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Pig genome functional annotation enhances the
biological interpretation of complex traits and
human disease
Zhangyuan Pan1,9, Yuelin Yao2,9, Hongwei Yin 3, Zexi Cai 4, Ying Wang1, Lijing Bai3, Colin Kern 1,

Michelle Halstead 1, Ganrea Chanthavixay1, Nares Trakooljul 5, Klaus Wimmers 5, Goutam Sahana4,

Guosheng Su4, Mogens Sandø Lund4, Merete Fredholm6, Peter Karlskov-Mortensen 6, Catherine W. Ernst 7,

Pablo Ross 1, Christopher K. Tuggle 8, Lingzhao Fang 2✉ & Huaijun Zhou 1✉

The functional annotation of livestock genomes is crucial for understanding the molecular

mechanisms that underpin complex traits of economic importance, adaptive evolution and

comparative genomics. Here, we provide the most comprehensive catalogue to date of

regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic

data sets, representing 14 biologically important tissues. We systematically describe the

dynamic epigenetic landscape across tissues by functionally annotating 15 different chro-

matin states and defining their tissue-specific regulatory activities. We demonstrate that

genomic variants associated with complex traits and adaptive evolution in pig are significantly

enriched in active promoters and enhancers. Furthermore, we reveal distinct tissue-specific

regulatory selection between Asian and European pig domestication processes. Compared

with human and mouse epigenomes, we show that porcine regulatory elements are more

conserved in DNA sequence, under both rapid and slow evolution, than those under neutral

evolution across pig, mouse, and human. Finally, we provide biological insights on tissue-

specific regulatory conservation, and by integrating 47 human genome-wide association

studies, we demonstrate that, depending on the traits, mouse or pig might be more appro-

priate biomedical models for different complex traits and diseases.
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Functional elements play essential roles in regulating gene
expression in living cells and tissues1. There have been great
efforts to identify and annotate functional elements in

human and mouse genomes1–11 as well as other model organ-
isms, including Drosophila12 and C. elegans13. Significant
enrichment of variants associated with human complex traits
within regulatory elements has demonstrated the importance of
the resulting Encyclopedia of DNA Elements (ENCODE) data14.
Comparative analysis of epigenomes and transcriptomes across
species could provide novel insights into the molecular
mechanisms underlying human disease8,15. Genetic variants
associated with common illnesses are enriched in human ortho-
logues of mouse regulatory elements identified by ENCODE9,
which suggests that the mouse could serve as a biomedical model
for understanding some human diseases. However, compared
with the mouse, pig (Sus scrofa) has more anatomical and phy-
siological similarities to humans16–18, and has been widely used
as a human medical model16,17,19–21. The pig is also one of the
most important farm animal species for meat production
worldwide22. The genetic improvement of economically impor-
tant complex traits such as growth, feed efficiency, and health
could contribute to efficient and sustainable production of animal
protein, contributing to a secure food supply for a growing world
population. Causative variants associated with complex traits
often have a small genetic effect on phenotypic variation, making
them difficult to discover23. Functional annotation of regulatory
elements in pig will lay a solid foundation for the identification of
these causative variants, due to their enrichment in regulatory
regions.

Following ENCODE and Roadmap Epigenomics projects8, the
Functional Annotation of Animal Genomes (FAANG)
initiative24, although still in its infancy, has made great progress
towards annotating functional elements in many tissues across
multiple domestic species, including pigs25–30. Here, we present
95 new genome-wide sequencing datasets from six gut-associated
porcine tissues and integrate them with 128 previously published
FAANG datasets from eight biologically distinct tissues. The
collective interpretation of these datasets yields the most com-
prehensive annotation of functional elements to date in any
domesticated animal species. In addition, we find that tissue-
specific regulatory elements were enriched for the potential cau-
sative variants of complex phenotypes by integrating a variety of
large-scale genome-wide association studies (GWAS) and
expression quantitative trait loci (eQTL) datasets. Furthermore,
by integrating signatures of selection in the pig genome, we show
that tissue-specific regulatory elements likely played important
roles in pig domestication. Finally, we compared porcine func-
tional annotations with complementary datasets from the human
and mouse, and integrated GWAS datasets concerning 47 human
complex traits. These comparisons demonstrate conservation of
tissue-specific epigenetic signatures, suggesting that, depending
on the specific human diseases under investigation, either the pig
or the mouse may be a more suitable animal model. Here, we
show our systematic functional annotation of the pig genome
significantly enhances our understanding of genetic control of
complex traits in pigs and disease in humans.

Results
Data summary. We integrated 223 genome-wide sequencing
datasets from 14 major tissues in pig (Fig. 1a), representing four
histone modifications (H3K4me3, H3K4me1, H3K27ac, and
H3K27me3) measured by Chromatin Immunoprecipitation
sequencing (ChIP-seq), chromatin accessibility by the Assay for
Transposase-Accessible Chromatin (ATAC-seq), DNA methyla-
tion by Reduced Representation Bisulfite sequencing (RRBS), and

gene expression by RNA-seq (Supplementary Fig. 1). We pro-
duced nearly 9 billion mapped reads with an average rate of
68.81% remaining after alignment and filtering across samples
(Supplementary Data 1). Among 14 tissues, we obtained an
average of 32,387, 106,849, 72,252, 98,721, and 122,585 peaks for
H3K4me3, H3K4me1, H3K27ac, H3K27me3, and ATAC, with
average size of 794, 1894, 618, 1190, and 653 bp, and covering
1.56, 2.78, 2.37, 7.74, and 3.31% of the entire genome, respectively
(Fig. 1b, c and Supplementary Fig. 2). Additionally, we utilized 16
CTCF ChIP-seq datasets from eight tissues29 and four Hi-C
datasets from liver30 to identify CTCF and Hi-C loops for asso-
ciating regulatory elements (enhancers) with potential target
genes.

The hierarchical clustering of samples based on the signal
intensity of epigenetic marks and gene expression profiles clearly
recapitulated sequencing assays, followed by tissue types and
biological replicates (Fig. 1d), which was consistent with results of
principal component analysis (PCA) (Supplementary Fig. 3). The
six assays formed three major clusters: (1) active regulatory
regions (H3K4me3, H3K27ac, H3K4me1, and ATAC), (2)
Polycomb repression (H3K27me3), and (3) gene expression
(RNA-seq). The four active regulatory marks were positively
correlated with each other, but were negatively correlated with
H3K27me3 – especially H3K27ac. The signal intensity of RNA-
seq (within gene bodies) showed a weakly positive correlation
with active regulatory marks, and a negative correlation with
H3K27me3. Overall, three active regulatory marks (ATAC,
H3K4me3, H3K27ac) showed a peak at the upstream of
transcription start sites (TSS) of genes across tissues (Fig. 1e),
whereas H3K4me1 showed a peak at 1 kb distance upstream of
TSS (Fig. 1e).

To illustrate the complex interplays of regulatory elements and
gene expression with respect to Escherichia coli infection and
microvillar membrane morphology in intestinal tissues31,32, we
present an analysis of Myosin 1A (MYO1A). MYO1A is
specifically and highly expressed in intestinal tissues and showed
specific enrichment for H3K27ac signal around its TSS in
intestinal tissues but not in other tissues (Fig. 1f). In addition,
the TSS of MYO1A was accessible and enriched for other active
regulatory marks (i.e., H3K27ac, H3K4me3, and H3K4me1) but
not for Polycomb repression (H3K27me3) (Fig. 1f).

