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Abstract. Biological data collection is entering a new era. Community science, satellite
remote sensing (SRS), and local forms of remote sensing (e.g., camera traps and acoustic
recordings) have enabled biological data to be collected at unprecedented spatial and temporal
scales and resolution. There is growing interest in developing observation networks to collect
and synthesize data to improve broad-scale ecological monitoring, but no examples of such
networks have emerged to inform decision-making by agencies. Here, we present the implemen-
tation of one such jurisdictional observation network (JON), Snapshot Wisconsin, which links
synoptic environmental data derived from SRS to biodiversity observations collected continu-
ously from a trail camera network to support management decision-making. We use several
examples to illustrate that Snapshot Wisconsin improves the spatial, temporal, and biological
resolution and extent of information available to support management, filling gaps associated
with traditional monitoring and enabling consideration of new management strategies. JONs
like Snapshot Wisconsin further strengthen monitoring inference by contributing novel lines of
evidence useful for corroboration or integration. SRS provides environmental context that
facilitates inference, prediction, and forecasting, and ultimately helps managers formulate, test,
and refine conceptual models for the monitored systems. Although these approaches pose chal-
lenges, Snapshot Wisconsin demonstrates that expansive observation networks can be tracta-
bly managed by agencies to support decision making, providing a powerful new tool for
agencies to better achieve their missions and reshape the nature of environmental decision-

s

making.
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INTRODUCTION

The emergence of community (citizen) science and
localized remote sensors (e.g., trail cameras or acoustic
recorders) have enabled biological data to be collected
more quickly and continuously over larger scales than
ever before (Bonney et al. 2009, Shonfield and Bayne
2017, Steenweg et al. 2017). Concurrently, new satellite
remote sensing (SRS) missions and openings of SRS
archives have unearthed a similar wealth of data related
to land cover, plant phenology, and other characteristics
of Earth’s surface (Wulder et al. 2012). This combina-
tion of remotely sensed biodiversity and environmental
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data at multiple observation scales provides new oppor-
tunities to understand anthropogenic impacts to biodi-
versity and guide decision-making.

Observation networks are programs to collect and
synthesize broad-extent environmental and biological
data (Keller et al. 2008, Scholes et al. 2012, Linden-
mayer et al. 2018). These enterprises vary in scope, sam-
pling structure and data collection methodologies, but
commonly involve locally sensed data collected by
humans or automated sensors. Examples include eBird,
which aggregates bird observations submitted by com-
munity scientists globally (Sullivan et al. 2009), the
Urban Wildlife Information Network, which compiles
trail camera images of wildlife in U.S. cities (Magle et al.
2019), the National Phenology Network (Schwartz et al.
2012), and the U.S. National Ecological Observatory
Network (NEON). The objectives of observation
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networks are to improve ecological inference, prediction,
and forecasting; geospatial data derived from SRS oper-
ate within observation networks as a source of input
variables that enable these objectives (Turner 2014). Fus-
ing locally sensed biodiversity observations with geospa-
tial data provided by SRS observations is a topic of
substantial research interest critical to the implementa-
tion of many large-scale (even global) conservation
efforts such as the development of essential biodiversity
variables (Kissling et al. 2018, Jetz et al. 2019).

Although conservation goals and objectives are often
continentally or globally defined via convention or
agreement (e.g., the Aichi Biodiversity Targets), most
natural resource management and conservation deci-
sions are made at sub-national scales (e.g., regions, pro-
vinces, counties). Decision-making across these smaller
extents still must contend with biodiversity monitoring
that is imperfect and incomplete along biological, tem-
poral, and spatial axes (Kissling et al. 2018, Jetz et al.
2019). Most species are not monitored, biological sam-
pling is often non-representative spatially or temporally,
and data may be aggregated at coarse grains that hinder
effective management solutions (Aceves-Bueno et al.
2015, Marra et al. 2015, Artelle et al. 2018). For exam-
ple, game species are often monitored using harvest data
collected during a brief timeframe and with unknown
spatial biases; to account for spatial uncertainty, these
data are often aggregated to coarse resolutions (areas
~1,000 km? or greater) for analysis. This combination of
narrow temporal extent and coarse spatial resolution
makes it challenging to understand how populations
respond to fine grained (e.g., home range scale) pro-
cesses that occur at varied times of year (Marra et al.
2015). Concurrently, there is growing appreciation that
local biodiversity changes can be driven by broad-scale
environmental processes such as climate, land cover, or
land use change (Parmesan et al. 2000). Although it is
difficult for agencies to manipulate these drivers, they
can often be monitored using SRS (e.g., Clare et al.
2019a), and quantifying their effects on biodiversity can
improve understanding of the system needed to antici-
pate emerging problems and formulate effective solu-
tions (Sultaire et al. 2016, Wilson et al. 2019).

Natural resource agencies are increasingly interested in
developing observation networks to inform decision-
making. We call these jurisdictional observation networks
(JONGs): monitoring efforts operated by or in collabora-
tion with management agencies that seek to fill spatial,
temporal or taxonomic information gaps to support
decision-making across regions where the participating
agencies have jurisdiction. The size of jurisdictional
regions may vary considerably and often show hierarchi-
cal structure; for example, wildlife management decision-
making by agencies can occur at multiple levels, ranging
from entire states down to more granular management
units. JON sampling design, methodology, and frequency
may vary considerably, ranging from infrequently occur-
ring but spatially comprehensive biological atlases (e.g.,
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the Wisconsin Breeding Bird Atlas conducted every
20 yr) to more intensive, regular, or continuous sampling
protocols facilitated by local remote sensors. The defining
feature of JONSs is an explicit intent to support decision-
making and decision-makers play a role in defining net-
work goals and design. We posit that effective implemen-
tation of JONs will require the integration of satellite and
ground sensor networks to support biological inference
and prediction across space and time.

