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ABSTRACT

Artificial intelligence (AI) based on machine
learning and convolutional neuron networks
(CNN) is rapidly becoming a realistic prospect
in dermatology. Non-melanoma skin cancer is
the most common cancer worldwide and mel-
anoma is one of the deadliest forms of cancer.
Dermoscopy has improved physicians’ diag-
nostic accuracy for skin cancer recognition but
unfortunately it remains comparatively low. AI
could provide invaluable aid in the early eval-
uation and diagnosis of skin cancer. In the last
decade, there has been a breakthrough in new
research and publications in the field of AI.
Studies have shown that CNN algorithms can
classify skin lesions from dermoscopic images
with superior or at least equivalent performance
compared to clinicians. Even though AI algo-
rithms have shown very promising results for
the diagnosis of skin cancer in reader studies,
their generalizability and applicability in
everyday clinical practice remain elusive.

Herein we attempted to summarize the poten-
tial pitfalls and challenges of AI that were
underlined in reader studies and pinpoint
strategies to overcome limitations in future
studies. Finally, we tried to analyze the advan-
tages and opportunities that lay ahead for a
better future for dermatology and patients, with
the potential use of AI in our practices.

PLAIN LANGUAGE SUMMARY

Artificial intelligence (AI) is the development of
computer systems able to perform tasks that
normally require human intelligence, such as
visual perception, speech recognition, and
translation between languages. The research on
the use of AI in dermatology includes the ability
of a machine to correctly classify a skin lesion.
Skin cancer is the most common cancer world-
wide and melanoma is the deadliest form of
skin cancer. All skin cancers have a better
prognosis when detected early in their devel-
opment, hence their early detection is of para-
mount importance. Dermatologists use a
dermatoscope—a specialized magnifying lens to
improve their diagnostic capacity. However,
even with the use of the dermatoscope, their
ability to recognize skin cancer is far from per-
fect. AI has the ability to learn from dermo-
scopic images and subsequently provide an
image-based diagnosis. Several studies
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compared the performance of machines and
humans in classifying skin lesions from these
images and showed that machines can classify
skin lesions as good (and sometimes better)
than humans. However, the application of AI in
everyday clinical practice remains a challenge.
In this article, we attempt to summarize the
limitations and challenges that researchers
found in their studies, and we provide strategies
to improve the design of future studies. Finally,
we describe the advantages and opportunities
that could lay ahead for a better future for der-
matology and patients.

Keywords: Melanoma; Prevention; Skin
cancer; Dermoscopy; Diagnosis; Artificial
intelligence; Machine learning;
Teledermatology

Key Summary Points

Artificial intelligence (AI) is rapidly
gaining ground in medicine, and
dermatology in particular. Research has
shown that AI algorithms can diagnose
skin conditions in general and skin cancer
specifically with a diagnostic accuracy
comparable with that of skin cancer
experts.

However, there are several challenges that
need to be addressed; AI algorithms are
often tricked by perturbations in image
quality, magnification, image color, as
well as rulers, skin markings, and pen
markings. The generalizability of AI
algorithms and their potential use in
clinical practice remains to be eluded.
Real-life clinical trials using AI algorithms
are needed in order to amplify their
potential use in everyday practice.

AI algorithms could be of aid to
dermatologists and patients, particularly
in the fields of teledermatology, 3D
imaging, and sequential digital
dermoscopy, while AI’s applications could
potentially prove beneficial to the entire
field of dermatology.

INTRODUCTION

Artificial intelligence (AI) is the development of
computer systems able to perform tasks nor-
mally requiring human intelligence, such as
visual perception, speech recognition, decision-
making, and translation between languages [1].
AI has become an indispensable part of our
daily lives, while it constantly penetrates more
and more human activities [2]. The evolution of
AI includes classic AI, followed by machine
learning leading to the era of deep learning in
which we currently live [3]. In machine learning
(ML), algorithms are trained to perform tasks by
learning from data rather than by precise pro-
gramming instructions [4]. We are now facing
the evolution of deep learning—a subset of
machine learning that uses an artificial neural
network (ANN) structure, inspired by the bio-
logical neural network [5]. In this form of ML,
there is the capacity to use an unlimited num-
ber of layers, where each layer within the neural
network can be trained to recognize different
features specific to the dataset [6]. Convolu-
tional neural networks (CNN) are a special form
of neural networks that have dominated in the
field of image processing [7]. CNN consist of
convolutional, pooling layers and fully con-
nected layers. The primary purpose of a convo-
lutional layer is to detect distinctive visual
features, and it is vital for successful image
processing tasks such as segmentation and
classification [8]. In order for CNNs to recognize
these visual features on their own capacity, they
initially require an abundant amount of train-
ing data [9].

