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1  | INTRODUC TION

Neural stem cells (NSCs) in mammalian brain possess two neces‐
sary properties of the stem cells, multipotency and self‐renewal, 
and it has ability to differentiate to new neuron that can function 
into extant neural circuits.1-5 The transplantation of NSCs supplies 
a potential therapeutic way for several neurological disorders in‐
cluding Parkinson's disease, Alzheimer's disease, Huntington's dis‐
ease and spinal cord injuries.6-11 Despite the great accomplishment 
has been achieved, there are still some challenges to resolve be‐
fore clinical use of NSCs was adopted.12-15 Therefore, it is crucial 

to exploit the molecular signal pathway and molecular mechanism 
modulating NSCs differentiation and proliferation.

MicroRNAs (miRNAs) are a class of noncoding, short RNAs mol‐
ecules that negatively modulate gene expression through binding a 
perfectly complementary or a partially complementary sequence in 
3′‐untranslated region (UTR) region of their target gene to influence 
mRNA stability and/or translation.16-19 Altered specific miRNAs ex‐
pression has been shown in diverse human tumours such as breast 
cancer, lung cancer, prostate cancer, osteosarcoma and hepato‐
cellular carcinoma.20-25 Increasing studies also demonstrated that 
miRNAs involved in the process of diverse cell biological processes 
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Abstract
Recent references have showed crucial roles of several miRNAs in neural stem cell 
differentiation and proliferation. However, the expression and role of miR‐485‐3p 
remains unknown. In our reference, we indicated that miR‐485‐3p expression was 
down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, 
the TRIP6 expression was up‐regulated during NSCs differentiation to neural and 
astrocytes cell. We carried out the dual‐luciferase reporter and found that overex‐
pression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but 
not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the ex‐
pression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth 
of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of 
miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, 
we indicated that miR‐485‐3p reduced proliferation and induced differentiation of 
NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐
485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p 
and TRIP6 modulation may be one promising therapy for treating with neurodegen‐
erative and neurogenesis diseases.
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including cell differentiation, growth, migration, metastasis and in‐
vasion.26,27 More recently, growing evidence suggested that miR‐
NAs play important roles in the differentiation and proliferation of 
NSCs.

In this study, we indicated that miR‐485‐3p expression was 
down‐regulated during NSCs differentiation to neural and astro‐
cytes cell. Ectopic miR‐485‐3p expression suppressed the cell 
growth of NSCs and inhibited nestin expression of NSCs.

2  | MATERIAL S AND METHODS

2.1 | Cell culture and transfection

NSCs were isolated and cultured using previous standard way.28,29 
These cells were isolated from embryos of rat and kept in growth 
medium supplement with bFGF, EGF and N2. This reference was 
agreed with our hospital's ethical board and complied with Helsinki 
Declaration. miR‐485‐3p, miR‐485‐3p control (scramble), pcDNA‐
control and pcDNA‐TRIP6 were bought from GenePharma and then 
transfected to NSCs by Lipofectamine with the final concentration 
of 10 nmol/L.

2.2 | qRT‐PCR

RNA from NSCs was gained using TRIzol kit (Invitrogen) by standard 
way. qRT‐PCR was used to analyse miR‐485‐3p and mRNA expres‐
sion on Applied Biosystems machine (Applied Biosystems) utilizing 
TaqMan mix and primer for 45 cycles. miR‐485‐3p expression was 
related to U6, and GAPDH was done as control for mRNA. The prim‐
ers were shown: Nestin, 5′‑GATCTAAACAGGAAGGAAATCCAG 
G‑3′; and 5′‑TCTAGTGTCTCATGGCTCTGGTTTT‑3′; Tuj1, 5′‑CGCCA 
TGTTCAGACGCAAG‑3′ and 5′‑CTCGGACACCAGGTCGTTCA‑3′; 
Ki‐67, 5′‑CAGTACTCGGAATGCAGCAA‑3′ and 5′‑CAGTCTTCAGGG 
GCTCTGTC‑3′; GAPDH, 5′‑ATTCCATGGCACCGTCAAGGCTGA‑3′ 
and 5′‑TTC TCCATGGTGGTGAAGACGCCA‑3′.

2.3 | Cell viability

Cell growth of NSCs was detected with MTT (3‐(4,5‐dimethylthi‐
azol‐2‐yl)‐2,5‐diphenyl‐tetrazolium bromide) assay. The OD (absorb‐
ance) at the 490  nm was recorded by microplate reader. The cell 
viability at 0, 1, 2 and 3 days was analysed.

