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Endometriosis is one of the most common gynecological diseases among young women of reproductive age. Thus far, it has not
been possible to define a parameter that is sensitive and specific enough to be a recognized biomarker for diagnosing this disease.
Nonspecific symptoms of endometriosis and delayed diagnosis are impulses for researching noninvasive methods of
differentiating endometriosis from other gynecological disorders. We compared three groups of individuals in our research:
women with endometriosis (E), patients suffering from other gynecological disorders (nonendometriosis, NE), and healthy
women from the control group (C). Partial least squares discriminant analysis (PLS-DA) models were developed based on
selected serum biochemical parameters, specific regions of the serum’s infrared attenuated total reflectance (FTIR ATR)
spectra, and combined data. Incorporating the spectral data into the models significantly improved differentiation among the
three groups, with an overall accuracy of 87.5%, 97.3%, and 98.5%, respectively. This study shows that infrared spectroscopy
and discriminant analysis can be used to differentiate serum samples among women with advanced endometriosis, women
without this disease, i.e., healthy women, and, most importantly, also women with other benign gynecological disorders.

1. Introduction

Endometriosis (E) is a benign gynecological disease in which
endometrial tissue grows outside the uterus and acts as a
eutopic endometrium, causing local inflammation and fibro-
sis. The consequences of this process include chronic pain
and changes leading to infertility [1]. Despite numerous
studies, no clear cause for the development of endometriosis
has yet been identified, suggesting multifactorial pathogene-
sis [2, 3]. This is the fundamental problem that makes
proper disease diagnosis and treatment difficult since no
highly specific diagnostic marker exists. So far, laparoscopy
has been recognized as the golden standard of endometriosis

diagnostics. However, the current ESHRE guideline (2022)
does not support this recommendation anymore, and now,
laparoscopy is recommended only for patients with negative
imaging results and/or where empirical treatment was
unsuccessful or inappropriate. However, members of the
Endometriosis Guideline Core Group emphasize that there
is still an urgent need for more research to gain more clarity
on the most appropriate diagnostics, including laboratory
diagnostics [4]. Therefore, there is a great need for a broadly
understood, noninvasive diagnosis of endometriosis.

Infrared (IR) and Raman spectroscopy can provide
information enabling correct and detailed characteristics of
different diseases [5]. Changes in tissues, cells, and body
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fluids due to lesions and infection are reflected in the spectro-
scopic data of biological material. Thus, disease-specific spec-
tral biomarkers of blood or serum could support effective
medical diagnostics and have a significant impact on rapid
screening for potential patients in large-population tests [6–8].

Attenuated total reflection (ATR) allows IR data of sam-
ples to be collected in their native state. The major advantage
of this method is that samples can be examined directly in
the solid or liquid state without further preparation. For
blood serum samples, spectra can be recorded directly for
hydrated samples, as they are, or for thin films obtained by
drying the fluid on an ATR crystal. In the former case,
strong water bands obscure the shape of signals from the
remaining components present in the sample. Formally,
water contributions can be subtracted from serum spectra,
but some specific features in a difference spectrum can be
skewed due to hydrogen bonding stabilizing the molecules’
structures. The most common procedure applied in blood
spectroscopy is collecting IR data from dried, thin films.
However, drying serum samples on the ATR crystal is a
time-consuming procedure. As an alternative, the ATR spec-
tra of the freeze-dried or lyophilized sera can be utilized. The
quality of classification based on IR data depends on the
sample storage, drying processes, and other preanalytical
factors [9].

Spectroscopic methods usually generate large datasets
consisting of thousands of variables, absorbances in the case
of ATR spectroscopy. Very often, a strong correlation is
observed between absorbances registered at different wave-
numbers. Additionally, spectra can be distorted by spectral
noise, depending on the instrumental factors and sample
characteristics. Therefore, analysis is often supported by
multivariate methods to extract relevant information from
spectral data, reduce their dimensionality, and avoid overfit-
ting. By applying principal component analysis (PCA) or
discriminant analysis (DA), it is possible to distinguish
among samples belonging to particular groups [10]. A con-
junction of ATR spectroscopy and multivariate modeling
techniques has found applications in molecular fingerprint-
ing of disease development, including of breast, brain, and
ovarian cancers [11–16]. Classification has been reported
of sera samples from patients with Salmonella [17] or viral
infections [18–20]. Serum spectra were also used to deter-
mine levels of total protein [21], glycated albumin [22],
lipidic parameters [23, 24], and glucose [25].