Here, we describe the implementation of a JON that
combines SRS and a volunteer-powered trail camera
network to generate new insights into wildlife distribu-
tions and wildlife management across space and time.
We present Snapshot Wisconsin (SW) as proof of con-
cept that agencies can manage efforts that link struc-
tured biodiversity observations to earth observations,
providing data with unparalleled resolution and volume
that can free agency managers and scientists from cer-
tain constraints found within traditional monitoring
frameworks, but raise other considerations. We provide
examples that demonstrate the potential of fusing JONs
with remote sensing to guide decision-making across a
range of taxa and spatiotemporal scales.

SNAPSHOT WISCONSIN

The Wisconsin Department of Natural Resources
(WDNR) initiated Snapshot Wisconsin (SW) in 2014 in
partnership with the University of Wisconsin and NASA.
SW has the joint goals of improving information for wild-
life decision-making and broadening stakeholder engage-
ment with natural resources management. Motivation for
SW reflects common monitoring limitations. Existing
monitoring uses sampling strategies tailored to a narrow
range of species, and primarily focuses upon species of
conservation concern or sportsman interest. Sampling
constraints often compel agencies to employ incomplete
spatial or temporal sampling based on convenience, with
data typically aggregated to spatiotemporal scales that
may be poorly defined, inconsistently sized, or misaligned
with the focal biological processes. Reconciling differ-
ences between the extent and resolution of sampling, bio-
logical processes, and jurisdictional units is challenging,
and often forces decision-makers to use information that
is not perfectly fit for this purpose (Millspaugh et al.
2009, MacFarland and Van Deelen 2011).

COMMUNITY SCIENTISTS AND SENSOR-BASED SAMPLING

SW relies on community scientists to deploy trail cam-
eras across the state and to classify images. Interested
volunteers can use a web-based platform to apply to host
a camera trap on their own property or on public land
within open “blocks” on a first come, first served basis.
Blocks are delineated as U.S. Public Land Survey Sys-
tem quarter-township (comprising a 4.8 x 4.8 km cell).
Typically, blocks house a single camera, although denser
camera deployments have been enacted in certain
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regions to support specific objectives (Fig. 1A). Success-
ful applicants are required to place cameras >100 m
from buildings or heavily trafficked roads to avoid regu-
larly detecting humans, and the use of baits or lures is
prohibited. WDNR trains volunteers to set cameras to
sample locations expected to see use from a variety of
species and where wildlife are likely to be detected if
passing through (typically ~0.75 m above ground and
~3-4 m away from an unobstructed target region).
Volunteers are expected to maintain camera stations
(i.e., clear blocking vegetation, swap batteries) and
upload images to a central web-based repository multi-
ple times per year to maintain continuous monitoring.
The SW trail camera network is in many ways analogous
to SRS, as the cameras operate continuously—indeed
with finer temporal granularity than most SRS missions
at comparable spatial scales. This ongoing sampling is
designed to inform decision-making processes that occur
at different times of year, and facilitates understanding
of how wildlife respond to finer-scaled (e.g., seasonal)
variation in the environment (Fig. 1).

SW cameras are motion-activated Bushnell Trophy
Cam models (Bushnell, Overland Park, Kansas, USA)
and record a three-image burst when triggered, with a
15-s gap between triggers. Much like SRS missions, SW
exerts standardization to ensure data quality and com-
patibility across image collections. The WDNR provides
volunteers cameras with fixed settings that produce
encrypted photos to prevent manipulation. Image classi-
fication options (Appendix S1) are standardized to
include species identification, number of individuals,
presence of juveniles or radio-collared animals, and
behaviors exhibited in the image burst such as foraging,
vigilance, or resting. Volunteers have latitude to place
cameras within a variety of habitat types and along a
variety of features. Thus, SW collects additional meta-
data regarding camera placement (aboveground height,
distance to the target area, the type of feature targeted,
and local descriptors) to help account for observation
variation within downstream analysis (Kelling et al.
2019). Image classification (Appendix S1) is a three-part
process involving classifications by camera hosts,
consensus-based classification by additional volunteers
on a Zooniverse-hosted crowdsourcing platform (avail-
able online),® and expert evaluation that feeds into design
and model-based strategies to account for detection and
classification errors (Clare et al. 20195, 2021), with the
intent to integrate artificial intelligence approaches to
expedite classification (e.g., Willi et al. 2019).