Prediction and characterization of chromatin states across 14
tissues. We defined 15 distinct chromatin states by combining all
five epigenetic marks across 14 tissues. These states mainly
represented promoters (TssA, TssAHet, and TssBiv, covering
1.16% of the entire genome), TSS-proximal transcribed regions
(TxFlnk, TxFlnkWk, and TxFlnkHet, covering 0.92% of the
genome), enhancers (EnhA, EnhAMe, EnhAWk, EnhAHet, and
EnhPois, covering 6.5% of the genome), repressed regions (Repr
and ReprWk, covering 13.25% of the genome), and quiescent
regions (Qui, 73.39%) (Fig. 2a–e and Supplementary Data 2).
Collectively, we identified 2,097,958 regulatory elements
(excluding Qui) spanning 14 tissues, including 39,351 active
promoters (TssA), 188,827 active strong enhancers (EnhA), and
142,821 repressors (Repr) (Supplementary Fig. 4a–c). On average,
4.79% of the genome was accessible but did not coincide with any
other measured epigenetic marks (ATAC islands), indicating that
additional epigenetic marks are required to further explore the
biological function of such regions. TssA and TssBiv showed the
highest enrichment of conserved DNA sequence elements, fol-
lowed by TSS-proximal transcribed regions and accessible
enhancers (EnhA and EnhAMe) (Fig. 2f). In general, TssA and
TssBiv showed the highest enrichment at TSS, while other
chromatin states showed enrichment both up- and down-stream
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of TSS (Fig. 2g). For instance, TssAHet and TSS-proximal tran-
scribed states had the highest enrichment ~2 kb upstream of TSS,
whereas enhancer states showed the highest enrichment ~20 kb
upstream of TSS. Repressed states were enriched ~20 kb up- and
down-stream of TSS (Fig. 2g).

In general, different chromatin states showed distinct DNA
methylation levels (Fig. 2h). Promoter and TSS-proximal
transcribed states were hypomethylated compared to nearby
sequences (10 kb up- and down-stream of TSS). Among promoter
states, TssA had the lowest methylation level, confirming the
well-known negative correlation between promoter methylation
and gene expression33. The enhancer states showed intermediate
methylation levels, among which EnhA and EnhAMe had lower
methylation levels compared to other enhancers (Fig. 2g). In
addition, we also observed that EnhA and EnhAMe had more
conserved sequence than other enhancers (Fig. 2f). This result
suggests accessible enhancers may have more conserved
sequences than non-accessible enhancers.

To explore and illustrate the relationships among chromatin
states, individual epigenetic marks, gene density, gene expression,
DNA methylation, and chromatin conformation we focused
chromosome 7 (Chr7) (Fig. 2i). We observed that regions with

higher density of genes were characterized by active chromatin
states, higher gene expression, increased chromatin accessibility,
and lower methylation levels. More chromatin interactions
(measured by topologically associating domains (TADs) from
Hi-C data) were detected within both gene deserts and gene rich
regions than in the remaining Chr7 genomic regions. To examine
the associations of chromatin states with gene expression across
tissues, we investigated the VIL1 locus (Villin-1), which
participates in response to intestinal inflammation34 (Fig. 2j).
VIL1 exhibited tissue-specific active promoters and enhancers, as
well as high expression in intestinal tissues compared to other
tissues. Of particular note, despite the presence of TssA, VIL1 was
not expressed in stomach, possibly due to the lack of enhancer
activity upstream of its TSS, suggesting that enhancers, together
with promoters, collectively regulate VIL1 expression. These
patterns were also observed for MYO1A and Hepatocyte Nuclear
Factor 4 Gamma (HNF4G), a gene that plays key roles in
enterocyte differentiation35 and renewal of intestinal stem cells36

(Supplementary Fig. 4).

Dynamics of chromatin states across genome and tissues. We
clustered the entire genome into 12 modules based on their
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relative frequency of chromatin states and observed that these
modules exhibited distinct enrichments for protein-coding genes,
non-coding genes, and CpG islands (Fig. 3a). For instance,
module 2 (M2) was characterized by active promoters and
accessible enhancers, had the highest enrichment for genes and
CpG islands, the lowest levels of DNA methylation, and the
highest gene expression levels (Fig. 3b). Compared to M11 and

M12, M10 showed similar enrichment for Polycomb repression
but higher enrichment for TssBiv, in which genes exhibited sig-
nificantly lower expression levels, thereby suggesting the crucial
role of TssBiv for regulating gene repression (Fig. 3b). In addition,
we noticed that module 1 had high enrichment for TssAHet, high
levels of DNA methylation, and high representation of genes
located on the X chromosome, which were functionally enriched
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mammalian conserved elements from Genomic Evolutionary Rate Profiling (GERP). Whiskers show 1.5× interquartile range. Each data point represents one
of 14 different tissues. g Density of each chromatin state in positions relative to gene TSS. h Average methylation level of chromatin states in jejunum. i Hi-
C (250 kb resolution), predicted chromatin states, epigenetic signal, and normalized methylation level in jejunum across chromosome 7. j Chromatin state
landscape and mRNA expression at VIL1 locus (chr15:120,459,825-120,493,312, susScr11) across 14 tissues. Vertical scale of UCSC tracks shows
normalized signal from 0 to 200 for RNA-seq.
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for histone modification Gene Ontology (GO) terms (Supple-
mentary Data 3). This may indicate potential roles of TssAHet in
heterochromatin on the X chromosome37. In addition, we
observed that M3 and M12 had similar level of mRNA expres-
sion, but opposite directions in terms of enrichment for “repr”
and “enh” marks. However, M12 had a significantly lower
methylation level than M3, indicating that methylation may play
an independent role in gene regulation.

By examining the distribution of chromatin states among all 14
tissues, we found that enhancer activity was the most variable
between tissues, whereas promoter activity was least variable
(Fig. 3c, d and Supplementary Fig. 5d,e). Among promoters,
TssBiv was least constitutive and often switched to TSS-proximal

transcribed or quiescent regions between tissues (Fig. 3d).
Hierarchical clustering of samples using the signal intensity of
H3K4me1 within EnhA clearly separated different tissue types
(Fig. 3e), as well as H3K27ac in EnhA, H3K4me3 in TssA, and
H3K27me3 in Repr (Supplementary Fig. 6), suggesting that the
signal intensity of individual epigenetic marks in corresponding
regulators is highly indicative of tissue identity.

To explore the relationship between proximal regulatory
elements (within 2 kb of TSS of genes) and tissue-specific gene
expression, we identified genes with tissue-specific expression
(TSE), which were significantly engaged in known biological
functions of specific tissues (Supplementary Fig. 7 and Supple-
mentary Data 4). We also observed that TSE genes were enriched
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for active states (promoters, transcribed regions, and enhancers)
and depleted for repressed states in the 2 kb regions around their
TSS in the corresponding tissue compared to other tissues
(Fig. 3f). Furthermore, we found that predicted target enhancers
(Supplementary Data 5) of TSE genes were more constitutive
among biologically similar tissues compared with other tissues
(Fig. 3g), which was consistent with promoters of TSE genes
(Supplementary Fig. 8).

