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Alzheimer’s disease treatment is still an open problem. The diversity of symptoms,

the alterations in common pathophysiology, the existence of asymptomatic cases, the

different types of sporadic and familial Alzheimer’s and their relevance with other types

of dementia and comorbidities, have already created a myth-fear against the leading

disease of the twenty first century. Many failed latest clinical trials and novel medications

have revealed the early diagnosis as the most critical treatment solution, even though

scientists tested the amyloid hypothesis and few related drugs. Unfortunately, latest

studies have indicated that the disease begins at the very young ages thus making it

difficult to determine the right time of proper treatment. By taking into consideration

all these multivariate aspects and unreliable factors against an appropriate treatment,

we focused our research on a non-classic statistical evaluation of the most known

and accepted Alzheimer’s biomarkers. Therefore, in this paper, the code and few

experimental results of a computational Bayesian tool have been reported. Moreover,

major attention was dedicated to the correlation and assessment of several Alzheimer’s

biomarkers to export a probabilistic medical prognostic process. This new statistical

software is executable in the Bayesian software Winbugs, based on the latest

Alzheimer’s classification and the formulation of the known relative probabilities of the

various biomarkers, correlated with Alzheimer’s progression, through a set of discrete

distributions. A user-friendly web page has been implemented for the supporting of

medical doctors and researchers, to upload Alzheimer’s tests and receive statistics on

the occurrence of Alzheimer’s disease development or presence, due to abnormal testing

in one or more biomarkers.

Keywords: Alzheimer’s disease, early diagnosis, medical decision systems, Bayesian statistics, Markov Chain

Monte Carlo, Metropolis-Hastings Algorithm, Gibbs Sampling, Winbugs

INTRODUCTION

A precise etiology of Alzheimer’s disease (AD) is still unclear while several risk factors have been
recognized to catalytically affect the early onset and the progression of the disease (Abbott and
Dolgin, 2016). According to latest studies (Dubois et al., 2007), AD can be categorized according
to potential risk factors, symptoms and pathophysiological lesions into eight different categories
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(Table 1). Furthermore, these eight categories can be analyzed in
depth by adding potential biomarkers in each category (Figure 1)
which have been proved to affect the severity of the disease
(Mantzavinosa et al., 2017). While several attempts at reducing
AD severity have already been presented targeting mainly the
symptomatic treatment (Ashraf et al., 2015) until now, there is
no holistic therapy available that can efficiently reverse AD. For
many scientists and pharmaceuticals companies, there are several
and different treatment approaches for AD such as cholinesterase
inhibitors, NMDA receptor antagonist, β-secretase inhibitors,
γ-secretase inhibitors, α-secretase stimulators, tau inhibitors,
immunotherapy, nutraceuticals, and nano drugs (Ashraf et al.,
2015; Soursou et al., 2015) even though the more secure solution
seems to be the early diagnosis of neurodegeneration signs, in
order to facilitate the early diagnosis or prediction.

In this regards, Bayesian Statistics constitutes a powerful
tool for Science and especially for Biomedical Informatics and
Medical Decision Systems. Markov ChainMonte Carlo (MCMC)
theory was provided as a solution several times, targeting
environmental’ s or diseases’ evaluations with satisfactory results
(Tzoufras, 2009). Bayesian statistics uses all the unknown
parameters as random variables, to pre-define the prior
distribution of the model and calculate the posterior distribution
f(θ|y), which can be expressed as:

f (θ |y) =
f (y|θ)f (θ)

f (y)
∝ f (y|θ)f (θ),

or including both the prior and the observed data by the
expression of the prior distribution f(θ) and the likelihood f(y|θ)
as follows:

f (y|θ) =
∏n

i= 1
f (yi|θ).

In this research paper, a new probabilistic model was created,
describing the relationship between AD biomarkers, which may
reveal and influence the disease’s development, presence or
progression. The algorithmic approach to AD prediction coded

TABLE 1 | Alzheimer’s disease classification according to symptoms and lesions based on the “Research criteria for the diagnosis of Alzheimer’s

disease: revising the NINCDS-ADRDA criteria” (Abbott and Dolgin, 2016).

Categories Description

Prodromal AD (Category1) Clinical Symptoms, memory disorders, Hippocampal volume loss and biomarkers of CSF that lead to AD pathology

AD dementia (Category2) The social function, the composite activities of the daily life are obstructed. This state is the threshold between memory changes

and in one more cognitive factor

Typical AD (Category3) Progressive memory loss, cognitive disorders, and neuropsychiatric modifications

Atypical AD (Category4) Progressive aphasia, Logopenic aphasia, frontal AD morphology and cortical atrophy at the posterior section. Also, is supported

from amyloidosis biomarkers in brain or CSF

Mixed AD (Category5) Incidents that validate the diagnostic AD requirements for typical AD and there are disorders such as cerebrovascular disease or

Lewy Bodies disease

Preclinical states of AD (Category6) This state includes an in vivo amyloidosis evidence of the brain, or individuals whose families have the autosomal dominant

mutation of AD

Alzheimer’s Pathology (Category7) Senile Plaques and Neurofibrillary tangles, loss of neuronal synapses, amyloid deficits in the cerebral vascular cortex

Mild cognitive impairment (Category8) Individuals that abstain from the clinic biological character of AD and also have measurable MCI. Those individuals may suffer

from AD, but there is no evidence for AD

with WinBUGS biostatistics software (Lunn et al., 2000) for
Bayesian inference, data analysis, and modeling. The model, the
initial data and few examples are described in the Experimental
section of this paper.