This deep learning flow has given medical
society the potential to evolve through AI [10].
Currently, major advancements have been
made mainly in the field of radiology and car-
diology. FDA-approved medical devices first
gained approval in 2016, giving healthcare
professionals the ability to enhance medical
practice through AI [11]. In radiology, ML-
based image reading algorithms are used on
brain images for hemorrhage and stroke
detection, for image processing improvements,
as well in acute care for the assessment of
pneumothorax and injuries. These algorithms
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augment radiologists’ practices by enabling
faster diagnosis and alert for emergency situa-
tions. Also, there are available algorithms for
mammography analysis and lesion detection.
Applications in cardiology include electrocar-
diogram readings for the detection of cardiac
rhythm abnormalities [11]. In the field of dia-
betes, there are FDA-approved medical devices
for managing blood glucose levels using mon-
itoring systems with predictive alerts [12], as
well as the detection of diabetic retinopathy in
ophthalmology [13]. It is also worth mention-
ing the existence of algorithms in clinical
practice for the detection of sleep disorders
[11]. Moreover, there are health systems that
are using simple ML models based on elec-
tronic health records (HER) to stratify hospi-
talized patients in need for admitting to
intensive care units [14]. The above-mentioned
medical devices are just the beginning of this
era. Raw data from EHR can be used for prog-
nostic models. Diagnosis enhancement by AI
can minimize diagnostic errors by physicians.
The most appropriate treatment could be cho-
sen for each individual patient and automatic
selection of patients eligible for new treat-
ments in clinical trials from EHR will grant
ultimate patient outcomes [10].

Dermatology, being an image-based field of
medicine, retains a prevailing position in the AI
evolution. The main aspect of dermatology
where AI has shown very promising results is
the recognition of skin cancer [15–19]. Skin
cancer includes non-melanoma skin cancers
(NMSC), i.e., basal cell carcinoma, squamous
cell carcinoma, and melanoma (MM). NMSC is
the most common cancer worldwide, while
melanoma is the fifth leading cause of cancer
death in the US [20]. The mainstay of treatment
for all subtypes of MM remains early recogni-
tion and surgical excision of the tumor [21]. The
5-year relative survival rate of localized MM is
99.5%, and unfortunately drops to 31.9% for
distant MM [20]. Consequently, early diagnosis
of skin cancer is inevitably the cornerstone for
improving both mortality and morbidity
outcomes.

Dermoscopy is a non-invasive imaging
technique that uses polarized and non-polar-
ized light to improve sensitivity and specificity

for skin cancer diagnosis [22–24]. Moreover,
most commercially available dermatoscopes
have a standardized 109magnification, while at
the same time preserving patient identifiers,
making it an ideal test case for ML training.
Accordingly, a big proportion of AI research has
focused on dermoscopic images for early skin
cancer detection [15–19]. The overarching goal
behind these efforts is to improve early skin
cancer diagnosis and accordingly the mortality
and morbidity resulting from both melanoma
and NMSC. The ground for that lies in the fact
that our diagnostic accuracy, as physicians,
even with the use of dermoscopy remains
comparatively low [25]. Additionally, there are
two main challenges we must overcome. First,
in several countries, including the US, access of
the general population to dermatologists is dif-
ficult, leading to less than 25% of the adult
population having ever had a total body skin
examination (TBSE) by an expert dermatologist
[26]—a diagnostic practice that can identify
otherwise undiagnosed cutaneous malignancies
[27, 28]. Second, only 25% of MM are diagnosed
by a healthcare provider [29]. On this ground,
AI could provide invaluable aid in the early
evaluation and diagnosis of skin cancer.