Functional characterization of tissue-specific chromatin states.
As enhancers were most variable among tissues compared to
other chromatin states, we identified an average of 6895 tissue-
specific EnhAs among 14 tissues, ranging from 1393 in jejunum
to 14,811 in skeletal muscle (Fig. 4a). To further investigate the
biological functions of such enhancers, we defined three other
types of EnhA, including all-common EnhA (shared among all
tissues), gut-common EnhA (shared among gut tissues), and
brain-common EnhA (shared among brain tissues). Gene
Ontology (GO) analysis of putative target genes of these different
types of EnhAs revealed distinct biological functions (Fig. 4b and
Supplementary Data 6). For instance, all-common EnhAs were
involved in fundamental biological processes (e.g., regulation of
mRNA catabolic processes and wound responses), whereas gut-
common EnhAs were significantly involved in intestinal devel-
opment, digestion and absorption, and immune response. EnhAs
that were specifically active in individual gut tissues showed
distinct functions, clearly matching the known biological func-
tions of the tissue in question. For example, jejunum-specific
EnhAs were involved in biological processes relevant to T cell and
lymphocyte function38, whereas colon-specific EnhAs were
mainly engaged in stress-activated MAPK cascades39 (Fig. 4b).
We observed that intestine- and spleen-specific EnhAs shared
many immune functions, and brain-specific EnhAs were sig-
nificantly involved in memory and learning (Fig. 4b). Further-
more, we observed that putative target genes of tissue-specific
EnhAs were specifically highly expressed in the corresponding
tissues (Fig. 4c), and methylation levels of tissue-specific EnhAs
were lower in the corresponding tissues (Supplementary Fig. 9a).
These results suggest that the activity of these tissue-specific
enhancers and their methylation level accurately predicted the
expression of associated target genes.

To explore potential tissue-specific transcription factors (TF),
first we identified motifs that were significantly enriched in tissue-
specific EnhAs (Fig. 4d and Supplementary Fig. 10a), such as that
of MEF2A and SIX1 in muscle, SOX10 in brain, and HNF1B and
HNF4A1 in liver and intestinal tissues (Supplementary Fig. 11),
all of which was consistent with previous findings in humans8. In
addition, we found the binding motif of HNF4G, which
participates in the renewal of intestinal stem cells in mice36 and
is specifically active in intestine (Supplementary Fig. 4b), was
enriched in intestine-specific EnhAs. Moreover, CDX2, a major
regulator of intestine-specific genes involved in cell growth and
differentiation, is highly expressed in jejunum compared to
duodenum and ileum40,41, and its motif is specifically enriched in
jejunum-specific EnhAs. The expression levels of the inferred TFs
were higher in the corresponding tissue than in other tissues
(Supplementary Fig. 10b, c), indicating that these tissue-specific
enhancers are hotspots for TF activity and play important roles in
the tissue-specific regulation of gene expression. We further
observed that genes linked to tissue-specific EnhAs were
significantly associated with biologically relevant complex
diseases in humans and mice (Fig. 4e, Supplementary Fig. 9b,
and Supplementary Data 7). For example, colon-specific EnhAs
were associated with diseases involving recurrent bacterial

infections, and cecum-specific EnhAs were significantly asso-
ciated with diseases involving bruising susceptibility.

As promoters also play an important role in tissue-specific
function, we also explored potential function for tissue-specific
promoters (TssA) and found that promoters also showed tissue-
specific regulatory (TSR) function, but to a lesser degree than
enhancers (Supplementary Fig. 12 and Supplementary Data 8).

Chromatin state predictions enhance the biological inter-
pretations of adaptive evolution and complex traits in pigs. To
determine whether genomic regions associated with adaptive
evolution are significantly enriched in regulatory elements (REs),
we first identified 11,329 selection signatures (the top 5% of
regions measured by FST) by comparing wild with domesticated
pigs in Asian and European populations across 406 whole-
genome sequencing datasets (Supplementary Data 9, 10, and 11).
We found that genomic regions under selective pressure were
most enriched for TssA and TSS-proximal transcribed regions,
followed by enhancers, with similar patterns in both Asian and
European populations (Fig. 5a, Supplementary Fig. 13a). In
examining tissue-specific regulation, our analysis revealed that the
all-common TssA were significantly enriched within regions
under selective pressure in both populations (Fig. 5b). Interest-
ingly, spleen-specific REs were most enriched in Asian pig
domestication, whereas cortex-specific REs were most enriched in
European pig domestication (Fig. 5b). Consequently, tissue-
specific gene regulation may have played an essential role in the
adaptive selection processes that resulted in Asian and European
pig domestication. This result was also in agreement with the
general observation that Asian domesticated pigs could be more
resistant to malaria42,43, whereas European domesticated pigs are
more active and aggressive44,45.

To ask whether SNPs associated with complex traits in pigs are
enriched in regulatory regions, we integrated GWAS signal
enrichment analysis for 44 complex traits (Supplementary
Data 12) with all 15 chromatin states, and demonstrated that
GWAS signals were most enriched in TssA (Fig. 5c), which was
consistent with previous findings in humans46. We also found
that enrichment for variants associated with complex traits was
significantly positively correlated with signatures of selection
(Supplementary Fig. 13b, c). We then asked if tissue-specific REs
were involved in genetic control of specific complex traits. To
answer this question, we conducted GWAS signal enrichment
analysis for average daily gain (ADG) in three separate breeds
(i.e., Duroc, Landrace, and Yorkshire), with emphasis on tissue-
specific TssA and EnhA. As we expected, muscle, adipose, liver,
and gut-common regulatory elements were the most relevant for
ADG (Fig. 5d). In further examining the top ADG QTLs in
Landrace (Fig. 5e), we identified a top hit SNP located in a
muscle-specific EnhA (Fig. 5f). Based on CTCF loop target gene
prediction and Hi-C loop interaction, this EnhA potentially
targets ZNF532 and ALPK2. Among all seven genes within this
QTL, ALPK2 plays important roles in cardiogenesis and was
upregulated in the longissimus dorsi muscle in Wannanhua
compared with Yorkshire pigs47,48, and was the only gene
specifically expressed in muscle (Fig. 5f–h). These results suggest
the SNP in this muscle-specific EnhA may regulate ALPK2
expression and is a candidate causal variant contributing to ADG.
Additional evidence from eQTLs in muscle showed the highest
enrichment in accessible enhancers (EnhA and EnhAMe)
compared to other chromatin states (Supplementary Fig. 13d),
suggesting that genetic regulatory variants are more likely to
influence gene expression by perturbing enhancers. In summary,
these results together demonstrate the important role of
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functional genome annotation for interpreting the molecular
mechanisms underpinning complex traits, adaptive evolution,
and gene regulation.

Comparative analysis of pig, mouse, and human epigenomes.
The distribution of individual epigenetic marks and chromatin
accessibility with respect to genomic features (e.g., 5’UTRs and
exons) was consistent between pig, mouse, and human (Supple-
mentary Fig. 14). To determine if chromatin states are similarly

conserved between these species, we predicted 15 chromatin
states in mouse and human based on the same epigenetic marks
in pig. The resulting chromatin state predications demonstrated
general similarity in chromatin states among the three species in
terms of genome coverage, genomic distribution, and sequence
conservation (Fig. 6a and Supplementary Fig. 15).