MATERIALS AND METHODS

A Probabilistic Approach to AD
Let us recall some basic mathematical notations concerning the
Bayesian approach (Congdon, 2005; Vidakovic, 2011; Højsgaard,
2012). Assume a random variable Y known as a response, which
follows a probabilistic path f(y|θ), where θ is a parameter vector.
We consider a sample y = [y1, y2,....,yn] of size n. If we assume
two possible events A, B where A = A1 ∪ A2 ∪.... ∪ An, Ai ∩ Aj

=∅ ∀ i 6= j, Bayes Theorem calculates the probability to occur an
event Ai given B,

(Ai|B) =
P(B|Ai)P(Ai)

P(B)
=

P(B|Ai)P(Ai)
∑n

i= 1 P(B|Ai)P(Ai)
.

In general,

P(A|B) =
P(B|A)P(A)

P(B)
∝ P(B|A)P(A).

Finally, given the observed data y1, y2,...,yn, the posterior
distribution f(θ|y1,...,yn) could be calculated from the prior
distribution. Bayesian Inference is based on the p(θ|y) factor
which is used by MCMC methods. Markov Chain Monte Carlo
methods are based on iterative sampling from the posterior
distribution, using various chain probabilities of the sample
parameters and resulting posterior means and variances of the
parameters or functions of the parameters 1=1(θ) as follows:

E
(

θk|y
)

=

∫

θkp(θ |y)dθ ,

Var
(

θk|y
)

=

∫

θ2k p(θ |y)dθ− [E(θκ |y)]
2= E

(

θ2k |y
)

− [E(θk|y)]
2,
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FIGURE 1 | Alzheimer’s disease biomarkers expressed through a Bayesian Network.

E
[

∆(θ)|y
]

=

∫

∆(θ)p(θ |y)dθ ,

Var
[

∆(θ)|y
]

=

∫

∆2p(θ |y)dθ − [E(∆|y)]2

= E(∆2|y)− [E(1|y)]2.

The most popular MCMC methods are the Metropolis-Hastings
Algorithm (Metropolis et al., 1953; Hastings, 1970) and its
particular case, the Gibbs Sampling (Geman and Geman, 1984).
In 1988, Lauritzen and Spiegelhalter presented for the first time
a Bayesian expert system, the “ASIA model,” introducing a
fictitious medical decision system for the explanation of dyspnea
due to a patient’s recent visit to Asia and the presence of several
other symptoms (Lauritzen and Spiegelhalter, 1988).

The proposed in this paper AD prediction model was
established based on the Bayesian Networks (BN). According to
BN theory, if we assume a directed graph G with N nodes, each
node n ∈ N has a number of paternal nodes pa(n) that may be
linked with “child” nodes and the joint distribution for such a
network given as follows:

P (N) =
∏

n∈N
p(n|pa(n)).

By taking into consideration the latest calculations for the relative
probabilities of AD progression due to certain brain lesions
(Table 2) (Christen, 2000; de la Torre, 2002; Praticò et al., 2002;
Modrego and Ferrández, 2004; Hooper et al., 2007; Cheung et al.,
2008; Stone, 2008; Schuff et al., 2009; Snider et al., 2009; Wang
et al., 2009; Israeli-Korn et al., 2010; Barnes and Yaffe, 2011;
Nazem and Mansoori, 2011; Serrano-Pozo et al., 2011; Bird,
2012; Alzheimer’s Association, 2015; Chakrabarty et al., 2015)

and the majority of the published AD biomarkers (Albert et al.,
2010, 2011; Besson et al., 2015; Cabezas-Opazo et al., 2015; Dong
et al., 2015; Duce et al., 2015; Eskildsen et al., 2015; Jansen et al.,
2015; Madeira et al., 2015; Michel, 2015; Nakanishi et al., 2015;
Ossenkoppele et al., 2015; Østergaard et al., 2015; Quiroz et al.,
2015; Ringman et al., 2015; Risacher et al., 2015; Sastre et al., 2015;
Schindler and Fagan, 2015; Sutphen et al., 2015; Thordardottir
et al., 2015; Cauwenberghe et al., 2016; Counts et al., 2016; Gaël
et al., 2016; Yang et al., 2016) or calculating indirectly the relative
probabilities, we designed a Bayesian model for the prediction of
AD based on the abnormal testing of one or more biomarkers.
The described probabilities were exported through major clinical
trials globally and are continuously subject to updating and
redefinition. The proposed model includes the main AD
categories formulated by the categorical prior distribution.

r ∼ dcat(p[]),

the majority of biomarkers that underlie AD severity and are
represented as an acyclic graph.

