways based on the 

estimated diffusion tensor information.44

• Define regions of interest (ROIs) within the brain, where the defined ROIs 

correspond to different anatomical regions or functional regions.

• Identify fibers between pairs of ROIs. A fiber is considered to connect two ROIs 

if it passes through both regions. The presence of a fiber between two ROIs 

indicates a potential structural connection between them.

• Count the number of fibers connecting each pair of ROIs or compute the average 

fractional anisotropy along the fibers connecting the ROIs as the edge weights 

within structural networks.

2.2.2. Functional networks—Traditionally, the construction of a functional network 

entails the utilization of functional Magnetic Resonance Imaging (fMRI), specifically 

focusing on the blood-oxygen-level-dependent (BOLD) signal indicating changes in blood 

oxygenation linked to neural activity in a brain region.45 With the preprocessed fMRI data, 4 

key steps are involved in constructing a functional network:

• Extract the BOLD time series for each voxel or brain ROI. Brain ROIs can be 

defined anatomically, functionally, or through parcellation techniques.

• Process and filter the BOLD time series data to remove low-frequency drifts and 

high-frequency noise.

• Estimate the edge weights in functional networks by computing the correlation 

between the time series of different brain regions.

• Threshold the correlation matrix to maintain meaningful connections and 

denoise.

2.2.3. Morphological networks—Morphological networks utilize cortical metrics, 

such as sulcal depth and cortical thickness, to quantify morphological differences between 

brain regions.46–48 Extracted from T1-weighted MRI via Freesurfer preprocessing,49 the 

steps include skull stripping, motion correction, normalization, topology correction, and 

hemisphere delineation.50 Hemispheres are segmented into regions using atlases (e.g., 

Desikan-Killiany). For each region, average cortical attribute values are computed. The 
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absolute difference in these values between pairs of regions establishes edge weights in the 

networks. With the preprocessed T1-weighted data, 6 key steps are involved in constructing 

a morphological network:

• Extract the brain regions by demarcating the boundary between brain and non-

brain tissues with specialized techniques, such as FSL-BET.51,52

• Segment the brain to discern the distinct tissues in T1-weighted images, such as 

gray matter, white matter, and cerebrospinal fluid.

• Partition the brain into discrete ROIs using parcellation strategies rooted in 

anatomical landmarks and/or functional considerations.

• Extract a comprehensive array of pertinent morphological attributes from each 

ROI, including volumetric measures, surface area, thickness, and geometrical 

descriptors.

• Quantify the inter-ROI morphological resemblances through the computation of 

a similarity matrix, delineating the degree of structural convergence between 

pairs of ROIs.

• Present the emergent morphological relationships as graph structured data, 

where the nodes correspond to the designated ROIs and edges encapsulate the 

ascertained morphological interconnections among the identified regions.

2.2.4. Effective networks—Effective networks aim to capture the causal relationships 

and directional influences among different brain regions, which is essential to understanding 

the brain functional activities under specific tasks and different.53–55 Several techniques, 

such as Dynamic Causal Modeling (DCM)56–59 and Granger Causality Analysis,60–64 are 

used in inferring and modeling the effective connections between brain regions by analyzing 

the temporal dynamics of neural activities. The construction of effective networks can be 

summarized in the following steps:

• Obtain the signals from different modalities (e.g., fMRI, EEG, MEG) to record 

brain activities of subjects engaged in specific cognitive tasks or at a resting-

state.

• Define regions of interest (ROIs) within the brain. These ROIs can correspond to 

specific anatomical regions or functional areas that are relevant to the study. 

ROIs can be defined based on anatomical atlases or functional parcellation 

schemes.

• Extract time series data from the selected ROIs that represent the neural activities 

of each brain region over time.

• Apply different methods, such as DCM and Granger Causality, to estimate the 

effective connectivity within effective brain networks. The parameter estimation 

in for the applied will determine the strength and directionality of these effective 

connections.
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• Conduct statistical tests to assess the significance of the effective connections, 

and correct the reconstructed brain effective networks.