To explore the relationship between the epigenome and DNA
sequence conservation among these three species, we divided each
genome into regions corresponding to 50 different levels of
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sequence conservation (0–49th) (Methods section). Our results
revealed that the majority of chromatin states showed higher
conservation levels in sequences under either rapid or slow
evolution than those under neutral evolution, following a
U-shaped distribution49 (Fig. 6b and Supplementary Fig. 16a).
However, some subtle differences among chromatin states were
observed. For example, TssAHet, TxFlnkHet, and EnhAHet were
found in the right half of the U curve, whereas TxFlnkWk and
EnhAWK were in the flat bottom of the U curve (Supplementary
Fig. 16b, c). Overall, we found that the densities of chromatin
states and gene elements followed a similar U-shaped distribution
(Supplementary Fig. 16b, c), supporting the hypothesis that
conserved epi-modifications may buffer negative selective pres-
sures by providing the genome more elastic room to adapt49.
Furthermore, we categorized orthologous genes into 50 groups
based on the degree of conservation of gene expression between
species and observed that genes with more conserved expression
levels also demonstrated more conserved TssA and TssBiv
signatures (Fig. 6c). In further examining the sequence of
extremely conserved (49th) or extremely variable regions (0th),
we found that genes linked to TssA shared by human and pig
were involved in basic biological processes, such as ncRNA
metabolic process and mRNA catabolic process (Supplementary
Fig. 17). Among extremely conserved regions (49th) in the brain,
genes with human-specific TssA (e.g., FOXG150) were engaged in
neuron fate commitment, cerebral cortex development, learning
and memory (Fig. 6d, Supplementary Fig. 18, and Supplementary
Data 15).

Next, we evaluated the evolutionary basis of complex traits in
humans. Heritability enrichment analysis of 47 complex traits
across 15 chromatin states that were mapped from pigs to
orthologous regions in humans found that promoters and TSS-
proximal transcribed regions were most enriched for variants
(Fig. 6e). We further revealed that the more conserved (species-
shared) chromatin states showed significantly higher enrichment
for complex trait heritability than the more divergent (species-
specific) chromatin states (Fig. 6f). Then we further examined the
role of tissue-specific gene regulation in human complex traits.
Our heritability enrichment analysis of complex traits, based on
human orthologous regions of tissue-specific EnhAs identified in
pigs, demonstrated that tissue-specific enhancers were signifi-
cantly enriched for the corresponding human complex traits
relevant to biological functions of specific tissues (Fig. 6g). For
instance, lung-specific EnhAs were significantly enriched for the
heritability of lung forced expiratory volume 1 (FEV1), liver-
specific EnhAs for fasting glucose and cholesterol, colon-specific
EnhAs for Crohn’s disease, and cortex-specific EnhAs for
intelligence (Fig. 6g).

Finally, we sought to determine if this annotation of regulatory
elements substantiated the use of pig as an appropriate animal
model for different human diseases by comparing human, mouse,
and pig epigenomes in specific tissues. In brain cortex, the mouse-

human shared EnhAs exhibited significantly higher heritability
enrichment than the pig-human shared EnhAs for most brain-
relevant traits, such as attention deficit hyperactivity disorder
(ADHD), intelligence, depression, and reaction time, with the
exception of Alzheimer’s disease, for which heritability was
significantly enriched in pig-human shared EnhAs rather than the
mouse-human shared EnhAs (Fig. 6h). This was in line with the
use of pigs as a biomedical model for studying Alzheimer’s
disease21,51. Similar observations were found in intestine (Crohn’s
disease and inflammatory bowel disease (IBD), but not colorectal
cancer, which demonstrated more heritability in the pig-human
shared EnhAs) (Fig. 6i) and in adipose (body mass index (BMI),
body fat percentage, waist-hip ratio, and weight had significantly
higher heritability enrichments in the pig-human shared EnhAs)
(Fig. 6j). Similar results were also noted in a comparative
promoter analysis (TssA) (Supplementary Fig. 19). Our findings
suggest that for certain human traits, the pig could be a better
biomedical model than the mouse, and vice versa.

Discussion
In this study, we provided the most comprehensive catalog of
porcine regulatory elements to date, spanning 14 tissues,
including six gut-associated tissues, and characterized the
dynamic chromatin state landscape across these tissues, thereby
uncovering extensive tissue-specific regulation of gene expression.

The annotation of functional elements in human and mouse
has proven highly effective for the identification of causative
variants of complex traits23,27, and positional candidate genes for
complex traits such as feed efficiency and growth are functionally
conserved across vertebrate species52. Our results demonstrated
that variants of complex traits and eQTLs of growth-related traits
were significantly enriched in the active promoters and enhancers
annotated by this study. Specifically, we speculate that a potential
causative SNP, which was associated with average daily gain and
which was found within a muscle-specific enhancer, may regulate
the expression of ALPK247,48, a gene demonstrating muscle-
specific expression (0.5 Mb away). In addition, our annotation of
functional elements in pigs allows us to evaluate the potential role
of regulatory elements on pig domestication. Our analysis illu-
strated that signatures of domestication were significantly enri-
ched in porcine regulatory elements. Specifically, genetic variants
in the spleen-specific promoters were enriched during Asian pig
domestication, whereas variants within cortex-specific promoters
were enriched during European pig domestication. This insight
may reflect the observed distinct phenotypic difference between
Asian (more resistant to malaria42,43) and European domesticated
pigs (more active and aggressive44,45). Further investigation is
warranted to deepen our understanding of genetic selection and
domestication in the pig. This regulatory element atlas will serve
as a valuable source for the livestock community to inform
GWAS and eQTL findings, genomic selection programs, and
genome editing strategies, as well as to enhance our

Fig. 4 Tissue-specific strong enhancers (EnhA) and their potential functions in 14 tissues. a The number and enrichment distribution of 17 modules of
TSR (strong enhancers (EnhA)) in tissues. TSR tissue-specific regulatory elements. The top colors represent 17 modules of strong enhancers (column)
referred to by the legend on the right. The side colors represent 14 tissues (row), also referred to by the legend on the right. b Functional enrichment of
proximal genes for each module based on gene ontology (GO) biological processes. The columns represent 17 modules of strong enhancers. The rows
represent GO terms in each module. All GO terms are presented in Supplementary Data 5. Notes within the heatmap summarize functions of nearby GO
terms (up-noted from jejunum to spleen, down-noted for lung, muscle, and adipose). c The average expression (TPM) of EnhAs’ putative target genes in
each module. The columns represent the genes in each module, the rows represent each tissue. d The enrichment of transcription factor motifs in each
module. The columns represent 17 modules of EnhAs. The rows represent motifs. All enriched motifs are presented in Supplementary Fig. 10a. The P values
were generated by HOMER. e Enrichment for human phenotypes in each module, based on proximal genes. The columns represent 17 modules of EnhAs.
The rows represent phenotypes. The enrichment of all phenotypes is presented in Supplementary Data 7. Notes within the heatmap summarize nearby
enriched phenotypes, with the color of the text indicating the corresponding tissue.
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understanding of genome evolution and adaptation. With con-
tinued efforts by the FAANG Consortium53, more epigenomic
data will be available from diverse samples, such as reproductive
tissues, additional developmental stages, and different physiolo-
gical states. The systematic integration of “omics” data, such as
the on-going pig GTEx effort, will contribute additional insight
into the biological mechanisms that underpin agronomic traits,

and thereby enhancing genetic improvement of economically
important phenotypes53.