INTEGRATION WITH SATELLITE REMOTE SENSING

Acquiring and processing SRS data is a critical com-
ponent of SW. The continuous sampling design of SW
captures intra- and inter-annual variability in species dis-
tributions at the camera level. However, even complex
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analysis of patterns in the trail camera data alone pro-
vides limited insights into how distributions or popula-
tions function, how they are impacted by the broader
environment, and how they might be managed (Nichols
and Williams 2006). Linking species occurrence data to
spatially contiguous data regularly collected from air-
borne or satellite-mounted sensors can improve predic-
tions and forecasts of patterns beyond pure
geostatistical or time-series approaches. It is also useful
for identifying factors that can be manipulated to
achieve management objectives or that may hamper
management actions. For example, land cover or night-
time light intensity can be locally or ephemerally manip-
ulated to meet objectives (Horton et al. 2019, Wilson
et al. 2019). Other factors such as vegetation phenology
and vigor, snow cover and frozen ground, and land sur-
face and air temperature are challenging or impossible
to manipulate, but are readily observable using SRS and
have strong effects on biodiversity (Pettorelli et al. 2005,
Albright et al. 2010, Zhu et al. 2019). Quantifying their
effects aids assessment of population vulnerability and
management prioritizations (Sultaire et al. 2016), and
accounting for uncontrollable effects allows managers to
better assess tractable manipulations (e.g., whether more
conservative harvest limits buffer populations against
the negative impacts of climate change).

In short, leveraging spatially explicit environmental
data within monitoring efforts is a critical determinant
of agency capacity to manage wildlife effectively. Here,
we present applications where predictors are derived
exclusively from SRS. Although we recognize that
geospatial predictors from other sources are also useful
(e.g., road networks), an approach rooted in remote
sensing prepares a foundation for what we believe SW
will become (see Discussion).

SW has been a massive success with respect to data
collection and volunteer participation. As of October
2020, >49 million images have been recorded across a
sampling effort of >4,000 combined trap-years (some
cameras have operated continuously since 2015) at more
than 4,000 distinct camera locations, with more than
10 million images currently known to contain wildlife
(Fig. 1). Nearly 1,900 volunteers host >2,200 active cam-
eras, with >11,000 other volunteers assisting with image
classification on the project’s crowdsourcing platform.
In terms of overall sampling effort, SW is, to the best of
our knowledge, the largest single continuous and cen-
trally managed camera trapping effort to date.

Below, we use examples to describe six ways in which
JONs and SRS can enhance biological monitoring. Our
purpose in presenting these examples is to provoke fur-
ther thought about how improved information extent
and resolution leads to effective management. We do not
intend to highlight specific methodologies, and refer
readers interested in technical details to the Supporting
Information. Moreover, in keeping with the philosophy
of monitoring and management as iterative processes
(Nichols and Williams 2006, Dietze et al. 2018), we
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(A) The location of cameras contributing data to Snapshot Wisconsin (SW) at any point in the project’s duration

through May 2020 (n = 3,364). Locations with greater camera density resemble dark boxes. (B) Static satellite remote sensing data
layers used for prediction/inference include nighttime light intensity as an indicator of human presence, Landsat-derived land cover,
and longer-term averages in winter land surface temperature. (C) Dynamic spatial predictors at finer temporal resolution include
vegetation greenness indices and snow depth. (D) Combining information about species traits (phenotypes, behaviors), populations,
and assemblages derived from cameras with the spatial data from satellite remote sensing enables biodiversity variables to be delin-

eated, monitored, and forecast.

emphasize that these are not completed applications or
modeling excercises. Rather, each example represents an
incremental improvement in information over what was
previously available: as is the case for all monitoring
efforts, focus and rigor depend upon existing knowledge
of the system.

EXAMPLE 1. INCREASING SPATIAL RESOLUTION

Species of significant managerial interest are subject
to more regular and rigorous monitoring by agencies,
but existing monitoring programs may lack spatial or
temporal resolution to address targeted questions. For
example, black bear (Ursus americanus) distribution is
believed to be expanding into the more populated and
agricultural regions of southern Wisconsin, which brings
increased potential for conflict and property damage.
Thus, the WDNR is interested in predicting the

expansion of this population to anticipate conflict or
regulatory changes. Existing models based upon popula-
tion reconstruction from harvest data can track changes
in statewide population size (Allen et al. 2018a), but
cannot predict population spread. Modeling linkages
between forest and forested wetland land cover data pro-
vided by SRS with bear occurrence dynamics from SW
provides the resolution to address these needs. Predic-
tions from a dynamic occupancy model at 5 x 5 km res-
olution (reflecting the home range size of female bears)
suggest a stable or potentially declining distribution
from 2015 to 2018 (Appendix S2: Fig. S2), consistent
with estimated population decline during the same time
period based on population reconstruction of harvested
animals (Allen et al. 2018a). Coefficient estimates sug-
gest that forest, forested wetland, and the number of
occupied neighboring cells all increase the likelihood of
bear persistence, and that colonization is influenced by
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the number of nearby occupied cells (Appendix S2:
Table S1). Forecasts suggest that bears are unlikely to
become established in southern Wisconsin in the near
future (i.e., by 2024) assuming current conditions (i.e.,
land cover distribution) hold (Fig. 2), as a large swath of
intensive agriculture separates the current distribution of
bears from potentially suitable habitat. Thus, managers
may have time to develop management goals and objec-
tives for bears in this part of the state.