The aim of this commentary is to provide a
critical appraisal of current AI achievements
and limitations in dermatology, focusing on
relevancy in clinical practice. In addition, pos-
sible strategies to overcome these limitations
and future perspectives are explored.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

CURRENT ACHIEVEMENTS

In the last decade, there has been a break-
through in new research and publications in the
field of AI. This AI evolution has led to a com-
pelling discussion in the scientific community
regarding the potential role that AI could play
[30]. Although some may perceive the advent of
automated diagnosis as a threat, an effective AI
system has the potential to improve the accu-
racy, accessibility, and efficiency of patient care
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[31]. The existence of a large public dataset
(International Skin Image Collaboration
Archive—ISIC) paved the road to remarkable
research and became the reference standard for
research in the field [32]. The results of land-
mark studies overemphasize AI’s usefulness, as
they demonstrated superior or at least equiva-
lent performance of CNN-based classifiers
compared to clinicians [17]. Despite the fact
that AI algorithms have shown very promising
results for the diagnosis of skin cancer in reader
studies, their generalizability and applicability
in everyday clinical practice remains elusive.
While there are already FDA-approved AI algo-
rithms that have been embedded into clinical
practice, mainly in radiology [11], there is no
public clinical use of AI algorithm devices in
dermatology. MelaFind, a device approved by
the US Food and Drug Administration that used
multispectral digital skin lesion analysis, has
been shown to have high melanoma sensitivity
and to improve both the sensitivity and speci-
ficity of dermatologists after clinical and der-
moscopic examination of suspicious skin
lesions via reader studies. Despite these appar-
ent strengths, the device was discontinued in
2017 due to inadequacy of tangible benefit
[33, 34].

PITFALLS IN AI

At this point, we need to identify the potential
pitfalls of AI and pinpoint the advantages and
opportunities that lay ahead. Many studies have
shown that AI systems are susceptible to the
presence of confounding factors, negatively
impacting their classification performance
[31, 35–38]. Those factors are mainly associated
with variables regarding image quality and
standardization. Perturbations in image magni-
fication, adversarial ‘‘noise’’ (intended pertur-
bations such as ink spots that aim to ‘‘confuse’’
MLA), image rotation, brightness/contrast
manipulation [31], rulers, ink markings, blurry
photos and dark corners of the tubular lens [35]
are all variables that depend on the quality of
the image that a clinician provides (Fig. 1).
Specifically, a study showed that the AI algo-
rithm appeared more likely to interpret images

with rulers as malignant. The algorithm inad-
vertently was trained to recognize such findings
as malignant as images presenting a MM had
rulers more often than benign lesions [36].
Another study found that skin markings signif-
icantly interfered with CNN’s correct diagnosis
of nevi by increasing the melanoma probability
scores and consequently the false-positive rate,
most likely because of the same reason [37].
Finally, a study found that the diagnostic
accuracy of AI algorithms is heavily dependent
on whether the image is in focus and well cen-
tered [38]. These biases in AI models are inher-
ent unless specific attention is paid to
addressing inputs with variability or incorpo-
rating stringent standards [36].

On the contrary, air bubbles, hairs, back-
ground skin diseases, sun-damaged skin, and
peculiar anatomic sites [36] are confounding
factors impacting the CNNs’ performance that
cannot be eliminated by humans. A study
showed that entities that do not generally pre-
sent with crust (such as vascular lesions, der-
matofibromas, and nevi) were frequently
miscategorized in the presence of crusts [19].
The same study showed that the presence of
hair affected the misclassification of actinic
keratosis (36 vs. 56% without hair) [19]. Finally,
another study showed that the anatomic site of
a lesion plays a critical role in the performance
of CNN [38]. Studies [18, 39–41] have shown the
potential of CNN-based classification for special
anatomic sites—such as face, palms, and soles
that have different normal dermoscopic signs—
but more extensive and diverse datasets as well
as further research are needed to extend the
application of AI in rare anatomic sites (e.g.,
genital area) and rare skin cancer subtypes (e.g.,
mucosal or desmoplastic MM) [17]. On the
other side, banal-looking, benign lesions such
as angiomas, dermatofibromas, or nevi are most
often underrepresented or absent from studies’
training sets, leading to underperformance of
the algorithms [18]. Inclusion of typical benign
lesions avoids verification bias and thus elimi-
nates such limitations as shown by a study from
Tschandl et al. [42].

Beyond standardization pitfalls, AI technol-
ogy must additionally overcome generalizabil-
ity limitations. A frequent critique to both
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artificial intelligence researchers and the ISIC
Archive highlights that the training datasets for
AI algorithms mainly consist of Caucasian
patients, thus limiting the representation of
possible variation in disease presentation [43].