In this study, we present multivariate models that can
discriminate among advanced endometriosis, nonendome-
triosis, and healthy controls by applying previously deter-
mined biochemical parameters of serum samples [2, 26]
and their ATR spectra. In a commonly used approaches,
two groups, i.e., patients and healthy controls, are usually
taken into account [27, 28]. However, in our research, two
groups of women suffering from benign pathologic condi-
tions, one with advanced endometriosis and one for which
endometriosis was excluded, were compared with a group
of healthy women without any symptoms of inflammation
or medical history of endometriosis, to select biomarkers
allowing for discrimination among these three groups of
women.

2. Materials and Methods

2.1. Serum Samples. Serum samples from patients with
advanced endometriosis (E, n = 29, interquartile range of
age 31.0–43.0) and without endometriosis (reference group;
nonendometriosis, NE, n = 24, interquartile range of age
33.0–43.5) were collected at the Department of Oncological
Gynecology, Wroclaw Comprehensive Cancer Center. The
control group comprised healthy female volunteers (control
group, C, n = 18, interquartile range of age 35.0–41.0). The E
and NE groups had undergone surgical interventions,
mainly laparoscopy; following histological verification, they
were assigned to the proper group. Patients belonging to E
group had advanced endometriosis, corresponding to the
revised American Fertility Society classifications of stages
III (n = 12) and IV (n = 17). Women in the NE group were
histologically confirmed to have leiomyomas, benign ovarian
cysts or severe cervical dysplasia, and cervical intraepithelial
neoplasia grade 3 (CIN 3). The control group consisted of
healthy, nonpregnant women of reproductive age who were
premenopausal, lacked gynecological problems, had no his-
tory or symptoms related to endometriosis, and had no
symptoms of inflammation, therefore, they were not quali-
fied for laparoscopy. The main exclusion criterion for all
groups was cancer, present, treated, or past. Another exclu-
sion criteria were menopause and previous hysterectomy.
Due to the homogeneity of the study group (E), the exclu-
sion criterion was endometriosis in the cyst of the abdominal
integuments and the postoperative scar and adenomyosis.
Only patients with confirmed stage III or IV of endometri-
osis according to the rAFS classification were included in
the study. The reference group (NE) included only patients
with histopathologically excluded endometriosis, but with
mild gynecological disorders. Women from the control
group were recruited from among employees of the Wroc-
law Medical University and from our friends. All of the par-
ticipants were of a similar age and had comparable body
mass indexes.

All information regarding blood collection and handling
was described in our previous work [2, 26]. The present
study was conducted in agreement with the Helsinki II Dec-
laration, and the protocol was approved by the Bioethics
Human Research Committee of Wroclaw Medical Univer-
sity (No. 231/2019, No. 634/2019, and No. 685/2019). All
of the subjects gave written and informed consent prior to
their participation in the study. All of the biochemical anal-
yses were carried out in accordance with the manufacturers’
instructions.

2.2. Biochemical Analysis. High sensitive interleukin 1β
(hsIL-1β), interleukin 6 (IL-6), chitinase-3-like protein 1
(YKL-40), sirtuins (SIRTs: SIRT3, SIRT5, and SIRT6), and
telomerase (TE) levels were determined with commercially
available ELISA tests. Human IL-1β ELISAPRO kits (MAB-
TECH AB, Nacka Strand, Stockholm, Sweden) were used to
measure hsIL-1β concentrations. High Sensitivity ELISA kit
(The Covalab, Villeurbanne, France) and Human Chitinase-
3-like Protein 1 ELISA Kit (Bioassay Technology Labora-
tory, Shanghai, China) were used for determining IL-6 and
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YKL-40 concentrations, respectively. Sirtuin concentrations
were measured with Human Sirtuin 3 ELISA Kit, Human
Sirtuin 5 ELISA Kit, and Human Sirtuin 6 ELISA Kit (Bioas-
say Technology Laboratory, Shanghai, China), and TE levels
were determined using Human Telomerase ELISA Kit
(CUSABIO Technology LLC, Wuhan, China). A Mindray-
96A ELISA plate reader (Mindray, Shenzhen, China) was
used to measure the concentrations of these inflammatory
parameters. C-reactive protein (CRP) and immunoglobulin
G (IgG) concentrations were measured using the immuno-
turbidimetric method, highly sensitive for CRP (U-hs DiaSys
Diagnostic Systems GmbH, Holzheim, Germany) and
immunoglobulin G (FS DiaSys Diagnostic Systems GmbH,
Holzheim, Germany), respectively, using the biochemical
analyzer Konelab 20i® (ThermoScientific, Vantaa, Finland).
This analyzer was also used to determine the levels of total
antioxidant status (Randox TAS Kit, Crumlin, United King-
dom), glucose (GLU), total protein (T-P), albumin (ALB),
total bilirubin (T-BIL), uric acid (UA), iron (Fe) (Thermo
Scientific, Vantaa, Finland), calcium (Ca), magnesium
(Mg), total cholesterol (T-CHOL), triglycerides (TG), and
high-density lipoprotein (HDL) cholesterol (DiaSys Diag-
nostic Systems GmbH, Holzheim, Germany). LDL (low-
density lipoprotein) cholesterol was calculated using Friede-
wald’s formula. Carcinoma antigen 125 (CA 125), prolactin
(PRL), and estradiol (E2) concentrations were measured by
Cobas® 6000 analyzer (Roche, Mannheim, Germany). The
concentrations of advanced protein oxidation products
(AOPP) were measured according to the method of
Witko-Sarsat et al. [29], and the ferric-reducing antioxidant
power (FRAP) was measured using Benzie and Strain’s
method [30]. Levels of these parameters were measured
using the UV/Vis spectrophotometer (UV-6300PC, VWR,
Shanghai, China).