2.3. Datasets and implementation tools

We overview widely used publicly available brain network datasets and algorithm 

implementation toolboxes (or libraries) in brain network analysis.

2.3.1. Public brain network datasets—In recent years, the efforts invested in 

collecting and organizing large-scale neuroimaging datasets have empowered researchers 

to design and implement innovative computational intelligent approaches, including deep 

learning models, for different brain studies. Based on this, multiple brain connectomic 

projects were proposed to initiate and provide a series of brain network datasets for brain 

connectome studies. We briefly summarize several representative brain network datasets 

here.

• Human Connectome Project (HCPa). The HCP is one of the most comprehensive 

brain mapping initiatives, providing high-quality data on functional and 

structural connectivity in the human brain. It includes data from multiple 

modalities, such as resting-state fMRI, task-based fMRI, DTI, and behavioral 

assessments.65,66

• Open Access Series of Imaging Studies (OASISb). The OASIS (Open Access 

Series of Imaging Studies) dataset is a well-known and publicly available 

collection of neuroimaging data that primarily focuses on structural MRI 

(Magnetic Resonance Imaging) scans of the brain. It has been a valuable 

resource for researchers studying various aspects of brain structure, aging, and 

neurodegenerative diseases.67,68

• Alzheimer’s Disease Neuroimaging Initiative (ADNIc). The ADNI dataset is a 

well-known and publicly available collection of neuroimaging and clinical data 

primarily focused on Alzheimer’s disease (AD) research. ADNI is a landmark 

project that aims to accelerate the understanding of AD by providing valuable 

resources for researchers studying various aspects of the disease, including its 

diagnosis, progression, and treatment.69,70

• Autism Brain Imaging Data Exchange (ABIDEd): The ABIDE offers a collection 

of resting-state fMRI data from individuals with autism and typically developing 

controls. It is a valuable resource for studying brain connectivity in the context of 

autism spectrum disorders.71,72

• Center for Biomedical Research Excellence (COBREe). The COBRE 

provides resting-state fMRI and structural MRI data from individuals with 

a https://www.humanconnectome.org 
b https://www.oasis-brains.org 
c https://adni.loni.usc.edu 
d http://fcon_1000.projects.nitrc.org/indi/abide/ 
e http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
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schizophrenia and healthy controls. It supports research into the neural basis 

of schizophrenia.73–76

• NKI-Rockland Sample (NKIf). This dataset includes resting-state fMRI and 

other neuroimaging data from the Nathan Kline Institute (NKI) Rockland 

Sample, offering insights into various aspects of brain connectivity.77

• BNU1g and BNU3h Dataset. These datasets provide resting-state fMRI data 

from the Beijing Normal University (BNU), which can be used to study brain 

connectivity and its variations across different populations.78

• ADHD-200 Dataset.i The ADHD-200 offers neuroimaging data, including 

resting-state fMRI, from individuals with attention-deficit/hyperactivity disorder 

(ADHD) and controls. It supports research into the neural basis of ADHD.79,80

• The Human Brainnetome Atlasj. This atlas provides comprehensive connectivity 

data, including resting-state fMRI and diffusion MRI, to map and understand the 

human brain’s functional and structural connectivity.81,82

2.3.2. Programming toolboxes and libraries—We summarize a few important 

programming toolboxes and libraries in this section to facilitate researchers to implement 

their algorithms on brain network studies.

2.3.2.1. Neuroimaging DATA Preprocessing.: The widely used toolboxes for 

neuroimaging data preprocessing include but are not limited to: SPMk (Statistical Parametric 

Mapping),83 FSLl (FMRIB Software Library),84 FreeSurfer,m,49 AFNIn (Analysis of 

Functional NeuroImages),85 ANTso (Advanced Normalization Tools),86 MRtrix3p,87 and 

CONNq(Functional Connectivity Toolbox).88

The key services, benefits, and drawbacks of these toolboxes are summarized in Table 1.