Moreover, a study showed that rarer distri-
butions of specific skin lesions, such as non-
pigmented nevi and non-pigmented MMs
decreased the accuracy of the algorithms’ clas-
sifications compared to common distributions.
These results highlight that algorithms should
be tested on both usual and unusual types of
lesions and imaging attributes [19].

Finally, more research is needed on clinical
close-up images combined with dermoscopic
images as defined by combined convolutional
neuron networks (cCNN) in order to provide a
more accurate and realistic presentation of the
lesion examined. These close-up images can
provide additional datasets for future AI

applications in preclinical evaluations [10].
Overall, deep learning is an intensely data-de-
manding technology, requiring an abundant
number of labeled examples to achieve accurate
classification [44]. ISIC is the genesis of a pub-
licly available image dataset that needs to
expand with the synergist approach of frontline
physicians in order to develop and train classi-
fiers with the best outcomes, as ML can only be
as good as the quality of data it gets.

CLINICAL LIMITATIONS

Clinical evaluation, including patient history
and patient examination, is the groundwork for
every physician. In the artificial settings of
challenges and studies to evaluate CNN’s per-
formance, the clinician’s ability is often under-
estimated [17]. Many studies acknowledge the

Fig. 1 A Clinical image of a 45-year-old male patient with
a lipidized dermatofibroma taken with an iPhone 11 Pro
(Apple Inc. Cupertino, CA, USA). B Diagnosis prediction
of a deep convolutional neural network (Modelderm.com,
build 2019) with a 19 magnification at a distance of
20 cm, showing furuncle as the predominant diagnosis
with a probability of 0.66, followed by folliculitis with a
probability of 0.12 and subsequently by epidermal cyst

with a probability of 0.07. C Diagnosis prediction of a
deep convolutional neural network (Modelderm.com,
build 2019) with a 29 magnification at a distance of
20 cm, showing epidermal cyst as the predominant
diagnosis with 0.25, followed by actinic keratosis with
0.16 and then by steatocystoma multiplex with a proba-
bility of 0.11, altering malignancy score and management
scores
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lack of inclusion of clinical-related factors such
as age, sex, degree of sun damage, anatomic site,
and personal and family history [42, 43]. In a
clinical environment, dermatologists would
consider total body examination for compar-
ison of variabilities such as the macroscopic
Ugly Duckling sign (a nevus that stands out
from the rest in a given individual) [45], the
Little Red Riding Hood sign (a nevus that looks
benign but differs from the rest in a given
individual) [46], as well as dermatoscopic pre-
dominant nevus patterns (defined as the pat-
tern seen in more than 30% of all nevi) [46, 47].
These approaches increase sensitivity and
specificity but require a more holistic approach
[42]. Additionally, in an experimental design,
in vivo dermoscopy has been shown to be
intrinsically better than in the artificial setting
solely based on digital images [48].

Consumer trust in AI is an additional barrier
to the application of AI in clinical practice. A
recent study tried to shed some light on
understanding citizens’ trust and expectations
concerning the use of AI across multiple coun-
tries. Researchers highlighted that concerns
about the adequacy of current regulations and
laws for the safe use of AI is the strongest driver
that influences their trust. Also, 63% of them
reported being unwilling or ambivalent about
trusting AI in healthcare [49]. The black box
nature of ML lies in the fact that there is no
explanation and consistent process on how the
algorithm reached a specific diagnosis. This
approach can potentially lead to trust issues
from patients, particularly since the model gives
a diagnostic output while being unable to
explain the results. Physician interpretation is
necessary to explain why a diagnosis or treat-
ment should be chosen [50, 51].

As aforementioned, TBSE is not yet widely
available to patients [26]. Studies showed that
primary care physicians (PCP) as well as der-
matologists do not usually perform TBSE as part
of their standard practice examination [52, 53].
Even though the importance of TBSE has been
highlighted in many studies [27, 28], there are
still no consistent recommendations among
professionals regarding skin cancer screening to
seal the use of this diagnostic practice [54].
Moreover, inadequate time [53] as well as

insufficient training in medical students and
residents prevents TBSE from being established
in clinical practice [55]. The use of AI in TBSE
could be a helpful assistant to PCP and other
non-dermatology specialists, as it will provide
the patients a skin cancer screening that they
would not otherwise have, without being time-
consuming for physicians. Even the greatest
algorithm or physician will fail to diagnose an
unexamined or unimaged melanoma, so our
efforts should undoubtedly be focusing in this
direction.