Finally, this atlas of functional elements provided a unique
opportunity for comparative epigenomic analysis between
human, mouse and pig, the results of which can inform which
species constitute the most appropriate biomedical model(s) for
specific human diseases. We observed that regions under positive

Adipose

All_common

Brain_common
Cecum

Cerebellum Colon

Cortex

Duodenum

gut_common

Hypothalamus

Ileum

Jejunum Liver

Lung

Muscle

Spleen

Stomach

0.6

0.9

1.2

1.5

0.6 0.9 1.2 1.5
Enrichment of ASD

E
nr

ic
hm

en
t o

f 
E

U
D

15 Qui
14 ReprWk
13 Repr
12 TssBiv
11 ATAC_Is
10 EnhPois
9 EnhAHet
8 EnhAWk
7 EnhAMe
6 EnhA
5 TxFlnkHet
4 TxFlnkWk
3 TxFlnk
2 TssAHet
1 TssA

0.
75

1.
00

1.
25

1.
50

ASD EUD

Enrichment of selection signature 

0

1

2

3

4

5

adg_dd
adg_ll

adg_yy

−
lo

g1
0(

P
)

TssA

a b

d

0

1

2

3

4

5

EnhAc

CTCF loop

e

ALPK2

ZNF532

CCBE1

LMAN1

CPLX4

GRP

MALT1

Muscle Jejunum Duodenum Ileum Colon Cecum Stomach Liver Spleen Lung Adipose Cortex Cerebellum Hypothalamus

Expression

−4
−2
0
2
4

adg_dd
adg_ll

adg_yy

ALPK2ZNF532

chr1:161,335,200 162,336,800f

g

h mRNA

Hi-C

−
lo

g1
0(

P
)

−l
og

10
( P

)

0

5
10

15
20

25

30Chr1

All_common
Gut_common
Jejunum
Duodenum
Ileum
Colon
Cecum
Stomach
Liver
Spleen
Lung
Muscle
Adipose
Cortex
Cerebellum
Hypothalamus
Brain_common

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26153-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5848 | https://doi.org/10.1038/s41467-021-26153-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


or negative selective pressure demonstrated higher conservation
of epigenetic signatures (such as TssA, TssBiv and TxFlnk) than
those which are not subject to selective pressure (i.e., the selec-
tively neutral), further confirming the hypothesis that elasticity of
regulatory conservation may play an important role in the evo-
lution of the less conserved regions (impact of negative selection
pressure)49. Recently evolved liver enhancers (i.e., species-spe-
cific) are often associated with genes that show evidence for being
under positive selection54. Such enhancers have been demon-
strated to actively affect gene expression, although they have a
smaller effect than enhancers shared across species when the
comparison is controlled for number of enhancer elements acting
on a given gene55. However, human-specific promoters in brain
tissues were enriched in intelligence-related genes, which suggests
a critical role for epigenomic regulation of novel biological
function in humans in the most evolutionarily conserved regions.
It is widely accepted that neither mouse nor pig is universally
appropriate to serve as an animal model for every human
disease18,56. Gene regulatory networks play significant roles in
controlling phenotypic variance of complex traits, including most
human diseases. In examining heritability enrichment of 47
complex traits in humans, our epi-conservation analysis among
three species (comparing pig-human vs. mouse-human shared
enhancers in different tissues) revealed insights and potential
underlying molecular mechanisms as to why pig might be a more
appropriate animal model for certain human diseases than
mouse, and vice versa. This line of evidence is consistent with
many studies of human diseases using either mouse or pig as an
animal model18. Our study provides a basis for understanding
genetic regulation of complex traits, such as human diseases, by
focusing on regulatory network conservation across different
mammalian species. Although the findings from our study are
intriguing, experimental studies and more epigenomic data from
additional tissues, cell types, and species – such as non-human
primates – will be needed to extend and functionally validate the
biological mechanisms that underpin complex traits and
diseases9,49.

Methods
Animals and tissues. Procedures for tissue collection followed the Animal Care
and Use protocol (#18464) approved by the Institutional Animal Care and Use
Committee (IACUC), University of California, Davis. Five gut-associated tissues
(stomach, jejunum, duodenum, ileum, and colon) were collected from two York-
shire littermate male pigs at six months of age from Michigan State University29.
Cecum from two female hybrid pigs (Yorkshire-Hampshire cross, five months of

age) were obtained at University of California, Davis meat laboratory. Tissues were
first flash frozen in liquid nitrogen, and then stored at –80 °C until further
processing.

Library construction and sequencing. We performed ChIP-seq (H3K4me3,
H3K4me1, H3K27ac and H3K27me3) experiments on flash-frozen tissue samples
using the iDeal ChIP-seq kit (Diagenode Cat.#C01010059, Denville, NJ), as pre-
viously described29. Briefly, 20–30 mg powdered tissue was cross-linked with 1%
formaldehyde for 8 min and quenched with 100 μl of glycine for 10 min. Nuclei
were obtained by centrifugation at 2000×g for 5 min and resuspended in 600 μl of
iS1 buffer for incubation on ice for 30 min. Chromatin was sheared using the
Bioruptor Pico between 10 and 15 cycles depending on the tissues. For immuno-
precipitation experiments, ~1–1.5 μg of sheared chromatin was used as input with
1 μg (histone modifications) or 1.5 μg (CTCF) of antibody following the protocol
from the kit. The following antibodies used were from Diagenode: H3K4me3
(comes with Diagenode iDeal Histone kit), H3K27me3 (#C15410069), H3K27ac
(#C15410174), H3K4me1 (#C15410037), and CTCF (#15410210). An input (no
antibody) was performed for each sample. Libraries were constructed using the
NEBNext Ultra DNA library prep kit (New England Biolabs #E7645L, Ipswich,
MA). Libraries were sequenced on the Illumina HiSeq 4000 platform, generating
50 bp single-end reads. ATAC-seq libraries were generated from frozen tissue
samples by a modified protocol (https://figshare.com/articles/dataset/
Final_ATAC_protocol_docx/13891268) according to the protocol of Omni-
ATAC57 and cryopreserved nuclei58. The sequencing was performed on Illumina’s
NextSeq platform, generating 40bp paired-end reads. For the RRBS-seq experi-
ments, DNeasy Blood & Tissue kit (Qiagen, Hilden, Germany) was used for
extraction of DNA from frozen tissues. The samples were sent to Novogene
(Sacramento, CA, USA) for library construction and sequencing on the Illumina
HiSeq 4000 platform, generating 150bp paired-end reads. Total RNA was isolated
from flash-frozen tissue by Zymo Quick-RNATM Miniprep kit (Irvine, CA, USA).
RNA-seq libraries were constructed using the NEBNext Poly(A) mRNA Magnetic
Isolation Module kit (NEB #E7490) and NEBNext UltraTM Directional RNA
Library Prep kit for Illumina (NEB #E7720, New England Biolabs (NEB), Ipswich,
MA) and sequenced on the Illumina HiSeq 4000 platform, generating 100 bp
paired-end reads.