2.3.2.2. Graph analysis.: The broadly utilized graph analysis libraries for brain network 

studies include but are not limited to: NetworkXr,89 Graph-tool,s,90 brainGrapht,91 BCT 

(Brain Connectivity Toolbox),u,18 GRETNA (Graph Theoretical Network Analysis),v,92 

f https://fcon_1000.projects.nitrc.org/indi/enhanced/ 
g http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html 
h https://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_3.html 
i http://fcon_1000.projects.nitrc.org/indi/adhd200/ 
j http://atlas.brainnetome.org 
k https://www.fil.ion.ucl.ac.uk/spm/ 
l https://fsl.fmrib.ox.ac.uk/fsl/fslwiki 
m https://surfer.nmr.mgh.harvard.edu 
n https://afni.nimh.nih.gov 
o http://stnava.github.io/ANTs/ 
p https://www.mrtrix.org 
q https://web.conn-toolbox.org 
r https://networkx.org 
s https://graph-tool.skewed.de 
t https://github.com/cwatson/brainGraph 
u https://sites.google.com/site/bctnet/ 
v https://www.nitrc.org/projects/gretna/ 
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scikit-network,w,93 PyG (Pytorch-Geometric),x,94 DGL (Deep Graph Library),y,95 and 

BGL (Boost Graph Library).z,96

The primary services, advantages, and disadvantages of these libraries are outlined in Table 

2.

3. Traditional brain network mining methods

Generally, traditional pipelines for brain network analyses include two stages. The first stage 

refers to feature extraction, where the effective network features are extracted by different 

pre-defined methods. After the feature extraction stage, statistical analysis will be conducted 

based on the extracted features in the second stage. We summarize a few traditional and 

widely-used methods for brain network analyses in both stages in this section.

3.1. Network feature extraction

Four different types of network feature extraction methods are summarized here including 

(1) network topological measure, (2) graph kernel, (3) spectral graph analysis, and (4) 

dimension reduction.

3.1.1. Network topological measure—In network science, network measures refer to 

various quantitative metrics or characteristics used to describe and quantify the topological 

structures and/or functional properties of brain networks. These measures assist in gaining 

biological insights into the organization and properties of brain networks. The network 

measures, proposed to investigate brain networks from a different perspective, can be 

categorized as follows:

• Degree and Similarity such as brain node degree and node strength.

• Density and Rentian Scaling such as brain node density and Rentian scaling.

• Clustering and community structure such as clustering coefficient, mularity, and 

transitivity.

• Assortativity and core structure such as Rich club coefficient and core/periphery 

structure.

• Paths and distances such as characteristic path length and cycle probability.

• Efficiency and Diffusion such as global and local efficiency, as well as diffusion 

efficiency.

• Centrality such as betweenness centrality and within-module degree z-score.

• Motifs and self-similarity such structural motifs and functional motifs.

w https://github.com/sknetwork-team/scikit-network 
x https://pytorch-geometric.readthedocs.io 
y https://www.dgl.ai 
z https://www.boost.org/doc/libs/1_82_0/libs/graph/doc/index.html 
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The full list of network measures categories is summarized in Table 3. The definition of each 

network measure is summarized in Rubinov and Sporns 18; and the implementation of these 

measures can be found in the Brain Connectivity Toolbox (BCT-Toolbox).

3.1.2. Graph kernel—Graph kernel-based methods are a set of techniques employed in 

the field of network analysis to extract valuable features from graph structured data. The 

primary objective of graph kernel methods is to capture the inherent structural information 

and patterns within these graphs, thereby to simplify the high-dimensional complex network 

data which facilitates the following statistical analysis. These methods rely on mathematical 

functions known as graph kernels to compute similarity measures between pairs of graphs, 

effectively quantifying their structural similarities or differences. By applying these kernel 

functions to pairs of brain networks, similarity scores are generated, serving as high-

dimensional features that depict the likeness between two brains. The advantages and 

disadvantages of different graph kernel methods, including Graph Edit Distance Kernel,97,98 

Graphlet Kernel,99,100 Weisfeiler-Lehman Kernel,101,102 Subgraph Matching Kernel,103,104 

Graph Path Kernel,105,106 and Graph Alignment Kernel,107,108 are summarized in Table 4.

