MATTERS ARISING

W) Check for updates

Inconsistent prediction capability of ImmuneCells.
Sig across different RNA-seq datasets
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ARISING FROM D. Xiong et al. Nature Communications https://doi.org/10.1038/s41467-020-18546-x (2020)

n Xiong et al.l, the ImmuneCells.Sig was identified as a gene

expression signature to predict response to immune check-

point therapy (ICT) from two immune cell subpopulations
that are highly enriched in tumors not responding to ICT. The
derived signature achieved high prognostic value in the discovery
dataset and three validation datasets, comparing to 12 previously
reported ICT response signatures in melanoma patients. We
found that the performance reported in the original paper can
only be achieved by using predictive models trained individually
on the same validation dataset. As the validation stage only
reports training error, the results could be overoptimistic and the
performance could drop if a model is trained on one dataset and
applied on another dataset.

Xiong et al.! analyzed scRNA-seq datasets from multiple stu-
dies to determine if certain types of immune cells and their
subclusters are associated with ICT outcomes. They found that
two immune cell subpopulations, namely, TREM2" macrophages
and y6 T cells are highly enriched in the ICT non-responding
tumors. Based on this finding, they further identified a gene
expression signature named ImmuneCells.Sig from the scRNA-
seq datasets and a bulk gene expression dataset GSE78220? for
the purpose of predicting response to immunotherapy. The
authors verified the correlations of the signature with ICT out-
comes and found that the signature achieved high prognostic
value in the discovery dataset (GSE78220 AUC 0.98). Immune-
Cells.Sig was then validated on three independent gene expression
datasets of pretreatment melanoma (GSE910613, PRJEB237094,
and MGSP®), and achieved AUC values of 0.96, 0.86, and 0.88,
respectively. PRJEB23709 is further split into two sub-datasets
according to the treatment scheme, and ImmuneCells.Sig
achieved AUC values of 0.88 and 0.93 for the two subsets
respectively. Comparisons with AUC values of 12 previously
reported ICT response signatures show that ImmuneCells.Sig
predicts the ICT outcomes of melanoma patients more accurately
across the above four gene expression datasets of melanoma.

Our concerns arise from an important issue in the validation
methodology of the prognostic values of ImmuneCells.Sig, which
would prevent the generalization of its prediction capability on
other datasets and hence limit its utilization value in medical

practice. The validation datasets (GSE91061, PRJEB23709, and
MGSP) were not used in developing the gene list of ImmuneCells.
Sig. However, in the source codes that we retrieved from the
Github repository released by the authors (https://github.com/
donghaixiong/Immune_cells_analysis, version 2.7.4), the AUC
values reported in the original paper can only be achieved by
using predictive models trained individually on the same vali-
dation dataset. In such a validation setup, the reported AUC value
in fact only reflects the training error rather than the test error.
Hence, the result can be overoptimistic and may not truly reflect
the classification accuracy if any of the trained models is applied
on other external datasets.

To illustrate the effect of overfitting due to training and testing
on the same dataset, we compared ImmuneCells.Sig with ran-
domly selected gene sets following the same training procedure as
used in the original paper (Methods). The average AUC values
from 50 bootstrapping in all datasets are higher than 0.75 from
random gene sets (Fig. 1). Notably, the highest AUC reaches 1 for
GSE78220, 0.917 for GSE91061, 0.902 for PRJEB23709, and 0.835
for MGSP. Moreover, none of the random gene sets has an AUC
performance lower than 0.7, indicating that training error could
be misleading in reporting the prediction performance of a
machine learning algorithm.

When applying machine learning algorithms to a real-life
scenario, the generalizability of the model has to be evaluated
using test data which shall not appear in the model training
procedure. To this end, the datasets from which the model learns
its parameters shall typically be split into three sets, namely,
training, validation, and test sets. The training set is used to fit the
models, the validation set is used to estimate prediction error for
model selection, while the test set is used for assessment of the
generalization error of the chosen model. Ideally, the test set
should be kept in a “vault”, and be brought out only at the end of
the data analysis®. Clearly, with only the performance on the
training set, it is insufficient to conclude that the features can
apply to other datasets due to possibilities of model overfit.