EXAMPLE 2. INCREASING TEMPORAL RESOLUTION

For many species, linking JON and SRS data can sup-
port decision-making at finer (and potentially more use-
ful) temporal resolutions than static or annual products.
Species distributions and their environmental associa-
tions change throughout the annual cycle (Conn et al.
2015), and understanding these dynamics can inform
more effective management and conservation actions.
For example, deterrence actions to reduce livestock
depredation or crop damage are more effective when
implemented in places and seasons with high probability
of conflict (Olson et al. 2019), and these finer-grained
actions are preferable to blunter approaches such as
changing harvest regulations. Human-bear conflict is
ephemeral, and understanding changes in bear distribu-
tions and habitat associations across the year provides
baseline insights into predicting likely conflicts. The
combination of SW images and regularly collected SRS
data can support models that describe seasonal patterns
in black bear occurrence (Fig. 3 and Appendix S3).
While asymptotic bear occupancy (i.e., the probability of
ever occurring over the course of the year) was positively
associated with the proportion of forest cover across a
broad (5 km) spatial grain (e.g., Example 1), bear occur-
rence at a finer temporal scale (i.e., availability for detec-
tion, or the estimated probability of being within a 500-
m region on a specific day) was positively associated
with concurrent daily estimates of the enhanced vegeta-
tion index (Appendix S3: Table S1, Fig. S1). Associa-
tions between daily bear occurrence and finer-grained
(500 m) forest and cropland cover further vary season-
ally. For example, bears avoid cropland during summer
months but appear more likely to use it during spring
and autumn, with activity peaking in late spring (Fig. 3
and Appendix S3: Fig. S1). Model predictions appear
consistent with existing understanding of patterns in
bear conflict. For example, daily likelihood of bear
occurrence integrated across the year is predicted to be
greatest within northwestern Wisconsin, which coincides
with areas where the WDNR has made recent changes
to harvest delineations to address increased conflict.
However, further model development and testing is nec-
essary to operationalize a tool that might forecast distri-
butions at fine-temporal scales to support formal
decision-making. This could include using more discrim-
inatory SRS covariates and better leveraging data from
areas with denser sampling to accommodate a more
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explicit spatiotemporal structure for bear occurrence.
The regularity of SW’s data collection lends itself to
such iterative development and improvement (Dietze
et al. 2018).

ExampLE 3. EXPANDING BroLoGicaL EXTENT

A key contribution of SW has been the capacity to
provide information about species that are not otherwise
monitored. Species believed to be extirpated or inciden-
tal across the state (e.g., moose [Alces alces], cougar
[Felis concolor], lynx [Lynx canadensis]) are difficult to
monitor by virtue of their scarcity. Previous monitoring
for rare species relied on voluntarily contributed sight-
ings with coarse spatial resolution (Olson et al. 2020)
that contain little information about sampling effort,
species prevalence, or the area of occurrence. Because
SW’s sampling effort is extensive, continuous, and quan-
tifiable, it provides stronger evidence for scarcity than
opportunistically collected large-scale sampling designs
(Bayraktarov et al. 2019, Kays et al. 2020). As of early
2020, SW has generated <10 detections of moose and
only 2 of cougar, suggesting (but not confirming) that
these are extremely rare in Wisconsin. Similarly, SW
enables the monitoring of common species that may
have managerial importance but are not otherwise moni-
tored or managed due to resource constraints. For
example, the distributions and environmental associa-
tions of coyote (Canis latrans), opossum (Didelphis vir-
giniana), and striped skunk (Mephitis mephitis) in
Wisconsin are poorly understood because the species are
not actively monitored, and yet these species play a
range of important ecological roles, including roles
related to the spread or control of different diseases
(Levi et al. 2016). These species are readily detected by
SW, allowing their distributions across the state to be
delineated at high resolution with useful accuracy
(Fig. 4 and Appendix S4). Species distribution models
suggest that all three species appear to be more common
in southern Wisconsin, and patterns in their occurrence
derived from SW are associated with differences in
satellite-derived land cover composition and climatic
conditions between the northern and southern parts of
the state. While this information is primarily useful for
establishing the baseline status of these species, SW’s
ongoing sampling and integration with SRS enable the
implementation of dynamic process-based models cap-
able of providing more reliable inference (Yackulic et al
2015; Example 1). In turn, such information could
expand the scope of management decision-making to
incorporate disease risk for humans or other wildlife
species (Rohr et al. 2020). Deeper knowledge of the dis-
tributions, habitat associations, and dynamics of a larger
pool of species carries many other potential benefits,
such as improved delineation of biodiversity hot spots
(Falconer and Ford 2020) and better understanding of
how different natural or anthropogenic forces structure
biodiversity patterns.
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(A) Detection (red)/non-detection (black) of bears in Snapshot Wisconsin cameras from 2018 and coarse spatial scale

bear harvest monitoring units. (B) Predicted bear occupancy and (C) associated uncertainty for 2018 and forecast out to 2024.

ExAMPLE 4. INCREASING BroLoGIicAL REsSoLUTION

SW provides information at biological resolution that
exceeds species detection/non-detection. Trail camera
images contain information about species traits, pheno-
types, or behaviors that can provide insights into the
mechanisms underlying population changes (Zimova

et al. 2020). White-tailed deer population dynamics in
Wisconsin pose a challenge for effective management,
with both bottom-up (food) and top-down (natural and
anthropogenic predation) forces believed to have impor-
tant effects (Warbington et al. 2017). Top-down effects
may manifest in varying ways: predators may influence
prey populations directly via consumption or indirectly
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Use of continuous satellite remote sensing (SRS) and SW data to predict daily bear occurrence over the course of 2017.