2.3. Spectroscopic Conditions. Attenuated total reflection
(ATR) FTIR spectra of serum samples were recorded with
an iS50 FTIR spectrometer (Thermo Nicolet, Madison, WI,
USA) using a single-reflection Golden Gate (Specac, Slough,
UK) diamond accessory. Measurements were performed
using a KBr beamsplitter and a DTGS detector. Interfero-
grams were averaged over 128 scans. Next, they underwent
Happ-Genzel apodization and Fourier transformation using
a zero-filling factor of 2 to give spectra in the 400-4000 cm-1

range with a resolution of 4 cm-1. A single FTIR spectrum of
serum consisted of 7,469 absorbance points.

Before measurement, the frozen serum samples were
thawed at room temperature for 30min. An aliquot of
10μL of serum was deposited on ATR crystal and
nitrogen-dried over 60min to obtain a thin film of biological
material to analyze. After each measurement, the crystal was
cleaned with methanol. Serum samples belonging to various
groups of women were measured alternately.

2.4. Computational Analysis. The studied datasets, i.e., matri-
ces of the biochemical diagnostic parameters (71 × 29) and the
absorbance intensities of the ATR spectra (71 × 7469), were
analyzed by applying PCA and discriminant analysis using par-
tial least squares regression through PLS-Toolbox in MATLAB

(ver. R2010a, MathWorks, Natwick, MA, USA). The second
derivatives of spectral data were computed utilizing the
Savitzky–Golay algorithm, applying third-degree polynomial
and 15-point windows. Biochemical data were autoscaled
before chemometric modeling, while the ATR spectra were
mean-centered. The constructed models were cross-
validated by applying the leave-one-out procedure. General
least squares weighting (GLSW) was applied to PCA per-
formed on the serum parameters [31]. Variables were
selected by applying the interval PLS (iPLS) algorithm, as
implemented using PLS-Toolbox, working in a forward
mode. The mean spectra, together with the standard devia-
tion (SD) of absorbance at each wavenumber, were com-
puted to determine and compare the average IR spectra for
all three sample groups.

2.5. Principal Component Analysis (PCA). Data originating
from modern spectrometers are characterized by highly
redundant information. In typical analyses, the number of
obtained variables, e.g., absorbance at a given wavenumber,
is much greater than the number of analyzed objects. PCA
transforms correlated explanatory variables into new ones
that do not show any correlation. These new variables, i.e.,
principal components (PCs), are linear combinations of
explanatory variables, and each PC is orthogonal to the
others. The successive PCs explain decreasing variance pres-
ent in the data not accounted for by previous PCs. When a
specific variability resulting from the nature of the investi-
gated objects is greater than undesirable random variability,
only the k-first PCs are considered [32]. Therefore, using
PCs can reduce data dimensionality significantly without
information loss.

PCA decomposes the X data matrix, containing n rows
(objects) andm columns (variables), into two smaller matrices:

Xn,m = Tn,k × PT
k,m + En,m, ð1Þ

where T (the scores matrix) describes the relations among
the samples, P (loadings) provides the mutual dependencies
between variables, and E shows differences between the data
matrix values and those obtained from the product of matrices
T and P.

2.6. Partial Least Squares Discriminant Analysis. Partial least
squares discriminant analysis (PLS-DA) is a chemometric
technique for separating groups of samples by combining a
dataset matrix (X) with class membership (Y). This
approach is aimed at maximizing the covariance between
the independent variables X and the corresponding depen-
dent variable Y of highly multidimensional data by finding
a linear subspace of the explanatory variables. This new sub-
space allows Y to be predicted based on a reduced number of
PLS factors or latent variables (LV). These factors describe
the behavior of dependent variables and include a subspace
onto which independent variables are projected [33, 34].
The main advantage of PLS-DA is its ability to handle highly
collinear and noisy data, which are very common outputs
from spectroscopic measurements or metabolomics experi-
ments. This technique provides a visual interpretation of
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complex datasets through low-dimensional, easily interpret-
able score plots that illustrate the separation between differ-
ent groups [33].