We next tested the generalization capability of ImmuneCells.
Sig using the four melanoma datasets from the original paper
(Methods). We found that the predictive model using features
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Fig. 1 The predictive ability of a random gene set by using the same implementation scheme with Xiong et al.! on four melanoma datasets. Fifty
random sampling of around 100 genes among total genes in each dataset were tested faithfully using the implementation provided by the original paper.
The actual number of genes used is 103 for GSE78220 and GSE91061, 101 for PRJEB23709, and 98 for MGSP. Box plots show the median (center line),
upper quartiles and lower quartiles with whiskers extend to 1.5x interquartile range. The dotted line is drawn at AUC value equal to 0.7.
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Fig. 2 The performance of the InmuneCells.Sig signature on predicting ICT outcomes in four melanoma patient datasets. For each ROC curve plot, the
plot title refers to the training dataset for the predictive model, while the trained model was tested on the three remaining datasets.

2 | (2021)12:4167 | https://doi.org/10.1038/s41467-021-24303-5 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

MATTERS ARISING

from ImmuneCell.Sig did not show robust prediction results
(Fig. 2). In most cases, the testing AUC values are around 0.5,
which clearly casts doubt on using the developed model in clinical
applications to predict the outcome in melanoma patients
receiving immunotherapy.

In summary, our results do not dispute the potential immune
suppressive roles of the cell subtypes identified in the original
paper, or the potential predictive values of the genes in the
ImmuneCells.Sig gene set. Rather, we have demonstrated that the
predictive model developed in the original paper is not able to
generalize across different RNA-seq datasets. Although Immu-
neCells.Sig was not developed in the validation datasets, the
reported predictive error on each validation dataset in the original
paper is actually the training error from classification models
trained on the same dataset. Therefore, the generalizability of the
model was not evaluated in the original paper. We further
demonstrated that ImmuneCells.Sig with the nearest-centroid
classification model as described in the original paper was unable
to predict ICT outcomes well on independent test sets not seen in
the training set. Therefore, we conclude that there is insufficient
support that ImmuneCells.Sig could be applied for clinical deci-
sion making in melanoma patients receiving immunotherapy.

Methods

RNA-seq expression datasets. We downloaded the preprocessed datasets
GSE782202, GSE910613, PRJEB23709*%, and MGSP® directly from Xiong et al.!
(https://github.com/donghaixiong/Immune_cells_analysis). The preprocess proce-
dure in the original paper included three steps. First, the raw RNA-seq reads were
aligned to the hg19 human reference genome using Bowtie-TopHat (version 2.0.4)7.
Then, the gene expression read counts were obtained with the htseq-count Python
script from HTSeq v0.11.1 (https://htseq.readthedocs.io/en/release_0.11.1/). The
read counts data were further transformed by regularized log (DESeq2 v1.28.18).

Testing with random gene sets shows the effect of overfitting. The Immu-
neCells.Sig signature was discovered from the scRNA-seq datasets® and a bulk gene
expression dataset GSE782202. A nearest-centroid classifier!®>!! was then trained
by cancerclass v1.32.0 R package!® to predict ICT response using the identified
signature. The performance of the prediction was then evaluated by the receiver
operating characteristic curves (ROC) and the area under the ROC curve (AUC).

To illustrate the effect of overfitting due to training and testing on the same
dataset, we evaluated random gene sets with the same implementation. We
randomly drew a set of genes from all the genes present in each gene expression
dataset without considering their biological functions as a signature, and trained
nearest-centroid classifiers individually on each dataset using the model fitting code
provided by the original paper!. For fair comparison, the number of genes selected
equals the number of genes of the ImmuneCells.Sig signature for each dataset,
respectively (103 genes for GSE78220 and GSE91061, 101 genes for PRJEB23709,
and 98 genes for MGSP). After 50 bootstrapping in all datasets, the highest AUC
value could reach 1 for GSE78220, 0.917 for GSE91061, 0.902 for PRJEB23709, and
0.835 for MGSP (Fig. 1).

The generalization capability of ImmuneCells.Sig. To test the generalization
capability of the ImmuneCells.Sig signature, we changed the prediction process
such that one dataset was used for training a model with the original model fitting
code without modification, while the remaining independent datasets were used for
testing. The predictive models using ImmuneCell.Sig did not show robust pre-
diction results (Fig. 2). In some cases, the testing AUC values were below 0.5.

Data availability

All data used in this study are freely available at https://github.com/xmuyulab/
ImmuneCellsSig_ Comment/tree/main/data (from the original paper!). Four public
datasets can be retrieved from Gene Expression Omnibus (GEO) under accession
numbers GSE78220, GSE91061, from ENA project under accession number
PRJEB23709, and MGSP from dbGaP under accession number phs000452.v3.p1.

Code availability
All data analysis code used in this study is freely available at https://github.com/
xmuyulab/ImmuneCellsSig_ Comment/.
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