The Winbugs software requires all the parent knots of
the acyclic graph to be initialized as True, something that
does not affect the model execution. In the second step of
the initialization mode, the “parent” knots Metal_Ions, p53,
Age/Heredity, APP, Cytokines are defined with their probabilistic
values that indicate the True value, and then all the “child”
knots are simply set to False/True. An exception is proposed
and occur in the case of LewyBodies existence, while the only
way to conclusively diagnose the Dementia with Lewy bodies
is through a postmortem autopsy and it is quite difficult to be
recognized as a no Alzheimer’s Disease case (Figure 2). When
a biomarker is finally selected as True, then the probabilistic
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TABLE 2 | Alzheimer’s disease biomarkers, biomarkers’ probabilistic impact on Alzheimer’s disease presence and the corresponding bibliographic

reference.

Biomarker Relative probability related to AD progression References

Age (>85) 38% Alzheimer’s Association, 2015

Age (75–84) 43% Alzheimer’s Association, 2015

Age (65–74) 15% Alzheimer’s Association, 2015

Age (<65) 4% Alzheimer’s Association, 2015

Lewy Body disease 10-20% The only way to conclusively diagnose the Dementia

with Lewy Bodies is through a postmortem autopsy, and it is

quite difficult to be recognized as no Alzheimer’s Disease

Alzheimer’s Association, 2015

APP 10%,15%,50% Bird, 2012

Hypertension 20% Israeli-Korn et al., 2010

GTPases <1% Alzheimer’s Association, 2015

Depression 13.2% Modrego and Ferrández, 2004; Barnes and Yaffe,

2011

Smoking 27.4% Barnes and Yaffe, 2011

Diabetes 6.4% Barnes and Yaffe, 2011

Obesity 3.4% Barnes and Yaffe, 2011

Physical Activity 17.7% Barnes and Yaffe, 2011

APOE4 30-70% Bird, 2012

PS 1,2 5% Bird, 2012

Amyloid Angiopathy 80% Serrano-Pozo et al., 2011

Oxidative Stress 25-30% Christen, 2000

Inflammation 30-40% de la Torre, 2002

Isoprostanes 50% Praticò et al., 2002

P53 75% Hooper et al., 2007

Cytokines 50% Chakrabarty et al., 2015

miRNAs 60% Wang et al., 2009

DVLP 74.3% Wang et al., 2009

OPA1 61.4% Wang et al., 2009

MFN1 27.8% Wang et al., 2009

MFN2 33.6% Wang et al., 2009

FIS1 60% Wang et al., 2009

Visual, neuropsychiatric disorders 5% Alzheimer’s Association, 2015

Executive, language, praxis disorders 40% Alzheimer’s Association, 2015

DayLiving disorders 10-20% Alzheimer’s Association, 2015

Metal Ions 24% Nazem and Mansoori, 2011

Unbalance Ca 5% Shilling et al., 2014

Senile plaques Over 60% until the Age of 80 and increases linearly on the Age Stone, 2008

Amyloid Beta Over 50% in Ages>85 Snider et al., 2009

Hippocampal volume loss/Memory Impairment Approximately 10% of elders over the age of 70 years have

significant memory loss and more than half of these individuals

have AD

Schuff et al., 2009

impact value is attributed to the related knot, according to
Table 2 and the following rule: for the “parent” knots first
we assign the probability to be False and then the probability
to be True. For the “child” knots we assign probabilities
in the form of False|False, False|True, True|False, True|True
(Figures 3–6).

Experimental
While a single biomarker can be related to more than one
AD types, the probabilistic model consists of categorical

variables-nodes (∼dcat) where each variable node can be linked
with two or more parent variables-nodes or can be presented
as a single and independent variable-node. In the case where a
node is linked to more than two parent nodes, another similar
variable-node is created at the same level within the model. The
proposed BN has been designed according to the latest “Research
criteria for the diagnosis of Alzheimer’s disease: revising the
NINCDS-ADRDA criteria” (Dubois et al., 2007) and the model
exports for every AD category the maximum probability value
given by the biomarkers’ evaluation, as it is described below
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FIGURE 2 | The general probabilistic model with the knots initializations. APP is set to 10%, Age>85, the “parent” knots and the LewyBodies are set to their

probabilistic values.

along with the lists of initial values and data from the Winbugs
Software.