3.1.3. Spectral graph analysis—Spectral analysis methods focus on analyzing 

different frequency components for the connectivity patterns of brain networks (particularly 

for functional brain networks derived from fMRI, EEG, and MEG). These methods are 

specially considered to understand the oscillatory dynamics of brain activity, and the role 

of different frequency bands in information processing and communication among different 

brain regions. Numerous studies for special analysis methods on brain networks have been 

proposed, yielding various analysis methods such as frequency decomposition,22–24,109,110 

power spectrum analysis,21,111–113 and time-frequency analysis.114–116

3.1.4. Dimension reduction—Since the brain networks are high-dimensional complex 

graph structural data, it will result in information redundancy and dimension explosion if 

we directly apply machine learning algorithms to original brain network data, particularly 

for small-size datasets. Hence, a dimension reduction or feature engineering (e.g., feature 

extraction and selection) should be performed to remove redundancy information and 

maintain discriminative features of brain networks before we apply machine learning 

algorithms for specific tasks. General dimension reduction methods include Principal 

Component Analysis (PCA),117 Independent Component Analysis(ICA),118 Isometric 

Mapping (Isomap),119 t-Distributed Stochastic Neighbor Embedding (t-SNE),120 Linear 

Discriminant Analysis (LDA),121 and Laplacian Eigenmaps.122

3.2. Statistical analysis

After extracting features from brain networks, various statistical analyses can be employed 

to unveil patterns of brain changes across different groups, such as control versus disease 

or male versus female. Diverse statistical tests, including t-tests, ANOVA tests, and network 

permutation tests, can be applied to investigate the presence of significant group differences 

among various brain network groups. Currently, machine learning techniques, such as linear 

regression, logistic regression, support vector machines, and k-means clustering, serve as 

powerful tools for classifying and performing regressions on brain networks. Additionally, 
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network visualization techniques (e.g., BrainNet visualization as demonstrated in Ref. 123) 

are sometimes employed to visually represent distinctions within brain networks.

4. Deep brain network representation learning

With the development of artificial intelligence (AI) techniques, learning-based methods 

(e.g., machine learning, deep learning) are broadly investigated and applied to brain network 

data for different research purposes. Most of these learning methods are based on the 

graph neural networks (GNN), a class of deep neural networks for graph-structured data 

representations.27–29,124–128 Many research objectives on brain network learning have been 

proposed in recent years. For example, a few studies focus on developing deep learning 

methods to model the multiview representations across different modalities-derived brain 

network data. Some other studies focus on investigating the interpretability of the deep 

learning models to yield biological insights (e.g., finding new biomarkers that closely relate 

brain networks to different neurological disorders) for the model outcomes. As shown in Fig. 

1, we summarize these studies based on these research objectives.

4.1. Multimodal brain network learning

Brain networks can be generated from different neuroimaging modalities to depict and 

record the human brain from diverse perspectives. Two main perspectives are generally 

considered, including brain anatomical structures and brain functionalities, in multimodal 

brain network studies. The target of the multimodal brain network learning is to aggregate 

effective information from multiple data modalities to yield comprehensive brain network 

representations for different clinical tasks.129–154 For example, Li et al.141 proposed a joint 

graph convolution network (joint-GCN) to combine the functional and structural networks 

by introducing inter-network edges between the corresponding brain regions within these 

two brain networks. The weights of these inter-network edges are trainable parameters that 

reflect the non-uniform structure-function coupling strength across the brain. This structure-

function joint graph is embedded by a single GCN, which allows for the integration of 

both functional and structural information in the brain network learning stage. Another 

strategy to combine multimodal networks is to model the network communications by 

constructing a map between different network modals, where networks of different modals 

constrain each other. For example, Zhang et al.150 and Tang et al.145 proposed generative 

graph neural networks to construct mappings from functional brain network to the structural 

counterpart, while Zhang et al.155 construct the mapping inversely. Ye et al.156 propose 

a bidirectional mapping framework to model the communication between functional and 

structural networks from both sides and an ROI-level contrastive learning method is utilized 

to yield a unified multimodal network representation. Besides combining the networks 

of different modals in the latent space, Zhang et al.149 performed the network fusion 

directly original graph space by creating a fused adjacency matrix based on both structural 

networks and the corresponding functional network profiles. In Table 5, we compare 

several multimodal brain network learning approaches on HCP and OASIS datasets for 

two classification tasks: gender classification and disease classification.
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4.2. Multiscale brain network learning