Data processing and data summary. In total, 95 new datasets, including ChIP-
seq (H3K4me3, H3K4me1, H3K27ac, H3K27me3, input control), ATAC-seq,
RRBS, and RNA-seq for two biological replicates of six gut-associated tissues, were
generated. We also integrated the additional 144 existing pig epigenomic datasets,
including ChIP-seq (H3K4me3, H3K4me1, H3K27ac, H3K27me3, CTCF, input
control), ATAC-seq, RRBS, and RNA-seq in the same two male biological repli-
cates of eight tissues (adipose, cerebellum, brain cortex, hypothalamus, liver, lung,
muscle, and spleen) from our FAANG pilot project (PRJEB14330)29, and four Hi-C
pig liver datasets from a publicly available dataset (PRJEB27364)30. The UC Davis
FAANG Functional Annotation Pipeline (https://github.com/kernco/functional-
annotation) was applied to process the ChIP-seq, ATAC-seq, and RNA-seq data, as
previously described29. Briefly, the susScr11 genome assembly and Ensembl gen-
ome annotation (v100) were used as references for pig. Sequencing reads were
trimmed with Trim Galore!59(v.0.6.5), and aligned with either STAR60 (v.2.5.4a) or
BWA61 (v0.7.17) to the respective genome assemblies. Alignments with MAPQ
scores <30 were filtered using Samtools62 (v.1.9). For RNA-seq, gene counts were
determined using htseq-count63 (v.0.13.5), and then trimmed mean of M-values

Fig. 5 Chromatin state plays an important role in pig domestication and complex traits. a Domestication selection signature enrichment within
chromatin states in Asian and European pigs. ASD Asian pig domestication, EUD European pig domestication. Values greater than 1 (dashed line) indicate
significant enrichment. Whiskers show 1.5× interquartile range. Each datapoint represents one of 14 different tissues. b Domestication selection signature
enrichment in tissue-specific promoters (TssA) between Asian and European pigs. Values >1 (dashed line) indicate significant enrichment, measured by
Fisher’s exact test. Deviation from the diagonal line shows a tissue’s enrichment tendency towards either Asian or European pigs. c Genome-wide
association study (GWAS) signal enrichment within chromatin states across 14 tissues and 44 complex traits in pigs. The statistical significance of
comparisons were calculated by two-sided t-test using “15 Qui” as a reference. No adjustment was made for multiple comparisons. ***P < 0.001. The P-
value in each group were “1 TssA”<2.2e-16, “2 TssAHet”=9.1e-09, “3 TxFlnk”< 2.2e-16, “4 TxFlnkWk”=6.7e-16, “5 TxFlnkHet”=2.8e-12, “6 EnhA”<2.2e-16,
“7 EnhAMe”=3.6e-16, “8 EnhAWk”=2.5e-16, “9 EnhAHet”<2.2e-16, “10 EnhPois”<2.2e-16, “11 ATAC_Is”= 0.00015, “12 TssBiv”<2.2e-16, “13
Repr”=7.1e− 15, and “14 ReprWk”=3.8e-10. Whiskers show 1.5× interquartile range. Black points were outliers. d GWAS signal enrichment of promoter
(TssA) and strong enhancer (EnhA) tissue-specific regulatory elements (TSR) for average daily gain (ADG) in three pig populations (dd: Duroc, ll:
Landrace, yy: Yorkshire). Significance was based on 10,000 iterations of a genotype cyclical permutation test. Dashed line set at −log10(P= 0.05). Values
over the dashed line were significantly enriched. e Manhattan plot of ADG in the Landrace population (88,984). f Chromatin states for each tissue in a
genomic region where GWAS hits were found. Dashed rectangular box includes a muscle-specific enhancer that coincides with GWAS hits. Arrows in red
indicate predicted CTCF looping and H3K27ac signal, which together suggest that the muscle-specific enhancer may target ZNF532 and ALPK2. g Hi-C loop
(25 kb resolution) depiction between a muscle-specific enhancer and putative target genes. Purple shading for the Hi-C data represents loop intensity
(auto-scale). Two highlighted Hi-C loops delineated with red circles are potential contacts between a muscle-specific enhancer and ZNF532 and ALPK2. h
Expression (normalized and centered TPM) of genes proximal to the muscle-specific enhancer.
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(TMM) and transcript per million (TPM) normalization were performed using
EdgeR (v3.32.0) and StringTie2 (v.1.3.3), respectively64. For ChIP-seq, after the
filtering, duplicates were marked and removed using Picard (v.2.18.7). Regions of
signal enrichment (“peaks”) were called by MACS265 (v.2.1.1). Various quality
metrics (e.g., Jensen-Shannon divergence (JSD), Supplementary Data 1) were cal-
culated following the method described by Kern et al.29. RRBS data were processed
using Bismark66 (v.0.22.1) with parameters set in the RRBS pipeline (https://
github.com/zhypan/Functional-Annotation-of-Pig). Hi-C contacts were called
using the Juicer pipeline67 with default parameters.

The global correlations among assays, tissues, and biological replicates were
performed by deepTools68 (v.3.5.0). Briefly, the Z-score normalized read signals of
all samples within 1 kb windows were calculated by multiBigwigSummary and were

presented by plotCorrelation. The signal of marks along with protein-coding genes
were generated by deepTools68 (computeMatrix scale-regions function) with
parameters -a 2500 -b 2500. The Z-score was used to normalize bigWig of five
marks given input files.

Annotation of chromatin states. ChromHMM69 (v.1.20) was used to train the
chromatin state prediction model by integrating ChIP-seq (H3K4me3, H3K4me1,
H3K27ac, H3K27me3, and input control) and ATAC-seq data from two biological
replicates of 14 tissues. The same tissue of two biological replicates were collectively
considered as one tissue epigenome. The 15-state model was chosen, as it presented
maximum number of states with distinct epigenetic mark combinations. We
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Fig. 6 Interspecies conservation of chromatin states. a 15 chromatin states predicated in three species. The colors from white to deep blue indicate
emission probabilities, ranging from 0 to 1. b Relation between sequence conservation and epigenomic conservation across six tissues. Fifty genomic
regions were ordered from the fastest changing (0th), neutral (20th), and slowest changing (49th) in terms of sequence conservation (Supplementary
Fig. 16d). Epigenome conservation (see Methods section) for each chromatin state within each region was calculated between pigs and humans and
plotted. c Relation between expression conservation and epigenomic conservation across six tissues. Expression conservation was based on expression of
14,302 orthologous genes among the three species. Regions were ordered from the biggest difference in expression (0th), to the smallest difference
(49th). d GO enrichment was based on genes proximal to (±2 kb) human-specific TssA with extreme sequence conservation (49th). Count refers to the
number of genes. e Human GWAS (47 traits) signal enrichment in 15 different chromatin states across six tissues. Enrichment was the proportion of
heritability divided by the proportion of SNPs in each chromatin state. Values greater than the dashed line (set at 1) indicate significant enrichment. Error
bars represent standard error around the estimates of enrichment. Dashed lines and error bars are similarly formatted in sub-figures (f, h–j). f Human
GWAS (47 traits) enrichment in six groups of species-specific or shared EnhA across six tissues. (hpm_share stands for human-pig-mouse shared). g
GWAS enrichment of pig tissue-specific enhancer (EnhA) in humans. “*” indicates FDR < 0.05. h–j Different GWAS enrichments between human-pig and
human-mouse shared strong enhancers (EnhA) in brain cortex (1799 vs. 61 enhancers), small intestine (5311 vs. 2430 enhancers), and adipose (2014 vs.
1638 enhancers), respectively. Data in Figs. e–j are available at https://doi.org/10.6084/m9.figshare.16531197.v1.
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labeled these 15 chromatin states based on their combinations of histone mod-
ifications and enrichment around TSS8,27. Then the fold enrichment of each
chromatin state for each external gene element (e.g., exon, CpG islands) was cal-
culated by (C/A)/(B/D), where A, B, C, D are the number of bases in a chromatin
state, a gene element, overlapped between a chromatin state and a gene element, in
the genome, respectively. In addition, we also computed chromatin state fold
enrichment in mammalian conserved elements which identified from Multiple
Sequence Alignments (MSA) using the Genomic Evolutionary Rate Profiling
(GERP) software based on 103 mammals (https://ftp.ensembl.org/pub/release-100/
bed/ensembl-compara/103_mammals.gerp_constrained_element/). The methyla-
tion level of each state and its up- and down- stream 10 kb region was calculated by
the computeMatrix scale-regions function of deepTools with parameters–binSize
500,–regionBodyLength 2000 and–skipZeros.