Predictions are derived from a multi-scale occupancy model, as the product of asymptotic occupancy probability (the probability of
ever using a cell) and the daily probability of a bear being “available” for detection (i.e., active within the cell on a given day).

by intimidating prey and reducing their foraging effi-
ciency (Brown and Kotler 2004). As a consequence,
understanding the behavioral landscape can provide
insights into underlying population variation related to
predation risk and foraging opportunities, which may
subsequently inform management of the system
through approaches such as predator control or regulat-
ing human disturbance (Dwinnell et al. 2019). SRS
plays a critical role in delineating spatial and temporal
variation in forage resources, and SW images can be
mined to generate behavioral data that are not other-
wise available over relevant spatiotemporal scales, with
the caveat that the interpretation of still images that are
increasingly being used for behavioral analysis (e.g.,
Palmer et al. 2017) may be imperfect (Appendix S5).
Analysis of deer foraging and vigilance behavior derived
using crowdsourced classification of SW images (ignor-
ing any proxies for predation risk), and results suggest
that deer spend relatively less time foraging in areas
with greater land cover diversity and greater remotely

sensed plant productivity using annually integrated
MODIS enhanced vegetation index as a proxy for
annual productivity (Appendix S5). Deer appear to
allocate relatively less time to vigilance and more time
to foraging in areas such as northern Wisconsin
(Fig. 5), which SRS data suggests is less productive and
commonly features deeper snow pack, and where both
camera analysis (J. Clare, unpublished data) and other
data indicate that predator richness and density is
greater. Together, these patterns suggest that deer in
northern Wisconsin may operate under greater nutri-
tional stress and may perceive resource limitation as a
greater risk than predation. Moreover, the predicted
incidence of foraging peaks during early spring when
nutritional demands are also peaking (due to fawn
birthing and metabolic changes) and in late summer
(prior to rutting season, Fig. 5). Any potential non-
consumptive predator effects may be more important
during these specific times of year: landscapes of fear
are recognized to be dynamic entities (Palmer et al.
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FiG. 4. Trail-camera- and SRS-based predictions of occurrence probabilities for species that are not otherwise monitored: coy-
ote, opossum, and striped skunk. Top row shows SW observations (detection/non-detection) across 2015-2018; bottom row shows
predicted observed occurrence probability standardized for an effort of 200 trap-nights.

2017), and SW’s continuous sampling is well-equipped
to capture these dynamics.

EXAMPLE 5. STRENGTHENING INFERENCE VIA CORROBORA-
TION AND CONTRAST

To date, most research that has drawn upon the grow-
ing body of biodiversity observations produced by obser-
vation networks has focused on exploring patterns and
changes in species distributions or populations at
broader extents or finer resolutions than have tradition-
ally been studied (Fink et al. 2010). At jurisdictional
scales, data collected using JONs often coexists with
information from targeted surveys and existing monitor-
ing streams. There is a growing appreciation for syn-
ergies between data sources, and the development of
broader monitoring networks may not only be useful for
addressing new questions or issues, but for strengthening
the integration of data types across multiple scales (Sten-
glein et al. 2015).

A simple but meaningful synergy afforded by SW is its
ability to generate independent information that can be
compared with existing lines of evidence, which may
either clarify decisions via corroboration, or weaken
support for specific decisions if there is lack of concor-
dance (Cook et al. 2012). Deer are monitored by
WDNR using a population reconstruction model (Rose-
berry and Woolf 1991) that depends upon assumptions
regarding stable age distributions and buck harvest rates
(Millspaugh et al. 2009) and is implemented at a resolu-
tion too coarse to draw linkages between population
changes and potential drivers other than harvest regula-
tions. Consequently, the WDNR is interested in develop-
ing independent monitoring metrics. Camera-based
detection indices are appealing due to their ease of
implementation, but their accuracy is contingent upon
the assumption that detection rates are proportional to
density (Broadley et al. 2019). We compared harvest-
based population estimates of deer in 2018 used by the
WDNR with encounter rates derived from concurrent

FiG. 5.

The predicted relative likelihood of deer foraging and vigilance behaviors (conditional upon occurrence and being

detected) varies substantially across space and over the course of 2017, with highly outsized behavioral responses (e.g., top, 31 Jan
and 1 Mar) associated with ephemeral but dramatic weather events. During the year, deer in Wisconsin’s low productivity but
predator-rich northern and central forests appear to spend relatively more time foraging and less time vigilant.
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SW data based on remotely sensed land cover, phenol-
ogy, and other abiotic factors aggregated to a common
county-level spatial unit (Appendix S6). Results
(r = 0.55, Fig. 6) suggest that both approaches yield
similar, but not congruent, patterns in deer abundance
and thus may be complementary monitoring sources.
Although SW permits prediction at finer resolution
(Fig. 6C), these predictions are not necessarily more
accurate: regions of discrepancy could represent areas
where closer investigation of the underlying assumptions
is warranted. Predictions from SW (but not harvest-
based models) suggest northwestern Wisconsin is a
region of relatively high deer density (Fig. 6). This may
reflect confounding variation in detection rates driven
by movement differences or detection variation (Broad-
ley et al. 2019), sex or age-related hunter selection biases
(Millspaugh et al. 2009), or other factors. Both growing
season phenology and land cover metrics showed associ-
ations with indices of deer abundance from SW, suggest-
ing that growing season phenology, like existing winter
severity indices, could play a useful role in forecasting
population changes to guide harvest regulations (Hurley
et al. 2017).