The complex human brain networks are organized hierarchically, where different brain 

regions collaborate to maintain brain functionalities. Multiscale brain network learning 

refers to the process of modeling high-order patterns in brain networks at multiple levels or 

scales of organization, aiming to capture and understand the interactions within and between 

these different levels of the organization.148,157–178 One of the strategies for multiscale 

brain network learning is based on multigraph investigation. For example, Tang et al.171–173 

proposed a series of hierarchical graph representation learning models to extract hierarchical 

structures (e.g., network communities) within brain networks, and perform the graph 

pooling for brain network downscale based on the captured the structures. The multiscale 

network representations yielded from different pooling layers are fused for downstream 

task predictions (e.g., neurodegenerative disease classifications). The generative graphic 

model is also a promising method to capture the hierarchical high-order information from 

brain networks for multiscale learning. For example, Pang et al.169,179 proposed different 

deep belief networks (e.g., a prior knowledge guided deep belief network (PKG-DBN)) 

which fully leverage prior knowledge to capture the hierarchical structures in functional 

brain networks. Moreover, the diffusion kernel-based graph learning models may also be 

considered for multiscale brain network learning. For example, Zhang et al.178 proposed 

a Diffusion Kernel Attention Network that uses the Transformer model to incorporate 

high-order information from interactions among much broader brain regions. Similarly, we 

compare several multiscale brain network learning methods on HCP and OASIS datasets in 

Table 5.

4.3. Dynamic brain network learning

Dynamic brain network learning refers to the process of modeling and analyzing the time-

varying or dynamic aspects of brain networks, which are representations of the functional 

or structural connections between different regions of the brain over time. Static brain 

network analysis treats connectivity as constant, instead, dynamic brain network learning 

considers that brain connectivity patterns change over time and can capture fluctuations 

in brain activity or organization. The common neuroimaging data sources for dynamic 

brain network learning include fMRI, EEG, MEG, and DTI-derived brain networks. 

Dynamic brain network learning can be used to study cognitive processes, investigate 

brain changes resulting from neurological and psychiatric disorders, and understand brain 

development.152,153,166,180–206 The recurrent neural network (RNN) based architecture is 

one of the methods to model temporal dynamics in brain networks. For example, Demirbilek 

and Rekik183 proposed a recurrent multigraph integrator network (ReMI-Net) to predict the 

longitudinal evolution of population-driven brain connectivity templates over time, which 

enables the identification of brain biomarkers in dementia prediction. Dynamic Bayesian 

Networks (DBNs) are another class of powerful modeling frameworks for capturing 

temporal dependencies and dynamics in dynamic brain networks. For example, Moguilner 

et al.207 introduced a Bayesian machine learning pipeline based on dynamic connectivity 

fluctuation analysis (DCFA) on resting-state fMRI data for neurodegenerative condition 

predictions. Moreover, the transformer plays an undoubted role in modeling the brain 

dynamics over time sequences. For example, Zhao et al.153 proposed a continuous multi-
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head attention-based graph transformer for Brain Dynamics modeling, where heterogeneous 

network representations can be extracted from both spatial and temporal domains.