2.4 | Dual‐luciferase assay

Full‐length 3′UTR of TRIP6 gene and one fragment consisting of 
putative miR‐485‐3p binding site was amplified from genomic DNA 
and then specific cloned into pGl3‐promoter plasmid (Promega). A 
mutant plasmid in seed area of miR‐485‐3p binding site was also es‐
tablished. Cell was treated with one mixture of Renilla, miR‐485‐3p 
mimic, miR‐NC, pLuc‐3′‐UTR and mut or WT pGl3‐TRIP6 plasmid 
using Lipofectamine. Luciferase activity was detected with Promega 
Dual‐Luciferase kit.

2.5 | Western blot analysis

Western blot assay was done using the standard way. Protein was 
isolated with SDS‐PAGE (12%) and diverted to PVDF membrane 
(Millipore, USA). After blocking with milk (5%) for 2 hours, membrane 
was stained in primary antibodies (anti‐TRIP6 and anti‐GAPDH, 
1:1,000, Abcam) at 4°C overnight. After washing in TBST, membrane 
was incubated in second antibody. Blot was observed with ECL de‐
tection reagent.

2.6 | Immunohistochemistry

Cell was fixed by paraformaldehyde (4%) in PBS for about 10 min 
and blocked with TritonX‐100 (0.1%), FBS (1%) and serum. Then, cell 
was stained in primary antibodies (anti‐nestin and anti‐Tuj1, 1:2,000, 
Abcam) at 4°C overnight. After washed three times in PBS, cell was 
incubated with second antibody for 1  hour at 37°C. Cell was ob‐
served by Leica camera (Leica Germany).

2.7 | Statistical analysis

Result was present as the mean ± standard deviation and was calcu‐
lated via SPSS 17.0 software. Student's t test was utilized to deter‐
mine the difference between these two groups. A P value < .05 was 
regarded to be significant.

3  | RESULTS

3.1 | NSCs have self‐proliferation and 
differentiation capacity

NSCs were isolated from mouse forebrain and they can form neu‐
rosphere (Figure 1A). After withdraw of bFGF, these cells differenti‐
ated to astrocytes and neurons (Figure 1B). Moreover, NSCs were 
expressed the nestin, which is the NSC maker (Figure 1C).

3.2 | miR‐485‐3p is down‐regulated a during cell 
differentiation of NSC

miR‐485‐3p expression level was measured by qRT‐PCR assay dur‐
ing differentiation of NSCs. It was shown that miR‐485‐3p expres‐
sion was down‐regulated during NSCs differentiation to neural cell 
(Figure 2A). We also found that expression of miR‐485‐3p was re‐
duced during NSCs differentiation to astrocytes cell (Figure 2B).

3.3 | TRIP6 is overexpressed during NSC 
differentiation

TRIP6 expression level was determined by qRT‐PCR assay during 
differentiation of NSCs. It was shown that TRIP6 expression was up‐
regulated during NSCs differentiation to neural cell (Figure 3A). We 
also found that expression of TRIP6 was overexpressed during NSCs 
differentiation to astrocytes cell (Figure 3B).
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3.4 | miR‐485‐3p targets TRIP6 expression in NSC

To find potential target gene of miR‐485‐3p, we exploited 
TargetScan software. It was shown that miR‐485‐3p has tar‐
get sites in 3′‐UTR of TRIP6 (Figure 4A). qRT‐PCR assay dem‐
onstrated that miR‐485‐3p was up‐regulated in the NSCs after 

transfected with miR‐485‐3p mimic (Figure 4B). Ectopic expres‐
sion of miR‐485‐3p decreased the expression of TRIP6 in NSC 
(Figure 4C). Dual‐luciferase reporter analysis was carried out to 
confirm that overexpression of miR‐485‐3p decreased the lucif‐
erase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐
mut (Figure 4D).