Lastly, we are still not aware if all these
efforts for early detection of skin cancer could
be more helpful than harmful. As a vast range of
disorders—some of unknown biology—are
labeled as cancers, overdiagnosis is a term that
we often hear [56, 57]. Within that spectrum,
we are not aware of whether the excessive use of
technology can mislead far from the desired
results. The dilemma has two main concerns
regarding the detection of an extremely early
stage of melanocytic tumors that are of uncer-
tain malignant potential [58] and the over-de-
tection of NMSC in elderly patients. This can
lead to a negative psychological impact on
patients with early stages of MM [59] and
redundant excisions regarding NMSC in
patients with short life expectancy, making the
benefit of such excisions doubtful [60].

STRATEGIES TO OVERCOME
LIMITATIONS

The acknowledgment of the weaknesses of these
emerging technologies is the cornerstone for
the improvement and evolvement of the exist-
ing algorithms. There are possible strategies to
overcome these weaknesses before these algo-
rithms become a part of daily clinical practice.
Firstly, we need to expand CNN training sets to
reflect the variety of the general population.
The immigration waves underly this need since
physicians are required to examine patient
populations with whom they are less familiar
and less to assess. A trained algorithm will
hence be an advantage. Most algorithms are
trained on either Caucasian or Asian patients
[9, 38, 40, 61], but early screening of patients
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with skin of color could be more beneficial, as
more advanced disease and lower survival rates
have been reported due to delays in diagnosis in
this population [62]. Algorithms tend to
underperform when they are given data from
different populations that are not included in
the dataset. This highlights the necessity to
train the same algorithm on a broader range of
images from different ethnicities [61].

The inclusion of metadata for the patients
under examination should also become an
inseparable part of the provided data for the
algorithm, such as age, gender, skin type, and
anatomic location [31]. This will establish a
more realistic environment in studies for clini-
cians who always include a patient’s history in
their diagnostic approach. This metadata
should be provided to both clinicians and
machines, as the algorithm could also analyze
the information. Some studies have already
integrated clinical metadata and their results are
encouraging for a more accurate classifier
[63, 64]. Future studies will determine if this
approach gives clinicians a better accuracy
compared to CNNs [65].

Clinical close-up images can also be har-
nessed for the artificial classification of skin
lesions [64]. Macroscopic examination of a
lesion is the first approach for a clinician to
decide whether to proceed to dermoscopy or
not. Clinical images of the lesion can provide
additional data that are not visible under der-
moscopy, such as the pearly appearance and
shiny surface of BCC [66] and ‘‘stuck-on’’
appearance of seborrheic keratosis [67]. The
combination of clinical and dermoscopic image
analysis, as aforementioned, is called combined
CNN (cCNN) and will probably become the
predominant reference point in future studies.
Studies to date have already used cCNN classi-
fiers for improving the algorithm’s performance
[18, 63, 64]. Those datasets of clinical images
could potentially be used to train algorithms for
smartphone applications. However, even the
best of these algorithms still have a long way to
go, as shown on Figs. 1 and 2.

Special attention should be given to images
with confounding factors. Part of these con-
founding factors, such as lesion-adjacent arti-
facts could be overcome with the use of image

segmentation—a technique to separate the
lesion from the background image. A variety of
techniques have been proposed for lesion seg-
mentation and thus could be used in future
studies [35]. A study showed that the overall
performance of lesion classifiers trained in seg-
mented images was comparable to that of
unsegmented images. However, researchers
pointed out that segmentation quality must be
controlled, as this approach might introduce
new pitfalls that require further investigation
[68].

Haggenmuller et al., in their systematic
review on skin cancer classification via CNN,
pointed out that the vast majority of the reader
studies used holdout data exclusively. Holdout
data refers to data from the same source of
training and validating data [17]. Navarrete
et al. used Han et al.’s [69] publicly available
algorithm to explore its generalizability on
external testing. Their results demonstrated
inferior sensitivity of the algorithm when
applied to a different data set [31]. The data
used to validate an algorithm that do not follow
the training distribution are called out-of-dis-
tribution (OOD) data. Future research should
consider the use of OOD images (e.g., from a

Fig. 2 A Clinical image of a 4-year-old male patient with a
tick bite, with the tick still in place, taken with an iPhone
11 Pro (Apple Inc. Cupertino, CA, USA). B Diagnosis
prediction of a deep convolutional neural network
(Modelderm.com, build 2019) with a 19 magnification
at a distance of 20 cm
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different source) for the evaluation of classifiers
as the gold standard [17].