4.4. Interpretable brain network learning

Many deep graph learning models have been proposed for brain network analysis, yet 

most current models lack interpretability, which makes it hard to gain any heuristic 

biological insights into the results, and to identify novel biomarkers indicating brain pattern 

heterogeneity among different clinical phenotypes. A few recent studies make contributions 

to proposing interpretable graph learning models which, from different perspectives, yield 

biological insights and explanations on their model outputs.145,152,171–173,208–216 For 

example, Cui et al.210 proposed an explainable mask to identify the most important brain 

nodes and edges as closely related biomarkers to different disease prediction tasks.172,173 

designed an interpretable hierarchical graph pooling module to identify the important brain 

regions as biomarkers related to multiple clinical phenotypes and brain disorders. Liu et 

al.215 proposed a framework, DeepHoloBrain, that represents a region-adaptive interference 

pattern between neural activities and a collection of reference harmonic wavelets as a 

symmetric and positive-definite (SPD) matrix, allowing for interpretability and analysis of 

brain states and disease connectomes. D’Souza and Venkataraman211 proposed an mSPD 

neural network with bilinear fully connected layers with tied weights, which achieves 

interpretability by leveraging the underlying geometric structure of connectomes in fMRI 

brain networks to discover stable biomarkers associated with attention deficit hyperactivity 

disorder (ADHD).

4.5. Other research topics

The scope of brain network studies is so broad that many additional topics are also worthy of 

attention, such as causality exploration,189,192,206,217 powerful reconstruction tools,168,218–

221 and multisite brain network learning.143,222 Causal inference in brain networks refers 

to the study of causal relationships between different brain regions that involves identifying 

and understanding how one brain region’s activity or state causally affects the activity or 

state of another brain region. For example, Zhuang et al.206 proposed a Bayesian framework, 

named Multiple-Shooting Adjoint (MSA), to perform dynamic causal modeling to estimate 

the directed causality among different brain regions in the functional brain networks. 

Neuroimaging dataset is typically in small size, therefore, data obtained from different sites 

as well as different scanners may be jointly trained for deep learning models. However, 

domain gaps obviously exist across different scanners introduced by the heterogeneity of 

imaging modalities, radiologists, and imaging protocols, which makes multisite learning 

exceptionally important.

5. Discussions and challenges

Although recent studies have made significant strides in the domain of brain network 

analysis, numerous open questions persist, providing ample opportunities for researchers 

to explore. In this section, we delineate several noteworthy challenges that could serve as 

potential future directions.
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Initially, this review consolidates the construction procedures of several frequently employed 

brain networks, along with publicly accessible datasets for brain network analysis. Most 

existing studies focus more on structural brain networks and functional brain networks, 

where both brain networks are undirected attributed graphs with undirected edge ejj between 

vi and vj (i.e., eij = ejj). The difference between structural networks and functional networks 

is that the e ∈ E in structural networks are positive values, while they can be negative in 

functional networks. Since the functional networks are constructed based on the BOLD 

signal correlation among different brain nodes, the positive and negative edges represent 

synchronous activation and asynchronous activation among brain regions, respectively. 

However, the directed brain graph (e.g., effective brain networks) is rarely studied, which 

may be a potential direction to explore the functional influence among brain regions 

(e.g., causality influence between brain nodes). To this end, preliminary studies should 

be conducted first to build up several effective directed brain network datasets. Another 

challenge of the current brain network dataset is data insufficiency, which will further limit 

the progress of big data mining on brain network studies. For example, the current brain 

network datasets may not be easy to utilize for the group difference studies based on the 

deep learning model since the number of networks in a few subgroups may not be enough 

to train the neural networks. Instead of enlarging the current dataset, technical methods in 

addressing data quantity issues should also be strictly considered. These methods include 

but are not limited to data augmentation techniques, fast algorithms for brain network 

constructions from neuroimaging data, multisite learning for dataset combinations, and 

pre-trained model development.223

We also discussed the model interpretability for current brain network learning methods 

in this review, which is a very important direction in the future that is closely related to 

clinical translations. Most of the current studies provide biological explanations of their 

model outcomes based on identified biomarkers related to different clinical phenotypes, 

such as the most important brain regions corresponding to Alzheimer’s Disease. However, 

the pattern changes of the pathway of information flow among brain regions, resulting 

from neurodegenerative diseases, gain more attention in clinical translation studies. Also, 

the generalization ability of current interpretable models is always challenged across 

diverse populations and brain network datasets. The proposed model may yield different 

explanations (e.g., identify different biomarkers) for the same prediction task when 

utilizing different brain network datasets, which may be due to the diversity of different 

population groups, heterogeneity of brain network data, and the model’s robustness. Another 

more profound challenge is that the current model yielded explanations (e.g., discovered 

biomarkers) are only evaluated by the previous clinical references, while real clinical 

validations are required for these biomarkers before the clinical translation stage in the 

future.