The General Form of the Model{

Age∼ dcat([1:2])
Ab∼dcat( APOE4, PS1-2, APP[1:2])
Tau, Phospho∼ dcat(Cytokines 1:2])
MetalIons∼ dcat([1:2])
LewyBodies∼dcat(Age[1:2])
Hypertension∼ dcat(p.Hypertension[Age_Inheritance,1:2])
Depression∼ dcat(p.Depression[Age_Inheritance,1:2])
Smoking∼dcat(p.Smoking[Age_Inheritance,1:2])
Diabetes∼dcat(p.Diabetes[Age_Inheritance,1:2])
Obesity∼dcat(p.Obesity[Age_Inheritance,1:2])
PhysicalActivity∼dcat(p.PhysicalActivity[Age_Inheritance,
1:2])
APP∼ dcat([1:2])
GTP∼ dcat(p53[1:2])
APOE4∼ dcat(Age[1:2])
PS1-2∼ dcat(Age[1:2])
Cytokines∼ dcat([1:2])
SenilePlaques∼ dcat(Ab[1:2])
UnbalanceCa∼ dcat(Ab[1:2])
Vascular∼ dcat(Ab, Tau_Phospho[1:2])
LogopenicAphasia, CortexAtrophy∼dcat(Tau_Phospho
[1:2])
Memory, HippocampalLoss∼dcat(Tau, Phospho[1:2])
ExecLangPrax∼dcat(Tau_Phospho[1:2])
Visual, Neuropsychiatric∼dcat(Tau_Phospho[1:2])
DailyActivities∼ dcat([1:2])
OxidStress, Inflamation, Isoprostanes∼dcat( Mito,
MetalIons [1:2])
Mito∼dcat( MetalIons,OPA1, MFN1,DVLP, FIS1 [1:2] )
MFN1∼dcat(GTP[1:2])
OPA1∼dcat(GTP[1:2])

DVLP∼dcat(GTP[1:2])
FIS1∼dcat GTP[1:2])
p53∼ dcat([1:2])
miRNAs∼dcat(Age[1:2])
MCI∼dcat(DailyAct[1:2])
max1←max( Ab, LewyBodies, Mito, OxidStress,
Memory_Hippocampal_loss, SenilePlaques,
Unbalance_Ca, Hypertension_depression, Inflamation,
Isoprostanes, Mito )

ProdromalAD←max(max1,OxidStress)
ADdementia←max(Ab, Vascular)
max2←max(Ab, Tau, Phospho, Vascular, ExecLangPrax)
TypicalAD←max(max2, Visual, Neuropsychiatric)
AtypicalAD←max(LogopenicAphasia, CortexAtrophy,
Memory, HippocampalLoss)
MixedAD←max(Vascular,Category1)
PreclinicalAD←max(Ab, Tau, Phosph )
ADPathology←miRNAs
MildCognitiveImpairment←MCI
}

The model can be extended or adjusted to new biomarkers or
relations between the symptoms, the lesions and the exported AD
categories. Additionally, the relative probabilities can be updated
or even more replaced by the biomarkers values when a secure
protocol for AD diagnosis will be verified or proposed by the
international health associations. Four examples are provided
below concerning cases of abnormal biomarkers tests, revealing
potential AD presence.

RESULTS

Example 1
In the first hypothetical case study, a patient is assumed to
be diagnosed with problems in daily living activities but with
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no other results of abnormal AD biomarkers. Additionally, the
patient belongs to a risk group due to the age factor (>85).
Therefore, while there is evidence only for abnormal Daily-
Living activities, the corresponding node becomes “True,” and
all the other nodes take the “False” value (Figure 3). The model
calculates the P(MCI|DailyLivingActivities), the probability that
Mild Cognitive Impairment is characterized ‘True’ given the
DailyLivingActivities variable, which can be written as follows:

P
(

MCI|DailyLivingActivities
)

=
P(MCI|DailyLivingActivities)P(MCI)

P(DailyLivingActivities)

P(MCI|DailyLivingActivities) = 0.999.

Data List

(Age_Inheritance=2, MetalIons=2, APP=2, Cytokines=2,
DailyActivities=2, p53=2,
p.Age_Inheritance= c(0.99,0.01),
p.Ab= structure(.Data=
c(0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50), .Dim= c(2,2,2)),
p.Tau_Phospho=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.MetalIons= c(0.76, 0.24),
p.LewyBodies=structure(.Data= c(0.884,0.116,0.884,0.116),
.Dim= c(2,2)),
p.Hypertension=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.Depression=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Smoking=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Diabetes=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Obesity=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PhysicalActivity=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.APP= c(0.90,0.10),
p.GTP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.APOE4= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PS1_2= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Cytokines= c(1,0),
p.SenilePlaques= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Unbalance_Ca= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Vascular= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.LogopenicAphasiaCortexAtrophy=structure(.Data=
c(1,0,1,0), .Dim= c(2,2)),
p.MemoryHippocampalLoss= structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
p.ExecLangPrax=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.VisualNeuropsychiatric=structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
p.DailyActivities= c(0,1),
p.OxidStress1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.OxidStress2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Inflamation1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Inflamation2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito3=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.MFN1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.OPA1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.DVLP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.FIS1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.p53= c(0.75,0.25),
p.Ab_APP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.miRNAs=structure(.Data=c(1,0,1,0), .Dim= c(2,2)),
p.MCI_due_to_DayLiving=structure(.Data=c(0.001,0.999,
0.001,0.999), .Dim= c(2,2)))

Executing the Winbugs code, the result for MCI category is
the same as calculated above.