F I G U R E  1   NSCs have self‐proliferation and differentiation capacity. A, NSCs were isolated from mouse forebrain and they can form 
neurosphere. B, These cells differentiated to astrocytes and neurons. C, NSCs were expressed the nestin, which is the NSC maker

A B C

F I G U R E  2   miR‐485‐3p is down‐regulated a during cell differentiation of NSC. A, miR‐485‐3p expression level was measured by qRT‐PCR 
assay. B, The expression of miR‐485‐3p was reduced during NSCs differentiation to astrocytes cell

F I G U R E  3   TRIP6 is overexpressed during NSC differentiation. A, TRIP6 expression level was determined by qRT‐PCR assay. B, The 
expression of TRIP6 was overexpressed during NSCs differentiation to astrocytes cell
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3.5 | miR‐485‐3p reduced proliferation and induced 
differentiation of NSCs

Ectopic expression of miR‐485‐3p suppressed the cell growth of 
NSCs by using MTT assay (Figure 5A). Elevated expression of miR‐
485‐3p decreased the expression of nestin, which is one maker of 
NSCs (Figure 5B). As determined by qRT‐PCR, ectopic expression 
of miR‐485‐3p suppressed the expression of ki‐67 (Figure 5C). 
Moreover, we proved that miR‐485‐3p overexpression inhibited the 
cyclin D1 expression (Figure 5D). Furthermore, overexpression of 
miR‐485‐3p induced the Tuj1 expression, which is a maker of neu‐
ronal (Figure 5E). As measured by Tuj1 immunofluorescence analy‐
sis, data showed that elevated expression of miR‐485‐3p increased 
the Tuj1 expression (Figure 5F).

3.6 | miR‐485‐3p reduced proliferation and induced 
differentiation of NSCs via targeting TRIP6 expression

To further consider contribution of TRIP6 to cell biological effect 
of miR‐485‐3p on differentiation and proliferation of NSCs, we 
induced TRIP6 expression in the NSCs and co‐transfected with 
miR‐485‐3p mimic. Ectopic expression of TRIP6 increased miR‐
485‐3p‐overexpressing NSCs proliferation with using MTT assay 
(Figure 6A). Elevated expression of TRIP6 promoted the expres‐
sion of nestin in miR‐485‐3p‐overexpressing NSCs (Figure 6B). 
Elevated expression of TRIP6 enhanced the expression of ki‐67 
(Figure 6C) and cyclin D1 (Figure 6D) in the miR‐485‐3p‐overex‐
pressing NSCs. Restoration expression of TRIP6 over‐turned the 
function effect of miR‐485‐3p on NSCs differentiation (Figure 6E). 

F I G U R E  4   miR‐485‐3p targets TRIP6 expression in NSC. A, It was shown that miR‐485‐3p has target sites in 3′‐UTR of TRIP6. B, The 
expression of miR‐485‐3p was detected by qRT‐PCR assay. C, Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in 
NSC. D, Dual‐luciferase reporter analysis was carried out to confirm that overexpression of miR‐485‐3p decreased the luciferase activity of 
pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. *P < .05

F I G U R E  5   miR‐485‐3p reduced proliferation and induced differentiation of NSCs. A, Ectopic expression of miR‐485‐3p suppressed 
the cell growth of NSCs. B, Elevated expression of miR‐485‐3p decreased the expression of nestin. C, Ectopic expression of miR‐485‐3p 
suppressed the expression of ki‐67. D, miR‐485‐3p overexpression inhibited the cyclin D1 expression. E, Overexpression of miR‐485‐3p 
induced the Tuj1 expression, which is a maker of neuronal. F, As measured by Tuj1 immunofluorescence analysis, data showed that elevated 
expression of miR‐485‐3p increased the Tuj1 expression. *P < .05 and **P < .01
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As measured by Tuj1 immunofluorescence analysis, results indi‐
cated that restoration expression of TRIP6 decreased the Tuj1 
expression in the miR‐485‐3p‐overexpressing NSCs (Figure 6F).

4  | DISCUSSION

In the present research, we found that miR‐485‐3p expression 
was down‐regulated during NSCs differentiation to neural and 
astrocytes cell. In addition, the TRIP6 expression was up‐regu‐
lated during NSCs differentiation to neural and astrocytes cell. 
We carried out the dual‐luciferase reporter and found that over‐
expression of miR‐485‐3p decreased the luciferase activity of 
pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic 
expression of miR‐485‐3p decreased the expression of TRIP6 in 
NSC. Ectopic miR‐485‐3p expression suppressed the cell growth 
of NSCs and inhibited nestin expression of NSCs. Moreover, el‐
evated expression of miR‐485‐3p decreased the ki‐67 and cyclin 
D1 expression in NSCs. Furthermore, we indicated that miR‐
485‐3p reduced proliferation and induced differentiation of NSCs 

via targeting TRIP6 expression. These data suggested that a cru‐
cial role of miR‐485‐3p in self‐proliferation and differentiation of 
NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be 
one promising therapy for treating with neurodegenerative and 
neurogenesis diseases.