Clustering of large-scale chromatin structure. To examine genome-wide chro-
matin structure, we first divided the genome (excluding contigs) into 1224 frag-
ments of 2 Mb in length, following the Roadmap Epigenomics project analysis8.
Then we calculated the state frequencies (state bin/total bin) in each 2Mb fragment
for each tissue, and then the average frequency across tissues. To identify modules,
column clustering was performed by k-means= 12, and rows were clustered using
k= 3. In addition, we calculated number of protein-coding genes, lncRNA, and
CpG islands for each 2Mb fragment by BEDTools70 (v.2.29.2). We also calculated
the average TPM and average methylation level of protein-coding genes across 14
tissues in each 2Mb fragment. Then the average gene expression and methylation
level in each of the 12 modules were calculated and a Student’s t-test was per-
formed with parameter setting ref.group= “M3”. M3 was used as a reference, since
it was closest to median expression.

Chromatin state variability. For each state, we first obtained regulatory regions
across 14 tissues (RRATs) (Supplementary Fig. 4a–c) using the BEDtools merge
function (any regulatory region between two tissues overlapped by 1 bp was
merged), then we calculated the total genomic length for each tissue (GL) and the
total combined genomic length (TGL) for RRATs. The relative state coverage per
tissue was derived by GL/TGL (Supplementary Fig. 5d). Finally, by following the
order from high to low based on the GL/TGL value in each tissue, we calculated the
total genomic length of accumulated tissues (aGL) by adding one tissue at a time
until all 14 tissues were added, and the cumulative state coverage was calculated as
aGL/TGL. States whose cumulative coverage changed faster than others were
considered to be less constitutive (more variable) states.

Chromatin state switching between tissues. Chromatin state switching between
tissues was calculated by pairing two tissues. Given a pairing of tissues A and B, we
first counted total bins of chromatin state “e” in A (TbAe), then obtained the
overlap bins of chromatin state “e” (Obe) in A and B, then computed the state
switching probabilities using Obe/TbAe for the tissue A to B transition and Obe/
TbBe for the tissue B to A transition. By averaging these calculations for a pair of
tissues, we obtained the pair switching probabilities. We calculated the state
switching probabilities in between intestinal tissues, between brain tissues (Sup-
plementary Fig. 8a, b), and between eight distinguishable tissues (jejunum, brain
cortex, adipose, liver, lung, muscle, and spleen).

Hierarchical epigenome clustering. We first calculated an epigenetic mark’s
signal confidence scores (–log10(Poisson P value)) within 200 bp of the genomic
regions for each mark of each sample as described in http://jvanheld.github.io/
stats_avec_RStudio_EBA/practicals/02_peak-calling/peak-
calling_report.html#data_sets. Then, we extracted a specific mark’s signal con-
fidence score of each sample for specific state of RRATs regions. For example, we
extracted H3K4me1 signal confidence scores for EnhA. After combining all sam-
ples’ mark confidence scores for each tissue and each state, we constructed a
distance matrix using the Ward D2 linkage method with hierarchical clustering and
Euclidean distance in R.

Promoter enrichment analysis of tissue-specific expressed genes among 14
tissues. To evaluate how chromatin state changes at promoter regions of TSE
genes across tissues, we performed a Student’s t test among 14 tissues to identify
tissue-specific expressed genes, using the same method described by Fang et al.71

and Finucane et al.72. We first grouped some tissues into different sub-groups, such
as small intestine (jejunum, ileum, and duodenum), large intestine (cecum, colon),
and brain (cortex, cerebellum, and hypothalamus). Then we scaled the log2-
transformed expression (i.e., log2TPM) of genes to have a mean of zero and
variance of one within each tissue group. Further we computed a t-statistic to
identify tissue-specific expressed genes by excluding the tissues in the same sub-
group. Last we selected genes with the top 5% t-value as TSE genes71. Several other
methods could be also used to detected tissue-specific genes73. Enrichment of GO
biological process terms for these TSE genes was conducted by WebGestalt 201974

(http://www.webgestalt.org/) using the default significance level (FDR < 0.05). Then
we calculated the chromatin state fold enrichment of TSE genes (2 kb region up-

and down-stream of TSS) in each tissue, and the change in TSE enrichment in a
given specific tissue minus other tissues.

Chromatin state switching of target enhancer (EnhA) of TSE genes. To
evaluate how enhancers of TSE genes switch among tissues, we first identified the
target enhancers of TSE genes following the method described in our recent
study29. Briefly, we first generated CTCF-mediated loops from CTCF ChIP-seq
data by FIMO75 following the method described in Oti et al.76. Then the nested and
overlapping CTCF loops were merged to form the predicted CTCF loops. We then
predicted the enhancer-gene pairs according to the Spearman’s rank correlation of
every possible combination of regulatory element H3K27ac signal and gene
expression value within each loop. Benjamini–Hochberg adjustment (FDR < 0.05)
was used to define putative interacting pairs (Supplementary Data 5). The
enhancers in the enhancer-gene pairs that corresponded to TSE genes were con-
sidered as TSE genes’ target enhancers. Finally, we computed enhancer state
switching probabilities of TSE genes among tissues using the method
described above.

TSR of enhancers and promoters and their putative functional regulation. For
strong enhancers (EnhA) identified in each tissue, we counted the bins of over-
lapping RRATs by comparing to other tissues. If the number of bins >= 1 in a
given tissue and a given RRAT, the RRAT region would be assigned a value of 1 for
this tissue; otherwise it was assigned 0. We generated a total of 17 modules of
tissue-specific regulatory element (TSR) enhancers. These 17 modules included all-
common (presented in all tissues), gut-common (presented in all 5 intestinal tis-
sues), brain-common (presented in all 3 brain tissues) and 14 tissue-specific
modules. The same method was used to obtain TSR for promoters (1_TssA). In
addition, we performed enrichment analyses (GO, Human Phenotype Ontology
(HPO), Mouse Phenotype) based on genes proximal to TSR using the GREAT77

tool with default parameters, except for TSR promoters (proximal 2 kb upstream,
1 kb downstream, plus distal up to 3 kb). We used a cut-off of FDR < 0.05 for both
the binomial and the hypergeometric distribution-based tests.

The motifs of tissue-specific EnhAs were identified by HOMER78 (v.4.11) with
cutoff FDR < 0.05. We selected the top three enriched or tissue function-relevant
motifs for each tissue as the candidate tissue-specific EnhAs motifs and identified a
total of 51 motifs enriched in tissue-specific EnhAs. In addition, we used these 51
motifs as known TF motifs to conduct the enrichment for all tissues by HOMER.
The mRNA expression of corresponding TFs in pigs were used to calculate the
correlation with motif enrichment.