For each stochastic variable of the generated probabilistic
model, Winbugs defines the categorical interval (Dubois et al.,
2007; Abbott and Dolgin, 2016) for the categorical distribution
∼dcat, which receives only positive values. The MCMC results,
posterior summary estimations, mean, standard deviation and
the estimation of the error is implemented by the batch mean
method (Tables 3, 4). After 3000 and 10000 iterations of the
current MCMC Winbugs algorithms, the mean value of MCI
category can be similarly calculated as:

EMCI = 2∗pMCI + 1.
(

1− pMCI

)

= 2 P
(

MCI|DailyLivingActivities
)

= pMCI = 2− 1.999 = 0.999.

Example 2
In a similar case (age>85) where miRNAs’ biomarker is
assumed to be “True”, and there is no other evidence of
heredity concerning AD (Figure 4), the model calculates the
P

(

ADPathology|miRNAs
)

. However, while miRNAs’ node is also
linked to the Age/Heredity node, there is a probabilistic relation
between the Age/Heredity and miRNAs’ nodes (Tables 5, 6).

P
(

ADPathology|miRNAs
)

=
P(ADPathology|miRNAs)P(ADPathology)

P(miRNAs)

P(ADPathology|miRNAs) = 1.0.

Thus, importing the adjusted data below to the Winbugs, in the
case of ADPathology given that the miRNAs’ variable is “True”,
the exported probability is 1.

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2017 | Volume 9 | Article 77

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Alexiou et al. Early Diagnosis of Alzheimer’s Disease

Data List

(Age_Inheritance=2, MetalIons=2, APP=2, Cytokines=2,
DailyActivities=2, p53=2,
p.Age_Inheritance= c(0.99,0.01),
p.Ab= structure(.Data=
c(0.50,0.50,0.50,0.50,0.50,0.50,0.50,0.50), .Dim= c(2,2,2)),
p.Tau_Phospho=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.MetalIons= c(0.76, 0.24),
p.LewyBodies=structure(.Data= c(0.884,0.116,0.884,0.116),
.Dim= c(2,2)),
p.Hypertension=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.Depression=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Smoking=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Diabetes=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Obesity=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PhysicalActivity=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.APP= c(0.90,0.10),
p.GTP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.APOE4= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PS1_2= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Cytokines= c(1,0),
p.SenilePlaques= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Unbalance_Ca= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Vascular= structure(.Data= c(0,1,0,1,0,1,0,1), .Dim=
c(2,2,2)),
p.LogopenicAphasiaCortexAtrophy=structure(.Data=
c(1,0,1,0), .Dim= c(2,2)),
p.MemoryHippocampalLoss= structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
p.ExecLangPrax=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.VisualNeuropsychiatric=structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
p.DailyActivities= c(0,1),
p.OxidStress1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.OxidStress2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Inflamation1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Inflamation2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito3=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.MFN1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.OPA1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.DVLP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.FIS1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.p53= c(0.75,0.25),
p.Ab_APP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.miRNAs=structure(.Data=c(0,1,0,1), .Dim= c(2,2)),
p.MCI_due_to_DayLiving=structure(.Data=c(1,0,1,0), .Dim
= c(2,2)))

After 10000 iterations, the mean value of ADPathology is
calculated as:

EADPathology = 2 ∗ pADPathology + 1.
(

1− pADPathology
)

= 2,

P
(

ADPathology|miRNAs
)

= pADPathology = 2− 1 = 1.

Example 3
In the third example, without the age being a risk factor (<60) the
most common case is presented, where both Amyloid-beta and
Tau proteins’ abnormalities occur, with additional ‘True’ values
in the Age_Inheritance, APP, APOE4 and Vascular variables of
the probabilistic model (Figure 5).

Data List

(Age_Inheritance=2, MetalIons=2, APP=2, Cytokines=2,
DailyActivities=2, p53=2,
p.Age_Inheritance= c(0.57,0.43),
p.Ab= structure(.Data= c(0,1,0,1,0,1,0,1), .Dim= c(2,2,2)),
p.Tau_Phospho=structure(.Data= c(0,1,0,1), .Dim=
c(2,2)),
p.MetalIons= c(0.76, 0.24),
p.LewyBodies=structure(.Data= c(0.884,0.116,0.884,0.116),
.Dim= c(2,2)),
p.Hypertension=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.Depression=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Smoking=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Diabetes=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Obesity=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PhysicalActivity=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.APP= c(0.50,0.50),
p.GTP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.APOE4= structure(.Data= c(0.30,0.70,0.30,0.70), .Dim=
c(2,2)),
p.PS1_2= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Cytokines= c(1,0),
p.SenilePlaques= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Unbalance_Ca= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Vascular= structure(.Data= c(0,1,0,1,0,1,0,1), .Dim=
c(2,2,2)),
p.LogopenicAphasiaCortexAtrophy=structure(.Data=
c(1,0,1,0), .Dim= c(2,2)),
p.MemoryHippocampalLoss= structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
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p.ExecLangPrax=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),

p.VisualNeuropsychiatric=structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),

p.DailyActivities= c(0,1),

p.OxidStress1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.OxidStress2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Inflamation1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Inflamation2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Isoprostanes1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Isoprostanes2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Mito1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Mito2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),

p.Mito3=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.MFN1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.OPA1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.DVLP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.FIS1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),

p.p53= c(0.75,0.25),

p.Ab_APP= structure(.Data= c(0,1,0,1), .Dim= c(2,2)),

p.miRNAs=structure(.Data=c(0,1,0,1), .Dim= c(2,2)),

p.MCI_due_to_DayLiving=structure(.Data=c(1,0,1,0), .Dim
= c(2,2)))

Given the initial data set above, after 10000 iterations
the estimated probabilities of the eight AD categories
(Tables 7, 8) reveals high risk for AD presence. The
results highlight the role of Amyloid-beta and Tau proteins
and emphasize their importance and effectiveness in AD
aggravation.