The role of SW as complement to or replacement for
existing monitoring efforts is a major research focus.
WDNR is particularly interested in replacing practices
that are expensive, sensitive to survey conditions, or for
which varied detection errors are difficult to ascertain
(e.g., aerial or snow-track surveys). Although comparing
independent data streams is a useful starting point, inte-
grated models may allow researchers to identify and rec-
oncile specific methodological limitations (Stenglein
et al. 2015, Clare et al. 2017).

ExAMPLE 6: EXPANDING EXTENT THROUGH INTEGRATED
MODELING

Integrated models provide further opportunity to
“scale up” information from local studies and estimate
otherwise inscrutable parameters, and can be useful
when some data types are difficult to collect over large
scales (Sun et al. 2019). For example, bobcats are man-
aged in two zones in Wisconsin. The northern zone is
monitored using a harvest-based accounting model that
appears unreliable due to hunter selection for older
males (Allen et al. 20185). The WDNR recently opened
the southern zone to harvest using results from a tar-
geted capture-recapture effort (Clare et al. 2015), but
the conservative quotas enacted to avoid overexploita-
tion do not provide sufficient data for monitoring.
Extrapolation risks are commonly encountered with
small-scale, targeted studies often used to support man-
agement decision-making and can be particularly pro-
nounced for harvest-based monitoring programs if
harvest is geographically constrained. Integrating
detection/non-detection data from SW with previous
bobcat capture-recapture data (Appendix S7) provides
the first initial estimates of statewide population size
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and reveals substantial spatial structure in bobcat den-
sity that was inestimable with only the capture-recapture
study or harvest data alone (Fig. 7). Results suggest that
the northern and southern zones have similar population
sizes, but also that the environmental drivers of bobcat
density are poorly understood or geographically variable
across the state. Ongoing model development and moni-
toring is needed to clarify the germane drivers and refine
population estimates.

DiscussioN: OPPORTUNITIES, CONSIDERATIONS, AND
CAVEATS

Emerging technologies provide great power to charac-
terize biodiversity across larger extents and with finer
levels of detail than traditional monitoring techniques.
The utility of SRS for global monitoring in an era of
rapid anthropogenic change has been well established
(Pettorelli et al. 2014, Jetz et al. 2016, Schimel et al.
2019). JONs complement SRS by sampling aspects of
biodiversity such as species composition and understory
vegetation characteristics that are not readily detected
via traditional remote sensing platforms (Turner 2014).
Combining SRS with data from localized sensors facili-
tates the discovery of new patterns and enables previ-
ously untenable lines of research (e.g., Kelling et al.
2009, La Sorte et al. 2018). SW demonstrates that link-
ing SRS with observation networks that follow a struc-
tured design is a tractable monitoring option for
management agencies, even if the network involves even
year-round, state-wide sampling. Such programs can
provide agencies information across previously unten-
able combinations of extent and resolution: SW has col-
lected more wildlife observations than all other
monitoring programs focused on similar species in the
state, with transparent and quantifiable sampling
parameters that allow users to assess and account for
issues such as imperfect detection.

More importantly, our examples suggest several ways
in which such data could lead to improved management.
The fusion of biodiversity and earth observation data
through JONSs has the potential to enhance performance
across each primary role of science within the decision-
making process: framing issues, delineating potential
management actions, predicting the effects of these
actions, and evaluating their efficacy (Keller 2009).
JONSs can provide information about combinations of
species, environmental conditions, and spatiotemporal
scales that is often otherwise non-existent, which allows
agencies to consider a broader set of emerging issues and
management actions. JONs also provide information
that can supplement existing monitoring efforts by pro-
viding alternative lines of evidence, more rigorous esti-
mation, and via integration with SRS, greater capacity
to understand variability in the state variables and func-
tional relationships of interest. This enables agencies to
more effectively predict the effects of potential actions
and monitor the efficacy of management



December 2021 REMOTE SENSING AND COMMUNITY SCIENCE Article 02436; page 11

No. deer per square

A Deer density B mile (harvest)

index (camera

[ 5.91 -1.0)2 = :z:::
[ 0.85-0.91 13338
[ To080-0.95 2832
[ lo.71-0.80 ] 22-27
[ 0.67-0.71 I 421
I 0.48-0.66

e Camera location

Deer density
index (camera)

D
80 .
r=0.55 .
2 60 .
2
© L
< . - .« .
% LN .
3 . o« & .°
£ M o
240 T . .. ... . L]
] . e o . . .
€ . een . <.t
° PN P
@ . s s ee o oo
Boo . . oox el v
0.6 0.8 1.0

Deer density index (camera)

Fic. 6. Patterns in 2018 deer density indices aggregated to the management unit derived from (A) prediction using Snapshot
Wisconsin trail cameras and remote sensing and (B) 2018 density estimates using a harvest-based population reconstruction model
(1 square mile = 2.59 km?). (C) Spatially explicit (50- m cell) predictions used in panel A. (D) Results from panels A and B are well
correlated, although the potential resolution of inference or prediction is much greater using SW’s density index (C) or more formal
estimates of density that might be produced from alternative modeling exercises.

implementations with respect to issues of existing inter- cover), and new missions promise pronounced improve-
est. Widely available SRS data includes many important  ments in its spatial, temporal, and biological resolution
but underutilized proximal predictors (e.g., nighttime (e.g., measurements of vegetation structure and foliar
light intensity, vegetation indices, frozen ground or snow traits; Schimel et al. 2019). Enhancing the dimensions of
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Smaller-scale bobcat studies (capture-recapture sampling, locations in A) were combined with the broader-scale SW

sampling (locations in B) to scale up to state-wide bobcat density estimation (C).

biodiversity monitoring may also provide agencies infor-
mation needed to redefine objectives to align with spatial
and temporal heterogeneity in stakeholder interests.
Indeed, two of the most pointed challenges for wildlife
management involve generating a strong evidential basis
for decisions, and engaging a broader range of stake-
holders to help define management objectives (Artelle
et al. 2018).