2.7. Classifier Evaluation Criteria. Different criteria can be
used to evaluate the quality of classifiers. In our analysis,
classification accuracy, sensitivity, specificity, and receiver
operating characteristic curves (ROC) were used to charac-
terize the performance of the obtained PLS-DA models. In
medical applications, the model characterized by higher area
under the ROC is better suited for distinguishing patients
from healthy subjects. “Positive” and “negative” results are
classification predictions obtained from the model. “True”
and “false” are the actual data. The sensitivity, specificity,
and accuracy were calculated using the following equations:

Sensitivity = TP
TP + FN

, ð2Þ

Specificity =
TN

TN + FP
, ð3Þ

Accuracy =
TP + TN

TP + TN + FP + FN
, ð4Þ

where TP and TN denote the true-positive and true-negative
values and FP and FN represent false-positive and false-
negative values, respectively.

3. Results and Discussion

Diagnosing endometriosis based on parameters of periph-
eral blood serum is not straightforward. The disease’s devel-
opment appears directly related to inflammatory processes,
and since there is no specific biomarker [35], only a combi-
nation of commonly determined blood biochemical markers

may allow endometriosis to be distinguished from other
inflammatory conditions and, in the future, increase the
chances of detecting endometriosis in large-scale tests of
serum samples from women. Table 1 provides values of
selected biochemical parameters for the three groups of sub-
jects, and Table S1 in the Supplementary Materials contains
a complete list of the examined serum parameters.

3.1. Multivariate Analysis of Serum Parameters. Our recent
studies discussed the importance of selected blood serum
parameters for advanced endometriosis diagnostics [2, 26].
The most promising serum parameters as markers of
inflammation and oxidative-antioxidant balance were inter-
leukin 6, prolactin, CA 125, FRAP, telomerase, and
advanced protein oxidation products. Although these
parameters are not specific to advanced endometriosis, they
can serve as useful noninvasive diagnostic tools for identify-
ing patients with high risk of developing advanced endome-
triosis. This itself is a challenge.

Principal component analysis (PCA) was performed on
an autoscaled matrix of parameters without any additional
pretreatment. The distribution of the objects in the PC1/
PC2 coordination system, as presented in Fig. S1 in the Sup-
plementary Materials, showed no specific grouping of sam-
ples, and combination of higher PCs did not improve the
separation. Separation of the three samples groups became
clearer when applying general least squares weighting
(GLSW) which resulted in the expected sample arrangement
in the PCA score plot. This plot together with the loadings
on PCs is presented in Fig. S2 in the Supplementary Mate-
rials. Given these plots, the parameters displaying the most
pronounced impact on differentiation among serum samples
were CA 125, immunoglobulin G, albumin, magnesium,
hsIL-1β, and FRAP. Our findings seem to be particularly
important considering that during the development of

Table 1: Serum biochemical parameters for the studied groups.

Endometriosis
n = 29

Nonendometriosis
n = 24

Control
n = 18

Mean ± SD Mean ± SD Mean ± SD
PRL (ng/mL) 29:01 ± 18:71 27:02 ± 18:62 12:84 ± 4:86

CA 125 (U/mL) 113:41 ± 129:42 23:64 ± 17:39 14:28 ± 7:40

IgG (mg/dL) 1065:46 ± 286:73 1078:22 ± 298:25 1237:28 ± 215:91

hsCRP (mg/L) 14:29 ± 19:45 13:88 ± 19:96 0:96 ± 1:19

Albumin (g/dL) 4:36 ± 0:64 4:13 ± 0:32 4:26 ± 0:19

Calcium (mg/dL) 9:62 ± 1:15 9:35 ± 0:49 9:29 ± 0:25

Magnesium (mg/dL) 2:44 ± 0:37 2:47 ± 0:18 2:22 ± 0:14

hsIL-1β (pg/ml) 0:57 ± 0:39 0:56 ± 0:46 0:27 ± 0:26

IL-6 (pg/ml) 19:33 ± 43:69 18:05 ± 34:09 1.47± 1.48
FRAP (mmol/L) 1:11 ± 0:26 1:18 ± 0:30 0:95 ± 0:22