Example 4
In the fourth example, the hypothetical patient (age<60) is a
Smoker with an Obesity problem and Depression symptoms
(Figure 6). The Bayesian model calculates the probabilities
respectively,

P(ProdromalAD|Depression, Obesity, Smoking)

and P(MixedAD|Depression, Obesity, Smoking).

P(ProdromalAD|Depression,Obesity, Smoking)

= P(MixedAD|Depression,Obesity, Smoking) =

=

P(ProdromalAD,MixedAD|Depression,Obesity, Smoking)
P(ProdromalAD,MixedAD)

P(Depression,Obesity, Smoking)

= 0.464.

Data List

(Age_Inheritance=2, MetalIons=2, APP=2, Cytokines=2,
DailyActivities=2, p53=2,
p.Age_Inheritance= c(0.57,0.43),
p.Ab= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim= c(2,2,2)),
p.Tau_Phospho=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.MetalIons= c(0.76, 0.24),
p.LewyBodies=structure(.Data= c(0.884,0.116,0.884,0.116),
.Dim= c(2,2)),
p.Hypertension=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Depression=structure(.Data= c(0.868,0.132,0.868,0.132),
.Dim= c(2,2)),
p.Smoking=structure(.Data= c(0.726,0.274,0.726,0.274),
.Dim= c(2,2)),
p.Diabetes=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Obesity=structure(.Data= c(0.966,0.034,0.966,0.034), .Dim
= c(2,2)),
p.PhysicalActivity=structure(.Data= c(1,0,1,0), .Dim=
c(2,2)),
p.APP= c(0.50,0.50),
p.GTP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.APOE4= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.PS1_2= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.Cytokines= c(1,0),
p.SenilePlaques= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Unbalance_Ca= structure(.Data= c(1,0,1,0,1,0,1,0), .Dim
= c(2,2,2)),
p.Vascular= structure(.Data= c(0,1,0,1,0,1,0,1), .Dim=
c(2,2,2)),
p.LogopenicAphasiaCortexAtrophy=structure(.Data=
c(1,0,1,0), .Dim= c(2,2)),
p.MemoryHippocampalLoss= structure(.Data= c(1,0,1,0),
.Dim= c(2,2)),
p.ExecLangPrax=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.VisualNeuropsychiatric=structure(.Data= c(1,0,1,0), .Dim
= c(2,2)),
p.DailyActivities= c(1,0),
p.OxidStress1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.OxidStress2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Inflamation1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Inflamation2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Isoprostanes2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim=
c(2,2,2)),
p.Mito1=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim= c(2,2,2)),
p.Mito2=structure(.Data= c(1,0,1,0,1,0,1,0), .Dim= c(2,2,2)),
p.Mito3=structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.MFN1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.OPA1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.DVLP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.FIS1= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
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p.p53= c(0.75,0.25),
p.Ab_APP= structure(.Data= c(1,0,1,0), .Dim= c(2,2)),
p.miRNAs=structure(.Data=c(0,1,0,1), .Dim= c(2,2)),
p.MCI_due_to_DayLiving=structure(.Data=c(1,0,1,0), .Dim
= c(2,2)))

Given the initial dataset above, after 10000 iterations the
estimated probabilities of the eight AD categories (Tables 9, 10)
reveals a medium risk for AD presence due Depression, Smoking
and Obesity and a set of risk factors for related comorbidities.
The results in general, highlight the role of Hypertension,
Depression, Smoking, Diabetes, Obesity, and Physical Inactivity

as potential AD biomarkers and emphasize their importance
and effectiveness in AD aggravation. The calculated probabilities
verify the latest clinical findings (Modrego and Ferrández, 2004;
Barnes and Yaffe, 2011) where the combination ofMild Cognitive
Impairment and Depression in patients, doubles the risk of
Alzheimer Dementia development compared with those without
depression.

DISCUSSION

While AD is a hardly curable disease, few computational
diagnostic tools have been published during the last years, for

FIGURE 3 | The probabilistic model that can be used for MCI validation with the knots initializations. APP is set to 15%, Age>85, the “parent” knots and

the LewyBodies are set to their probabilistic values, and the DailyAcivities have a “strong” probability equal to 1.

FIGURE 4 | The probabilistic model that can be used for AD Pathology validation with the knots initializations. APP is set to 15%, Age>85, the “parent”

knots and the LewyBodies are set to their probabilistic values, and the miRNAs have a “strong” probability equal to 1.
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FIGURE 5 | The probabilistic model referring to several categories of Alzheimer’s disease simultaneously, with the knots initializations. APP is set to

50%, Age<60, the “parent” knots and the LewyBodies are set to their probabilistic values, and the biomarkers Tau, Aβ, APOE4, Amyloid Angiopathy have a “strong”

probability equal to 1.