Finally, the scientific community should
favor studies that propel the collaboration of
human and artificial intelligence, instead of
considering them as opponents in reader stud-
ies. In the study of Hekler et al., dermatologists
and a single trained CNN classifier indepen-
dently classified a set of biopsy-verified skin
lesions. The researchers combined their results
to a new ensemble classifier that demonstrated
superior sensitivity to the best individual clas-
sifier [70]. Tschandl et al. also found that when
physician’s diagnosis-making is supported by an
AI algorithm, the diagnostic accuracy improves
over that of either AI or physicians alone [15].
These findings have also been confirmed by
other researchers [71, 72]. The impact of the
previous use of the aforementioned MelaFind
system in dermatologists’ decisions to biopsy
atypical lesions was evaluated in a study by
Hauschild et al. The study showed that derma-
tologists did not follow MelaFind’s results sys-
temically but rather used the information as
complementary in their decision to biopsy,
resulting in increased sensitivity [73]. Future
research should aim at human–machine col-
laboration studies, as these approaches will
probably suit best clinical practices and we are
currently in the process of running such studies.

The use of a standardized protocol for quality
use of imaging is essential. Digital Imaging and
Communications in Medicine (DICOM) is the
international standard for medical imaging. It
defines the formats for medical images that can
be exchanged with the data and quality neces-
sary for clinical use [74]. Even though the use of
DICOM has become the standard method of
image processing in other specialties such as
radiology and cardiology, in dermatology there
is still room for improvement. Images are being
collected by non-standardized methods via
smartphones and cameras without the capacity
to include inclusion supplementary material.
Caffery et al. [75] gave a detailed explanation of
the role of DICOM in AI in dermatology. They
highlighted that objects such as resized or
down-sampled images, segmentation images,
and the algorithm’s lesion classification output,
as well as metadata can be attached to a DICOM

file [75]. The existence of such datasets can
eliminate the aforementioned pitfalls in AI.
These datasets can be used for external valida-
tion of ML algorithms (OOD), contributing to
generalizability enhancement. Additionally, the
use of metadata-based retrieval could facilitate
retrieving images from ML datasets with specific
characteristics for future studies. Finally,
researchers declared that a patient’s identity can
be preserved for privacy concerns in clinical
trials with DICOM’s de-identification profiles
[76].

FUTURE PERSPECTIVES

Dermoscopy and Body Scanning

We now live in an era where these emerging
technologies are integrating into different
medical fields. At this point, we need to identify
under which conditions AI algorithms would be
useful in the clinical setting of dermatology.
Human–machine collaboration has revealed
promising results for future applications
[15, 70, 72]. To further extend this approach,
machines could assist clinicians in time-con-
suming practices that occasionally are not being
performed [26]. A study showed that automated
mapping of pigmented skin lesions from an
automated total body scanning system as well
as the detection of change in aligned images can
be successfully applied under specific circum-
stances [77]. Furthermore, naevus count is
another time-consuming task that dermatolo-
gists need to perform in order to stratify
patients’ risk. Betz-Stablein et al. showed that
CNN algorithms can successfully perform nae-
vus count from 3D total body photography
(TBP) [78].

However, even the most advanced of these
systems still display intrinsic biases and need
larger datasets to optimize their performance, as
shown in Fig. 3.