AOPP (μmol/L) 235:16 ± 150:41 181:78 ± 156:00 105:16 ± 49:24

YKL-40 (ng/mL) 685:22 ± 1246:58 403:29 ± 934:76 104:12 ± 154:07

AOPP: advanced protein oxidation products; CA 125: carcinoma antigen 125; FRAP: ferric-reducing antioxidant power; hsCRP: high sensitive C-reactive
protein; hsIL-1β: high sensitive interleukin 1β; IgG: immunoglobulin G; IL-6: interleukin 6; PRL: prolactin; YKL-40: chitinase-3-like protein 1. Data
presented in the table are a part of previously published study results [2, 26].
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inflammation, an increase in the serum concentration of
inflammatory markers CA 125 and IgG and the proinflam-
matory cytokine hsIL-1β is observed, with a simultaneous
decrease in the level of albumin, i.e., acute phase protein.
Increased FRAP, as one of the antioxidant markers reflecting
blood plasma’s antioxidant capacity, is associated with ele-
vated free radical production; their concentration increases
significantly in inflammatory conditions. On the other hand,
magnesium deficiency may also be associated with inflam-
mation and increased concentration of free radicals. Inflam-
matory mediators and free radicals could induce oxidative
DNA damage [36, 37]. Previous studies have suggested that
persons with endometriosis experience vascular inflamma-
tion [38, 39]. Magnesium relaxes smooth muscle [40, 41]
and thus may be related to endometriosis through its influ-
ence on retrograde menstruation [41]. The obtained PCA
score plots are even more important because PCA belongs
to a group of an unsupervised methods and the algorithm
does not take class affiliation into account during matrix
decomposition.

In the next step, the PLS-DA model was constructed by
applying the same dataset of serum parameters. The model
including all available parameters separated the samples
belonging to E, NE, and controls relatively well. The PLS-
DA scores are shown in Figure 1, and Fig. S3 in the Supple-
mentary Materials presents the variable importance in pro-
jection (VIP) scores. The latter plot indicates that CA 125,
together with albumin and magnesium content, had the
strongest impact on differentiation among the three studied
groups. Our findings are in line with those of the previous
studies, in which advanced endometriosis was associated
with high serum CA 125 levels [36]. Due to the lack of a spe-
cific marker for endometriosis, CA 125 concentration in
serum is considered an important prognostic factor in
patients with endometriosis in clinical practice and should

be considered when surgical treatment is suspected, particu-
larly when assessing the disease’s severity, the size of the
lesion, and adhesions [42]. Interestingly, in comparison to
PCA modeling, no pronounced differences were observed
in sample classification when the GLSW pretreatment was
used.

The interval PLS (iPLS) algorithm was applied to select
variables, in order to reduce the dimensionality of the
parameters’ matrix and find the most significant determi-
nants of serum. On this basis, six of the 29 diagnostic param-
eters were chosen. The obtained set, namely, CA 125, IgG,
CRP, albumin, magnesium, and chitinase-3-like protein 1
(YKL-40), is quite similar to that one found using VIP
scores. All of the selected parameters reflect the ongoing
inflammation. It is believed that YKL-40 is a marker which
excludes endometriosis, rather than confirms its presence
or progression [2, 43]. The classifier constructed for four
LVs (latent variables) applying selected inputs was charac-
terized by accuracy of 91-92% (86-89%), sensitivity of 81-
94% (75-94%), and specificity of 89-100% (87-95%), with
the models’ cross-validation results shown in parentheses.
In our opinion, the results presented above clearly indicate
the high clinical usefulness of the selected parameters for
identifying advanced endometriosis diagnoses. Detailed
characteristics of the obtained PLS-DA model are presented
in Table 2 and Table S2 in the Supplementary Materials. The
PLS-DA model’s scores are shown in Figure 1, while plots of
the receiver operating characteristic (ROC) curves,
expressing the classification performance, are shown in Fig.
S4 in the Supplementary Materials.

3.2. ATR Spectra of Serum. In parallel with biochemical anal-
ysis, FTIR ATR spectra of 71 human sera were collected.
Figure 2 and Fig. S5 in the Supplementary Materials show
the IR spectra of the samples from the three groups of women.
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Figure 1: Score plots for PLS-DA modeling of biochemical data from serum samples: (a) all parameters included (n = 29) and (b) iPLS
variable selection ðn = 6Þ. E: endometriosis; NE: nonendometriosis; C: control group of healthy women.
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Tentative assignments of the vibrational bands present in
ATR spectra can be found elsewhere [44, 45]. The spectra
of the E, NE, and C groups are very similar, and subtraction

plots (Fig. S6 in the SupplementaryMaterials) indicate that their
differences exceeded the standard deviation of absorbance
intensity for the mean spectra only at particular wavenumbers.

Table 2: Parameters of PLS-DA models.