Another future direction is distributed computing and resource-decentralized techniques in 

medical big-data studies, which will boost the development efficiency of AI communities. 

The collaborations across multiple institutions and research centers will be closer in the 

future, where the machine learning algorithms may be collaboratively trained without 

sharing raw medical data. Therefore, distributed algorithms such as federated learning, 

Tang et al. Page 14

Meta Radiol. Author manuscript; available in PMC 2025 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



aiming to address privacy, security, and data ownership sensitivities, will be a promising 

future direction undoubtedly. Moreover, Large Language Models (LLMs) such as GPT 

(Generative Pre-trained Transformer) are also likely to have a substantial impact on brain 

network studies in the future, opening up new possibilities and enhancing various aspects of 

research in this field. The large language pre-trained model can serve as a powerful feature 

extractor for brain network representation learning. It also has great potential to tackle the 

brain network annotation issues, model interpretability issues, and data augmentation issues 

by generating more synthetic brain networks.224

6. Conclusion

This survey paper commences with an overview of brain network constructions and 

publicly available brain network datasets. Then the research objectives of recent studies, 

encompassing both traditional and deep learning methods for brain network analysis, are 

comprehensively discussed. Finally, we propose several pertinent future directions, aiming 

to serve as a catalyst for additional contributions to this evolving field.
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Fig. 1. 
Key research objectives of deep learning models on brain network studies.
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Table 3

Network measures on brain network analysis.

Network Measure Examples

Degree and similarity Node degree and strength, joint degree, topological overlap, neighborhood overlap, matching index

Density and rentian scaling Density, rentian scaling

Clustering and community structure Clustering coefficient, transitivity, local efficiency, connected components, community structure and 
modularity, modularity degeneracy and consensus partitioning

Assortativity and core structure Assortativity, rich club coefficient, core/periphery structure, K-core, S-core

Paths and distances Paths and walks, distance and characteristic path length, cycle probability, Characteristic path length, 
global efficiency, eccentricity, radius, diameter

Efficiency and diffusion Global and local efficiency, mean first passage time, diffusion efficiency, resource efficiency, path 
transitivity, search information, navigation

Centrality Betweenness centrality, edge betweenness centrality, within-module degree z-score, participation 
and related coefficients, eigenvector centrality, PageRank centrality, subgraph centrality, k-coreness 
centrality, flow coefficient, shortcuts

Motifs and self-similarity Structural motifs, functional motifs, quasi-idempotence
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Table 4

Advantages and disadvantages of different graph kernel methods. GEDK = Graph Edit Distance Kernel, GLK 

= GraphLet Kernel, WLK = Weisfeiler-Lehman Kernel, SGMK = Subgraph Matching Kernel, GPK = Graph 

Path kernel, and GAK = Graph Alignment Kernel.

Methods Advantages Disadvantages

GEDK Captures structural differences effectively Can incorporate 
domain-specific knowledge

Computationally expensive for large graphs Sensitivity to edit 
operation costs

GLK Efficient and quick for large graphs Captures local structural 
patterns

May not capture global structural properties Limited in handling 
variations in graph size and structure

WLK Captures both local and global structure Computationally 
efficient, especially with hashing

May not perform well on highly irregular graphs Limited in 
capturing fine-grained structural differences

SGMK Captures local and global structural patterns Measures 
similarity based on common subgraphs

Computationally expensive for large graphs Sensitive to 
subgraph size and similarity definition

GPK Captures structural info through shortest paths Can handle 
weighted graphs effectively

Computationally expensive for large graphs May not capture 
fine-grained structural variations

GAK Handle labeled and attributed graphs effectively Capture both 
structural and semantic information

Computationally expensive for large graphs
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