Additionally, we need to acknowledge the
need for life-long surveillance in high-risk
patients. Sequential digital dermoscopy (SDD)
was shown to be effective for early melanoma
detection in high-risk patients [79]. Moreover,
short-term follow-up of suspicious pigmented
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lesions is commonly used to avoid unnecessary
excisions and assure the correct diagnosis [80].
Side-by-side comparison of sequential dermo-
scopic images is necessary for the detection of
substantial changes in dermatoscopic parame-
ters that are not specific to MM and hence
guarantee an earlier diagnosis [81]. The detec-
tion of dynamic changes in sequential dermo-
scopic images could be time-consuming and is
susceptible to subjectivity [82]. The unique
nature of the above patients is highlighted by
legal and safety concerns regarding the inade-
quacy of detecting changes in SDD from less-
experienced dermoscopists, as well as non-
compliance of patients for follow-up [83]. Cur-
rently, the research in the performance of AI in
comparing SSD is in its infancy. The results of a
promising study showed that automated algo-
rithms could detect computing image differ-
ences among consecutive dermoscopic images
and provide earlier detection of MM on the first
follow-up compared to clinicians [84]. We

believe that this is an essential field that
demands the attention of AI applications, as
there is room for improvements that will fur-
ther improve early MM detection.

Precision Prevention

Precision medicine is the practice of personal-
ized and individualized medicine for patients. It
is the stratification of individual patients based
on genetic, biomarker, phenotypic, and psy-
chosocial characteristics that aims to distin-
guish every patient to provide a targeted and
unique treatment for the best clinical outcomes
[85]. As ML has the capability of unlimited
storage, the above data can be stored and ana-
lyzed in ML algorithms to provide a holistic
predictive result. Lee et al. gave a remarkable
approach to precision prediction of MM [51].
They proposed a holistic risk stratification that
can be produced from AI computer-aided diag-
nostics in order to provide the appropriate level

Fig. 3 3D model of a patient taken with Vectra WB360
(Canfield Sci. Parsippany, NJ) of a 63-year-old patient
with a melanoma of the left areola. Despite the algorithm’s
capacity to identify the cherry hemangioma directly below

the melanoma, the special location of the melanoma does
not allow for the identification of a melanoma with a
diameter of approximately 4 cm
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of surveillance to patients depending on their
risk factors. Clinical phenotype and deep image-
based phenotype using CNN and 3D total body
photography can be assessed for naevus count
and photo-numeric scales for sun damage.
Genotype, digital, and molecular markers from
lesion assessment can all be combined to pro-
duce a personalized skin score. This approach
aims to conserve early melanoma detection and
improve surveillance for high-risk patients,
while minimizing overdiagnosis [51, 86].

Teledermatology/Smartphone Apps

Finally, we need to address the fact that a high
percentage of patients will not have access to
specialized care, which can lead to unfavorable
disease outcomes [26]. Many studies have
highlighted the usefulness of both store and
forward teledermatology and automated
smartphone apps [87]. Teledermatology and
potential teledermoscopy—with the use of a
dermatoscope that is attachable to the smart-
phone—can provide convenience and accessi-
bility, reduce time travel, assist general
practitioners, and improve triage and manage-
ment [88]. In a recent study, patients were
invited to use a phone application to send pic-
tures of their suspicious skin lesions. About 70%
of participants stated that they would not have
seen a dermatologist without the program,
indicating that teledermatology could help
promote patient awareness [89]. Incorporating
CNN algorithms into smartphone applications
will provide an automated and trustful system
that will classify the patient’s lesion and provide
instructions accordingly. Consequently, teled-
ermatology and teledermoscopy are likely to aid
in improving patients’ screening and awareness,
and also reduce dermatologists’ workloads and
give time for the attention needed for high-risk
patients. Rajkomar’s et al. work on the use of
ML in medicine might be a guide for the future
direction of dermatology [10].

CONCLUSIONS

Machine learning plays a tremendous role in
dermatology and skin cancer detection. The

opportunities that lie ahead are unlimited,
starting from the automated classification of
skin cancer through CNN, automated total
body photography and sequential digital der-
moscopy to AI precision prevention and auto-
mated teledermoscopy. However, the
application of these algorithms in clinical
practice is premature. Limitations concerning
lack of generalizability and standardization,
consumer trust, and potential overdiagnosis
must continue to be addressed in order to bring
these new technologies safely into the real
world. Datasets with diverse images and differ-
ent populations, the inclusion of metadata and
close-up images, segmentation tools and use of
OOD and DICOM standards will help eliminate
the current limitations for future studies.
Finally, a clinician’s role, especially in onco-
logical patients remains fundamental, as no
machine can ever replace a human-to-human
relationship. Still, we have in our hands a tool
that if we use rationally under the correct
guidance and supervision, we can enhance
medical care. A new era is spreading ahead us,
whether we embrace it or not. We have a duty
to our patients to assess the opportunities and
create a better future for medicine and patients.
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