Parameter
Biochemistry FTIR ATR Fused data

E NE C E NE C E NE C

Accuracy 92.2 (87.5) 92.2 (85.9) 90.6 (89.1) 98.6 (92.9) 97.1 (92.9) 98.6 (94.3) 98.5 (94.1) 98.5 (95.6) 100 (98.5)

Sensitivity (TPR) 80.8 (76.9) 90.0 (75.0) 94.4 (94.4) 96.6 (89.7) 95.8 (91.7) 100 (88.2) 96.3 (92.6) 100 (91.3) 100 (100)

Specificity (TNR) 100 (94.7) 93.2 (90.9) 89.1 (87.0) 100 (95.1) 97.8 (93.5) 98.1 (96.2) 100 (95.1) 97.8 (97.8) 100 (98.0)

Precision (PPV) 100 (90.9) 85.7 (78.9) 77.3 (73.9) 100 (92.9) 95.8 (88.0) 94.4 (88.2) 100 (92.6) 95.8 (95.5) 100 (94.7)

F1-score 89.4 (83.3) 87.8 (76.9) 85.0 (82.9) 98.2 (91.2) 95.8 (89.8) 97.1 (88.2) 98.1 (92.6) 97.9 (93.3) 100 (97.3)

Overall accuracy 87.5 (81.3) 97.3 (89.9) 98.5 (94.3)

E: endometriosis; NE: nonendometriosis; C: control group of healthy women; TPR: true positive rate; TNR: true negative rate; PPV: positive predictive value.
In parenthesis, the results of cross-validation are shown.
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Figure 2: Average FTIR ATR spectra of sera in the 700-1450 cm-1 range for the three studied groups (a) and the second derivatives of the
spectra (b); the black dots indicate variables selected by iPLS for the PLS-DA model. E: endometriosis; NE: nonendometriosis; C: control
group of healthy women; cm-1: unit of the wavenumbers presented as the reciprocal centimeters.
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Preparations of thin serum film onto an ATR crystal are
not always reproducible and can result in nonequal sample
deposition on the crystal, despite attempts to follow all
established procedures. This can result in uneven drying of
the samples, which generates undesirable spectral variation
[46]. An effect of absorbance changes to IR spectra in a dry-
ing function is shown in Fig. S7 in the Supplementary Mate-
rials. The greatest variability of signal in the serum spectra
was observed in the amide band regions. Drying resulted
in strong changes to the intensity of the ν(OH) band in
the 3000-3500 cm-1 range and the narrowing of the amide
A band. Drying enhances spectral features originating from
chemical components of serum, whereas strong water absor-
bance was observed in wet samples. These changes are
observable for the amide I and II bands in the IR serum
spectra, with maxima at about 1640 and 1540 cm-1, respec-
tively. As is visible in Fig. S7 in the Supplementary Materials,
changes to the water content influence the band positions,
which, in the case of unequal drying of serum samples, can
be a source of additional variability influencing the classifi-
cation results. This effect also may be important when ana-
lyzing signal intensity. Taking our observations into
account, and based on the experiences of other researchers,
we standardized the conditions of the analysis process to
obtain reliable and repeatable results. In a series of prelimi-
nary experiments, the biological samples were dried for
60min. After this time, changes in the IR spectra’s absor-
bance were much smaller than those observed after shorter
time intervals were. The scores and loadings of the PCA
obtained for the dried samples are plotted in Fig. S8 in the
Supplementary Materials.

3.3. Multivariate Modeling of Spectral Data. Special attention
was paid to the 700-1450 cm-1 range of the ATR spectra. As
other studies pointed out, spectral ranges outside of amide

band regions are better suited to discriminating between ill
and healthy subjects [28, 47]. The second derivatives of
ATR spectra without additional pretreatment were used to
construct chemometric models. The score plots of PCA for
this spectral region did not allow the three groups of serum
samples to be separated when considering the first two prin-
cipal components. Only adding the third and fourth PCs
allowed healthy controls to be distinguished from the E
and NE groups but without clear distinction between
advanced endometriosis and nonendometriosis patients.
The score plots of PCA are shown in Fig. S9 in the Supple-
mentary Materials. Discriminant analysis resulted in a quite
similar distribution of samples. The score plots obtained
from PLS-DA (Fig. S10 in the Supplementary Materials)
show a clear separation between control and ill patients;
however, similarly to PCA, E and NE objects were mixed.
This suggests that the region of sera spectrum applied for
modeling contains characteristic features that are correlated
with overall inflammatory conditions but does not enable
the recognition of different inflammation sources.