Thus, the extent to which JONs can improve biodiver-
sity monitoring and management is partially dependent
on the degree to which networks enhance the spatial,
temporal, and biological extent or resolution relative to
existing monitoring. The optimal sampling properties of
a JON and the appropriate analytical extent and resolu-
tion emerge from the spatiotemporal structure and
dynamics of the organisms targeted and their environ-
ment. Some processes of interest may be reasonably well
described with discrete annual dynamics, but applica-
tions involving migratory, transient, or irruptive species
responding to environmental dynamics (Van Moorter
et al. 2013) or focusing on the effects of extreme and
ephemeral events may require greater sampling density,
extent, and resolution. However, no observation net-
work, regardless of extent, resolution, or intensity, sam-
ples optimally or even effectively for all possible research
foci, and comparison or integration with alternative data
sources, where appropriate, is critical for making the
most of the available information.

Opportunities

The examples presented here largely follow standard
wildlife science approaches implemented at unusual
(although not unique) extent and resolution. In the
near-term and especially during program initiation
phases, most applications employing JONs will likewise
focus on filling information gaps of existing managerial
interest. We believe these applications are sufficiently

beneficial to resource managers to justify developing
such networks. However, JONs may enable more syn-
thetic and transformative approaches to research and
monitoring.

First, by capturing information about the environ-
ment and different levels of biological aggregation such
as traits or behaviors, populations or distributions, and
communities (Fig. 1), SW and other JONs provide
opportunity to better characterize the processes con-
tributing to biodiversity patterns and generate improved
predictions of their dynamics. It is generally accepted
that species distributions are driven by interactions
between organism traits, community composition, and
environmental context. For example, snowshoe hare are
undergoing a range contraction within Wisconsin
believed to be driven by increased predation resulting
from increased phenotypic mismatch due to a declining
snowpack (Sultaire et al. 2016, Wilson et al. 2019).
Combining data and models for hare distribution, the
dynamics of hare phenophase (Zimova et al. 2020), the
distribution and dynamics of remotely sensed snow
cover, and variation in landscape and community com-
position (i.e., the distributions of predators and alterna-
tive prey) could generate more rigorous predictions of
hare range shifts, and richer synthetic understanding of
their cause, their broader community consequences, the
intrinsic adaptive capacity of hares, and managerial
capacity to buffer hares from extrinsic threats.

Secondly, we believe the concurrent collection and
combination of locally and remotely sensed data creates
further synergies between the two data-streams. Most
applications linking the two use environmental data
derived from SRS to test associations with locally sensed
biodiversity phenomena and make predictions. The con-
verse is also possible. Local wildlife observations may
also be used to interpolate or extrapolate missing SRS
observations by exploiting their covariance (Clark et al.
2017), or, recognizing that wildlife also influence their
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environment (e.g., via herbivory), variables derived from
locally sensed biodiversity observations could be used to
predict changes in SRS surface measures for forest or
rangeland applications. Moreover, space-borne and local
sensors may provide measurements of surface phenom-
ena like snow or plant phenology from different perspec-
tives, e.g., below and above canopy (Siren et al. 2018,
Liu et al. 2021). SW cameras record time-lapse images
synched to the approximate overpass time of several
satellites, and these have been used to aid interpretation
of and assess measurement error in SRS-derived land
surface phenology (Liu et al. 2021). Such locally sensed
data could be leveraged to downscale SRS observations
to for wildlife or other applications. Finally, products
from both local and space-borne sensors are subject to
measurement, classification, and estimation error. We
believe practitioners could reduce error in modeled
products as well as generate much stronger insights by
fusing classification and process models for the surface
environment and its biodiversity (sensu Joseph 2020,
Kery and Royle 2021: section 7.6).

Ultimately, we expect that large, integrated data
streams will provide better capacity to characterize mul-
tiple parameters of interest. For SW, there are many
opportunities to further grow the network by co-
deploying other sensors to detect taxa poorly sampled
by trail cameras, or to provide supplementary local mea-
surements of the understory environment. A further
appeal of relying on remote sensing inputs is that their
frequent and regular data collection facilitates the devel-
opment of iterative, near-term forecasting platforms
(Dietze et al. 2018). Indeed, we envision that the evolu-
tion of JONs will trend towards systems that absorb
multiple data streams and regularly generate predictions
that are subsequently assessed and used to refine data
processing and model parameters. However, several bar-
riers remain.