FIGURE 6 | The probabilistic model that can be used for Prodromal AD and Mixed AD validation due to Depression, Obesity and Smoking, with the

knots initializations. APP is set to 50%, Age<60, the “parent” knots, the LewyBodies and the Depression, Obesity and Smoking Biomarkers are set to their

probabilistic values.
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TABLE 3 | WINBUGS statistics for Alzheimer’s disease categories according to Example 1.

Node Mean

(After 3000

Iterations)

Mean

(After 10000

Iterations)

Standard deviation

(After 3000 Iterations)

Standard deviation

(After 10000 Iterations)

MC error

(After 3000

Iterations)

MC error

(After 10000

Iterations)

Prodromal AD 1.566 1.562 0.4957 0.4961 0.007927 0.00473

AD dementia 1.506 1.502 0.5 0.5 0.008313 0.00458

Typical AD 1.506 1.502 0.5 0.5 0.008313 0.00458

Atypical AD 1.0 1.0 0.0 0.0 1.826E-12 1.0E-12

Mixed AD 1.566 1.562 0.4957 0.4961 0.007927 0.00473

Preclinical states of AD 1.506 1.502 0.5 0.5 0.008313 0.00458

Alzheimer’s Pathology 1.0 1.0 0.0 0.0 1.826E-12 1.0E-12

Mild Cognitive Impairment 1.999 1.999 0.03649 0.03603 6.423E-4 3.667E-4

TABLE 4 | The total probability value for Alzheimer’s disease presence due to alterations in DayLiving Activities.

Alzheimer’s disease classification Probability of Alzheimer’s disease presence (in response

to DayLiving Activities biomarker, after 3000 Iterations)

Probability of Alzheimer’s disease presence (in response

to DayLiving Activities biomarker, after 10000 Iterations)

Prodromal AD 0.566 0.562

AD dementia 0.506 0.502

Typical AD 0.506 0.502

Atypical AD 0.0 0.0

Mixed AD 0.566 0.562

Preclinical states of AD 0.506 0.502

Alzheimer’s Pathology 0.0 0.0

Mild Cognitive Impairment 0.999 0.999

The results revealed the highest probability 0.999 for the case of Mild Cognitive Impairment, while Prodromal AD and Mixed AD show also high scores.

TABLE 5 | WINBUGS statistics for Alzheimer’s disease categories

according to Example 2.

Node Mean Standard

deviation

MC error after 10000

iterations in WinBugs

Prodromal AD 1.562 0.4961 0.00473

AD dementia 2.0 0.0 1.0E-12

Typical AD 2.0 0.0 1.0E-12

Atypical AD 1.0 0.0 1.0E-12

Mixed AD 2.0 0.0 1.0E-12

Preclinical states of AD 1.502 0.5 0.00458

Alzheimer’s Pathology 2.0 0.0 1.0E-12

Mild Cognitive Impairment 1.0 0.0 1.0E-12

the evaluation of biomarkers and symptoms and the automated
prediction of the disease. There are algorithms for an automated
Dementia identification based on MRI, PET and SPECT imaging
analysis using Bayes classifiers, support vector machines, and
artificial neural networks (Zheng et al., 2016). According to
these specific methods, the systems have to be trained with as
many cases as possible to improve accuracy in a clinical dataset.
There is also a tool for the automatic diagnosis of AD via the
combination of PET Images and Neuropsychological Test Data
(Segovia et al., 2014). According to its documentation, authors
using a multi-kernel classification approach trained a mixed data
set to improve the accuracy of their diagnosis in compare with

TABLE 6 | The total probability value for Alzheimer’s disease presence due

to alterations in miRNAs biomarker of the patient.

Alzheimer’s disease classification Probability of Alzheimer’s disease

presence (in response to miRNAs

biomarker)

Prodromal AD 0.562

AD dementia 1.0

Typical AD 1.0

Atypical AD 0.0

Mixed AD 1.0

Preclinical states of AD 0.502

Alzheimer’s Pathology 1.0

Mild Cognitive Impairment 0.0

The results revealed the highest probability 1 for the case of AD Pathology, while

Prodromal AD and Mixed AD show also high scores.

other methods that evaluate imaging results exclusively. It is
important to mention another latest clinical decision support
system for AD that combines a Rule-Based System with a Clinical
Guideline-Based System, and it is modeled through a Bayesian
Network (Seixas et al., 2014). This is another case of a decision
trained system that accesses a specific dataset of biomarkers to
provide an accurate diagnosis of Dementia, Alzheimer’s andMCI.

In the current method, all the known AD biomarkers
are combined in a complex Bayesian Network to establish
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TABLE 7 | WINBUGS statistics for Alzheimer’s disease categories

according to Example 3.