The VIP score plots were used to improve the quality of
discrimination among the three studied groups based on the
serum’s ATR spectra (Fig. S11 in the Supplementary Mate-
rials). This method can indicate variables with differing
spectra among the three examined groups. However, models
constructed based on manually selected inputs did not
enable satisfactory separation between the E and NE groups.
Cleaner separation between samples was obtained with the
PLS-DA model built with variables selected by the iPLS pro-
cedure. Taking into account the dimensionality of the absor-
bance data matrix, 10-variable intervals, corresponding to
the spectral resolution of the ATR spectra, were established
during the procedure. Eight intervals within the analyzed
spectral range, i.e., 80 points of spectral data, were selected
as inputs, as highlighted in Figure 2. The variables selected
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Figure 3: PLS-DA score plots obtained for the ATR spectra of the serum samples for the model applying the 700-1450 cm-1 range (a) and
the model with variables selected via iPLS (b). E: endometriosis; NE: nonendometriosis; C: control group of healthy women.
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by the iPLS cover spectral regions containing some charac-
teristic vibrations in the IR spectra of serum. These include
the peaks at 1056 and 1080 cm-1, characteristic of nucleic
acids, the νas(PO2

-) vibrations of phospholipids or ν(C-O)
of ribose, and the band at 1186 cm-1, which can be assigned
to the C-O-C asymmetric vibrations of phospholipids, tri-
glycerides, and cholesterol esters. The selected variables also
included a peak at about 1137 cm-1, which can be assigned to
the νas(CO-O-C) vibration of glycan DNA and RNA and the
ν(C-O) of ribose; the band at 1213 cm-1, characteristic of A-
DNA, νas(PO2

-) and RNA vibrations; and a contribution at
1241 cm-1 from nucleic acids, the νas(PO2

-) vibrations and
immunoglobulins [44, 45].

In the resulting model, the two first latent variables
described about 80% of the total variance present in spectral
data, versus 63% by a model built without variable selection.
The PLS-DA scores are presented in Figure 3; the ROC plots
obtained for the developed model are shown in Fig. S12 in
the Supplementary Materials. The modeling parameters are
gathered in Table 2 and S2 in the Supplementary Materials.
The model constructed using five PLS factors was character-
ized by accuracy of 97-99% (93-94%), sensitivity of 96-100%
(88-92%), and specificity of 98-100% (93-96%) for the three
studied groups; the cross-validation results are shown in
parentheses. The quality parameters determined for the con-
structed classifier were significantly higher than those
obtained from modeling biochemical data, and the overall
accuracy reached 97% (Table 2).

The obtained results show compatibility between the
biochemical and spectral data for the three studied patient
groups, indicating that changes to the chemical composition
of serum samples due to inflammatory conditions in
advanced endometriosis and nonendometriosis patients
have straightforward effects on their ATR spectra. Even

when such differences are quite subtle, the variability present
in spectral data can be separated effectively by PLS-DA,
making vibrational spectroscopy a potential tool for detect-
ing advanced endometriosis.

3.4. Models Based on Fused Data. It seems justified to check
whether classification models built using both biochemical
and spectral data from serum samples would allow for better
separation of the analyzed patient groups. This is not a
straightforward operation because biochemical and spectral
data differ. First, the number of biochemical parameters is
orders of magnitude smaller than the number of points in
the analyzed spectra. Second, their values also differ by
orders of magnitude. Third, a noticeable proportion of spec-
tral data provides no useful information due to spectral
noise. To select a set of IR intensities representing the 700-
1450 cm-1 range of ATR spectra, PCA was performed on a
transposed matrix of the spectra’s second derivatives. The
original data were reduced by a factor of 10 after selecting
evenly distributed points from each quadrant of the PC1/
PC2 scores plot (Fig. S13 in the Supplementary Materials).
Next, range scaling was applied to obtain a fused dataset
containing biochemical parameters values normalized
between 0 and 1 as well as intensities at selected wavenum-
bers. A representative input is presented in Figure 4.

Prior to modeling, the iPLS algorithm was used again to
select the most relevant variables in the matrix of fused data.
Absorbances at 10 wavenumbers (731, 747, 796, 834 1060,
1078, 1094, 1100, 1125, and 1243 cm-1) were selected by iPLS
from the spectral portion of the combined dataset (Figure 4).
Among them, the contributions can be distinguished from
the C-C and C-O vibrations of carbohydrates (1094 and
1100 cm-1), features originating from nucleic acids and
phospholipids (intensities at 1060 and 1078 cm-1) and
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immunoglobulins (band at 1243 cm-1) [44, 45]. Interestingly,
among the 10 selected biochemical parameters of serum,
three, CA 125, albumin, and magnesium, were the same as
those selected for the classifier constructed for biochemical
data, which seems to confirm their crucial role in separating
the three patient groups. The remaining selected parameters
include prolactin, total antioxidant status (TAS), total pro-

tein (T-P), total bilirubin (T-BIL), calcium (Ca), uric acid
(UA), and hsIL-1β. These parameters are related to both
the oxidative-antioxidant balance and inflammation state.
Particular attention, except CA 125, should be paid to pro-
lactin, which has a pleiotropic effect on the human body.
Its most important functions are related to reproduction,
calcium metabolism, osmoregulation, and behavior.