Increasing evidence indicated that miR‐485 has involved in the 
progression of varied diseases such as oesophageal cancer, glioma, 
osteosarcoma, hepatocellular carcinoma, osteoarthritis.30-33 For 
instance, Chen and workmates found that miR‐485‐5p expression 
was negatively related with differentiation degree of bone mar‐
row mesenchymal stem cells (BMSCs).34 Ectopic miR‐485‐5p ex‐
pression suppressed cartilage surface‐related genes and toluidine 
blue, while promoted tumour necrosis factor and interleukin partly 
regulating SOX9 expression. It has been shown that miR‐485‐5p 
overexpression decreased breast tumour development and pro‐
moted chemosensitivity partly via modulating survivin expres‐
sion.35 Previous study indicated that miR‐485‐5p expression 
was down‐regulated in the serum of NSCLC cells and patients. 
Epigallocatechin‐3‐gallate (EGCG) inhibited cancer stem cells 
characteristics through regulating RXRα/miR‐485‐5p axis.36 Du 

F I G U R E  6   miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. A, Ectopic expression 
of TRIP6 increased miR‐485‐3p‐overexpressing NSCs proliferation with using MTT assay. B, The expression of nestin was determined by 
using qRT‐PCR assay. C, The expression of ki‐67 was measured by using qRT‐PCR assay. D, The expression of cyclin D1 was measured by 
using qRT‐PCR assay. E, Restoration expression of TRIP6 over‐turned the function effect of miR‐485‐3p on NSCs differentiation. F, As 
measured by Tuj1 immunofluorescence analysis, results indicated that restoration expression of TRIP6 decreased the Tuj1 expression in the 
miR‐485‐3p‐overexpressing NSCs. *P < .05 and **P < .01
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et al37 demonstrated that overexpression miR‐485‐3p suppressed 
osteosarcoma cell colony formation, growth, sphere formation 
and migration and inhibited CtBP1 expression. However, the role 
of miR‐485‐3p in NSC differentiation and proliferation remains 
unknown. In this reference, we showed that miR‐485‐3p expres‐
sion was down‐regulated during NSCs differentiation to neural 
and astrocytes cell. Ectopic miR‐485‐3p expression suppressed 
the cell growth of NSCs and inhibited nestin expression of NSCs. 
Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 
and cyclin D1 expression in NSCs.

TRIP6 is one member of zyxin family of the LIM proteins and 
is one focal adhesion element with the capacity to the shuttle 
between cell nucleus and surface.38,39 TRIP6 was played roles in 
modulation of signal transduction and actin dynamics during cell 
migration and adhesion.40,41 Increasing studies showed that TRIP6 
was expressed in neurons of hippocampal and regulated biological 
function of neurological.42 Previous reference indicated that TRIP6 
was sufficient and essential for proliferation and self‐renewal of 
NSCs, but suppressed NSCs differentiation.43 Another reference 
suggested that miR‐138‐5p modulated differentiation and prolifer‐
ation of NSCs via inhibiting TRIP6 expression.44 In our reference, 
we exploited TargetScan software to find potential target gene of 
miR‐485‐3p and found that miR‐485‐3p has target sites in 3′‐UTR 
of TRIP6. Ectopic expression of miR‐485‐3p decreased the expres‐
sion of TRIP6 in NSC. Dual‐luciferase reporter analysis was carried 
out to confirm that overexpression of miR‐485‐3p decreased the 
luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐
TRIP6‐mut. Furthermore, we found that miR‐485‐3p reduced pro‐
liferation and induced differentiation of NSCs via targeting TRIP6 
expression.

In summary, this reference revealed that miR‐485‐3p ex‐
pression was down‐regulated during NSCs differentiation and 
miR‐485‐3p reduced proliferation and induced differentiation of 
NSCs via targeting TRIP6 expression. These data suggested that a 
crucial role of miR‐485‐3p in self‐proliferation and differentiation 
of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be 
one promising therapy for treating with neurodegenerative and 
neurogenesis diseases.
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