Node Mean Standard

deviation

MC error after 10000

iterations in WinBugs

Prodromal AD 2.0 0.0 1.0E-12

AD dementia 2.0 0.0 1.0E-12

Typical AD 2.0 0.0 1.0E-12

Atypical AD 1.0 0.0 1.0E-12

Mixed AD 2.0 0.0 1.0E-12

Preclinical states of AD 2.0 0.0 1.0E-12

Alzheimer’s Pathology 1.0 0.0 1.0E-12

Mild Cognitive Impairment 1.0 0.0 1.0E-12

TABLE 8 | The total probability value for Alzheimer’s disease presence due

to alterations in Ab, Tau/TotalTau, age/inheritance, APP, APOE4 and

Vascular disorders of the patient.

Alzheimer’s disease

classification

Probability of Alzheimer’s disease presence (in

response to Ab, Tau/TotalTau, age/inheritance,

APP, APOE4 and Vascular disorders biomarkers)

Prodromal AD 1.0

AD dementia 1.0

Typical AD 1.0

Atypical AD 0.0

Mixed AD 1.0

Preclinical states of AD 1.0

Alzheimer’s Pathology 0.0

Mild Cognitive Impairment 0.0

As it expected, the results revealed high probabilities for the cases of Prodromal AD, AD

dementia, Typical AD, Mixed AD, Preclinical states of AD.

a medical diagnostic decision system for AD, not as a
generic diagnostic result but mainly as a more sophisticated
probabilistic outcome referred to all the eight categories of AD
classification. The proposed statistical model is multi-parametric,
targeting the convergence of several independent data like
plasma and CSF tests with behavioral or imaging tests and
their representation through prior categorical distributions. The
proposed AD Bayesian model uses the WinBUGS 1.4.3 software,
and all the experiments have been executed in a personal
computer with medium performance. While the WinBUGS
program cannot be used as an online software, a friendly
website (http://alzheimers.edu.gr) has also been designed for
individual users and medical staff, for the submission and
analysis of anonymous AD tests results. External users can
upload biomarkers’ results in the form of “True” or “False”
and receive the personalized exported statistics in their email
account. Medical staff can use the prognostic tool even for
individual cases, having in mind that in the Bayesian Inference
thousands of sample iterations are automatically executed to pre-
define the unknown prior distribution of the model and calculate
the posterior distribution of the heterogeneous data with high
accuracy. Since the proposed probabilistic model is based on
conditional probabilities, it must be noted that the calculated
error is only the Monte Carlo Error that measures the variability

TABLE 9 | WINBUGS statistics for Alzheimer’s disease categories

according to Example 4.

Node Mean Standard

deviation

MC error after 10000

iterations in WinBugs

Prodromal AD 1.464 0.4987 0.004383

AD dementia 1.0 0.0 1.0E-12

Typical AD 1.0 0.0 1.0E-12

Atypical AD 1.0 0.0 1.0E-12

Mixed AD 1.464 0.4987 0.004383

Preclinical states of AD 1.0 0.0 1.0E-12

Alzheimer’s Pathology 1.0 0.0 1.0E-12

Mild Cognitive Impairment 1.0 0.0 1.0E-12

TABLE 10 | The total probability value for Alzheimer’s disease presence

due to Obesity and Depression problems in a smoker patient.

Alzheimer’s disease

classification

Probability of Alzheimer’s disease presence

(in response to Depression, Smoking and Obesity

biomarkers)

Prodromal AD 0.464

AD dementia 0.0

Typical AD 0.0

Atypical AD 0.0

Mixed AD 0.464

Preclinical states of AD 0.0

Alzheimer’s Pathology 0.0

Mild Cognitive

Impairment

0.0

The results revealed medium probabilities for the cases of Prodromal AD and Mixed AD.

of each estimation due to simulation, increasing the accuracy of
the model almost to the 100%. Besides the categorical values, the
medical staff is prompted to upload in the webpage, the analytic
test results, any medications or other special conditions that refer
to the under consideration patient, anonymously or evenmore to
ask for an upgrade of the model, if new dynamic relations occur
between the biomarkers, or new biomarkers being identified.
The authors of this computational method are in the process of
designing, organizing and implement an open biological database
for the data sharing of biomarkers assessment (Frasier, 2016), the
dissemination of accurate clinical practices and the validation of
the current method. In this way, we could replace in the future
the categorical values of the current model with real datasets
from observational studies improving the cooperation between
scientists, targeting a holistic solution against AD. Including
a large set of multilevel biomarkers, the proposed diagnostic
method has not been validated yet. Therefore we will ask and
embed in our system every time, the final diagnosis of the
clinicians as a feedback for the evaluation and improvement of
our model.

We strongly believe and work in this direction, that an
international open biological database for hosting AD clinical
results, could benefit the research against the disease helping
scientists to re-evaluate their diagnostic models and treatments
or even more consider alternative solutions.
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Apparently, the proposed Bayesian approach can be extended
to several other related neurodegenerative disorders where the
early recognition of symptoms is a crucial factor for an efficient
treatment procedure and in similar cases of unknown etiology
such as the hypothesis of Developmental Origins of Health
and Disease and the research on epigenetic mechanisms in
epidemiological studies (Barker and Osmond, 1986; Barker et al.,
1989, 1993).
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