00.20.40.60.810

0.5

1

Sp
ec

ifi
ci

ty
 (C

)
Sp

ec
ifi

ci
ty

 (E
)

Sp
ec

ifi
ci

ty
 (N

E)

Sensitivity (C)
–1 –0.5 0 0.5 1 1.5 20

0.5

1

Threshold (C predicted)

Threshold (E predicted)

Threshold (NE predicted)

Sp
ec

ifi
ci

ty
 (C

)

Se
ns

iti
vi

ty
 (C

)

00.20.40.60.810

0.5

1

Sensitivity (E)
–1 –0.5 0 0.5 1 1.5 20

0.5

1

Sp
ec

ifi
ci

ty
 (E

)

Se
ns

iti
vi

ty
 (E

)

00.20.40.60.810

0.5

1

Sensitivity (NE)
–1 –0.5 0 0.5 1 1.5 20

0.5

1

Sp
ec

ifi
ci

ty
 (N

)

Se
ns

iti
vi

ty
 (N

E)
 

(a)

Sc
or

es
 o

n 
LV

2 
(1

5.
86

%
)

–0.2 –0.1 0 0.1 0.2
–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

Scores on LV 1 (32.71%)

C
E

NE
95% Confidence level

(b)
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Prolactin has an immunostimulatory effect, including pro-
moting autoimmunity, although it cannot initiate an
immune reaction itself; rather, it is a factor that maintains
homeostasis during immune reactions. Prolactin is involved
in stimulating the immune response, providing specific
interference in inducing B-lymphocyte tolerance, enhancing
the proliferative response to antigens and mitogens and
increasing immunoglobulin and cytokine production,
including of IL-1β [48–50]. This positive acute-phase pro-
tein induces IL-6 production through, e.g., peritoneal meso-
thelial cells, which additionally contributes to the local
inflammation in endometriosis patients [3]. Through the
action of IL-1β in promoting endometrial cells’ angiogenesis
and proliferation, it may play a key role in the development
of endometriosis [51, 52]. Uric acid also indirectly contrib-
utes to inducing IL-1β synthesis [53]. Additionally, attention
should be paid to UA dualism. Under physiological condi-
tions, UA reflects the body’s metabolic state and has antiox-
idant properties. It is responsible for approximately 60% of
total antioxidant capacity and, along with other low-
molecular-weight antioxidants such as total bilirubin, is the
first line of antioxidant defense. However, given reduced
availability of other antioxidants, it begins to act as an oxida-
tive factor in various pathological processes. UA’s role and
the mechanism of its action in reproductive system disorders
have not yet been elucidated [53, 54], although our studies
have also emphasized its importance in advanced endome-
triosis. Moreover, both prolactin and uric acid in the blood
serum can serve as biomarkers for the activity of some auto-
immune diseases [49].

The constructed classifier had accuracy of 99-100%,
while its sensitivity and specificity were 96-100% and 98-
100%, respectively (Table 2). Notably, this model required
only two LVs to reach the best performance, versus 4-5
PLS factors needed by PLS-DA models built separately for
biochemical parameters or spectra. The obtained PLS-DA
score plots and ROC curves are shown in Figure 5, while
classification errors are presented in Fig. S14 in the Supple-
mentary Materials.

The parameters of the classifiers obtained based on dif-
ferent data blocks occurred to be quite similar, as were their
separation of the three groups of women. However, incorpo-
rating spectral data significantly improved the robustness of
the elaborated models, in comparison with the values
obtained for the models based on biochemical parameters
only (Table 2). Since no specific marker of endometriosis
has been found that would allow unequivocal diagnosis of
the disease, combining spectral data with routinely deter-
mined biochemical parameters used to assess the state of
the body could provide a tool for detecting women with a
high probability of advanced endometriosis.

4. Conclusions

PLS-DA models were developed based on selected biochem-
ical parameters and regions of FTIR ATR spectra of serum
that could identify women at risk of advanced endometri-
osis, women with a developing inflammatory process with
another origin, and healthy women. The sensitivity, specific-

ity, and accuracy of the obtained models were 81-100%, 89-
100%, and 91-100%, respectively. This study shows that
infrared spectroscopy and discrimination analysis can be
used to differentiate serum samples originating from women
with advanced endometriosis and without endometriosis.
Standardization of this method, based on the results
obtained for a larger group of participants, likely will allow
for effective endometriosis screening and diagnostics of this
disease with advanced stages. One remaining challenge is
still the development of classifiers able to detect the early
stages of endometriosis.
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