Challenges

Increased extent, resolution, and integration creates
increased data volume, and classification, curation, and
computation can be limiting steps (La Sorte et al. 2018,
Lindenmayer et al. 2018, Bayraktarov et al. 2019).
Technological developments, such as fast automated
classification of images or audio recordings (Willi et al.
2019) and data portals that provide curation, process-
ing, and classification services (Sullivan et al. 2009,
Ahumada et al. 2020) have emerged to deal with these
challenges. It will generally be substantially more effi-
cient for JONs to interface with existing cyberinfras-
tructure rather than develop their own. However,
further efficiency gains are needed to limit latency
between data collection and analysis. Advances such as
platforms to help automate the synthesis of multiple
data streams or cost-effective recording units with
capacity to transmit locally sensed data in near real-
time would help achieve these gains.
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A further challenge is that the novelty, volume, scale,
and resolution of the data produced by JONs can create
inefficiencies with respect to generating actionable infor-
mation (Lindemayer and Likens 2018, Lindenmayer
et al. 2018). A consequence of sampling and modeling
more species distributions with enhanced extent and res-
olution is that the observations are driven by an increas-
ing number of processes (local ~movement,
demographics, dispersal, etc.) that operate at different
scales (Yackulic and Ginsberg 2016). Articulating such
complexity presents a formidable intellectual challenge.
Fast and flexible descriptive analyses can be invaluable
for tasks such as generating baseline information, but
models rooted in processes, hypotheses, and theory are
likely more useful for decision-making: fully leveraging
the data may require simultaneously advancing theory
and integrating it into tractable analytical tools (Cove-
ney et al. 2016, La Sorte et al. 2018, Joseph 2020). This
requires considerable and continuous intellectual invest-
ment along many fronts.

As such, implementing JONs requires agencies to
effectively prioritize staff and resource allocation
towards different project components or infrastructure
(Locke et al. 2019), while making sure the data are
accessible to and used by researchers (either agency and
external) who can advance methodology, theory, and
system understanding (Lindenmayer et al. 2018). Both
tasks require clearly defined monitoring objectives (Yoc-
coz et al. 2001). Without such objectives, it is easy to
generate purposeless products, and fundamental design
and informatic decisions (e.g., the data classification
task) can become daunting. For example, characterizing
communities using bio-acoustic indices, measures of
observed species composition, and estimates of species
composition after accounting for varied observation
errors each present different data processing and classifi-
cation considerations. Rather than seek to do many
things immediately (Lindenmayer and Likens 2018), it
may be useful to view the set of monitoring objectives as
something that iteratively evolves in concert with
advances in methodology, system understanding, and
managerial need.

While JONs can generate data to support manage-
ment at broad scales and a range of resolutions, ecologi-
cal information is only one component within the
decision-making process. Several factors may restrict the
degree to which improved information leads to better
management decisions. It takes time for decision-makers
to process new information, information availability
may be misaligned with the decision-making timeline,
and considerations other than ecological information
may take precedence (e.g., McNie 2007, Sarewitz and
Pielke 2007, Fuller et al. 2020). Given the volume of
data production and rate of acquisition, integrating
JON:Ss into decision-making will benefit from (1) making
products easily and quickly digestible (for example, on-
demand “real-time” data access, processing, analysis,
and visualization; Ahumada et al. 2020); (2) increasing
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decision-making’s capacity to absorb and adapt to new
information (i.e., investment in decision-science tools);
and (3) clearly articulating management problems and
information needs to ensure that the effort expended
results in actionable products (Beier et al. 2017). It may
be equally important for researchers to clarify what
could be done with the data, and for other stakeholders,
perhaps informed by emergent patterns in the data, to
provide input into how management objectives are
defined (McNie 2007, Beier et al. 2017).

Indeed, engaging a broader pool of stakeholders in
management or decision-making is often one objective
for JONs like SW that are reliant upon community sci-
entists for data collection (Bonney et al. 2014). SW’s
engagement and outreach efforts for camera hosts and
volunteers classifying images include regular interactions
on the associated platforms and associated newsletters,
blogs, and volunteer appreciation events. To permit
broader outreach, the project has partnered with envi-
ronmental educators across the state to provide equip-
ment, developed classroom curricula, and created open
web-apps for data visualization and summarization.
These efforts are supported by research to assess how
interventions influence volunteer engagement with the
project, and how involvement with SW shapes engage-
ment with and opinions of natural resources manage-
ment. There is some tension between the desire to
involve the public in data classification, which provides
greater transparency and engagement, and the desire to
generate data quickly, which may better be achieved via
computational means. Hybrid approaches where a (reli-
able) subset of volunteer classifications provide labeled
data to train algorithms (Willi et al. 2019) or where deep
clustering makes the volunteer task more efficient
(Wright et al. 2019) may balance these needs. If not, fur-
ther prioritization of objectives will be necessary.

Effective biological monitoring jointly quantifies
changes in the system variables of interest, helps identify
drivers of any changes in the system variables, and ulti-
mately improves management (Nichols and Williams
2006, Lindenmayer and Likens 2010). Data limitation
hampers conservation and management efforts, and
engaging community scientists to deploy sensors over
large scales provides great value by generating informa-
tion at increased spatial, temporal, and ecological reso-
lution and extent. The proliferation of SRS provides
opportunities to improve these efforts, especially in
regions where in-situ sampling is limited, and remote
sensing imagery and other geospatial data are necessary
for JONS to effectively test hypotheses and make predic-
tions. We ultimately believe JONs may enable manage-
ment agencies to break free from narrowly focused,
agenda driven, or tautological monitoring (Clare et al.
2019a) and better achieve their missions.
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