Selection signature enrichment analysis of chromatin states. A total of 406
whole genome sequence (WGS) datasets (Supplementary Data 9) in pigs (Asian
wild (58) and domestic pigs (129), European wild (35) and domestic pigs (184))
were trimmed by Trimmomatic79 (v.0.39), mapped by BWA (0.7.17), and marked
for duplicates by GATK80 (v4.1.4.1) MarkDuplicates with default parameters. The
genome variant calls for each sample were called by GATK HaplotypeCaller. All
genome variant calls were then combined and the variants for each sample were
called by GenotypeGVCFs. After SNP calling, the variants were filtered using
VariantFiltration (QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRankSum <
−12.5, ReadPosRankSum <−8.0) to remove low-quality SNPs. We then per-
formed FST analysis between Asian wild and domestic pigs, and between European
wild and domestic pigs with a 10-kb sliding window and 10 kb step using pop-
genWindows.py (https://github.com/simonhmartin/genomics_general). We chose
the top 5% of FST regions as candidate selection signatures, and a total of
11,329 selection signatures with a size of 10 kb were identified. Last, we calculated
the fold enrichment of selection signatures for chromatin states using the same
method for gene element enrichment described above: (C/A)/(B/D). We calculated
the significance of enrichment using Fisher’s exact test.

GWAS and eQTL signal enrichment of chromatin state. The pig GWAS data of
44 traits was described previously,81. Briefly, more than 100,000 pigs (Supple-
mentary Data 12) were genotyped by a variety of Porcine chip arrays (8.5, 43, 60,
and 70 K). Then these genotyped animals were imputed to genome-wide level
using an intermediated reference panel of 474 animals genotyped by a 658K SNP
array, then a reference panel of 217 WGS datasets. Furthermore, we filtered out all
SNPs with either (1) a minor allele frequency below 0.5%, (2) a large deviation
from Hardy–Weinberg proportions (P < 1.0−6), or (3) an R2 value of the impu-
tation accuracy estimated by Minimac4 less than 0.4. Last, we performed GWAS
signal enrichment of 44 pig complex traits (3 ADG-related, 20 lipid-related, and 21
feed efficiency-related) for each chromatin state across 14 tissues by applying a
genotype cyclical permutation test, repeated 10,000 times71. The eQTL data in pig
muscle82 with FDR < 0.05 were used to calculate the fold enrichment for the
chromatin states using the same method described above: (C/A)/(B/D).

Interspecies conservation of chromatin state. We collected data from
ENCODE4,9, Roadmap Epigenomics8 and published articles83 (9 tissues in human
and 7 tissues in mouse, Supplementary Data 13 and 14), including ChIP-seq

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26153-7

12 NATURE COMMUNICATIONS |         (2021) 12:5848 | https://doi.org/10.1038/s41467-021-26153-7 | www.nature.com/naturecommunications

https://ftp.ensembl.org/pub/release-100/bed/ensembl-compara/103_mammals.gerp_constrained_element/
https://ftp.ensembl.org/pub/release-100/bed/ensembl-compara/103_mammals.gerp_constrained_element/
http://jvanheld.github.io/stats_avec_RStudio_EBA/practicals/02_peak-calling/peak-calling_report.html#data_sets
http://jvanheld.github.io/stats_avec_RStudio_EBA/practicals/02_peak-calling/peak-calling_report.html#data_sets
http://jvanheld.github.io/stats_avec_RStudio_EBA/practicals/02_peak-calling/peak-calling_report.html#data_sets
http://www.webgestalt.org/
https://github.com/simonhmartin/genomics_general
www.nature.com/naturecommunications


(H3K4me3, H3K4ac, H3K4me1, H3K27me3, and Input), ATAC-seq, DNase-seq,
and RNA-seq. In total, we obtained six matched tissues (small intestine, liver,
spleen, lung, adipose, brain cortex) among pig, human, and mouse. All data were
processed following the same pipeline used in pig. The GRCh38 (human) and
GRCm38 (mouse) assemblies with Ensembl annotations (v100) were used for data
analysis. Chromatin states of human and mouse were also trained by ChromHMM
and 15 chromatin states were identified. To explore the relationship between
sequence conservation and epi-conservation among the three mammals, we first
divided the genome into 50 equally sized sets (0th-49th) with increasing average
PhyloP scores using the method detailed by Xiao et al.49. Briefly, the human
genome was divided into 15 million 200 bp segments. Then average PhyloP scores
(100 vertebrate genomes84) were computed for each 200 bp segment. These genomic
segments were divided into 50 equally sized sets from the fastest changing sequence
(smallest PhyloP scores) to the most conserved (greatest PhyloP scores). (Supple-
mentary Fig. 13d). To quantify epigenomic conservation, we downloaded whole
genome alignment UCSC chain files among human (hg38), pig (SusScr11), and
mouse (mm10), and then processed as described in the UCSC Genome Wiki website
(http://genomewiki.ucsc.edu/index.php/HowTo:_Syntenic_Net_or_Reciprocal_Best)
to derive reciprocal best chains. Then we converted genomic coordinates between
assemblies using the UCSC Liftover tool (https://genome.sph.umich.edu/wiki/
LiftOver) based on 0.65 sequence identity. All chromatin states in pig and mouse were
lifted over to human. The conservation rate (0–1) of each region of each state from
pig to human was calculated based on state region coverage of pig over human. If
there was no overlap it was assigned 0, if completely occupied it was assigned 1. The
same analysis was conducted for pig to mouse and mouse to human. Furthermore, we
performed genomic and epigenomic conservations for every pair of mammalian
species in each tissue. Finally, we conducted the same analysis on mammalian con-
served score based Genomic Evolutionary Rate Profiling (GERP) using 103 mam-
malian genomes (https://ftp.ensembl.org/pub/release-100/compara/conservation_
scores/103_mammals.gerp_conservation_score/).

To examine the biological relevance of regions with extremely variable sequence
(0–2th sets) or highly conserved sequence (47–49th sets), we extracted the human-
pig shared and human-specific chromatin state TssA from these sets. Then, using
the GREAT tool with parameter of proximal 2 kb upstream, 1 kb downstream, plus
distal up to 3 kb was used to conduct GO function enrichment analysis.

Expression conservation versus epi-conservation. The TPM of 14,302 ortho-
logous genes from pig, human, and mouse were used to identify differentially
expressed genes in each tissue using the Student’s t-test. We sorted the genes by
p-value within each species and divided them into 50 equally sized sets. Then we
calculated the average epi-conservation score of states in the 20 kb region around
the TSS of gene in each set.

Heritability enrichment of human complex traits in chromatin state. To
explore how conserved or species-specific chromatin states affect complex traits in
humans, we extracted six types of species-shared or species-specific regulatory
elements (all_shared, human_mouse_shared, human_pig_shared, human_specific,
mouse_specific, pig_specific). We then performed heritability enrichment analysis
by applying stratified linkage disequilibrium score regression (LDSC) to partition
heritability of 47 human complex traits into distinct functional categories46.
Stratified linkage disequilibrium score regression (LDSC) is a commonly used
approach to partition the heritability of functional annotations and to estimate the
enrichment degree (i.e., the proportion of heritability explained by a functional
annotation (e.g., the conserved enhancers) divided by the proportion of SNPs in
this annotation) based on the GWAS summary statistics46,85. It takes the popu-
lation stratification factor into account by using regression modeling to quantify
the relationship between linkage disequilibrium and the test statistic (χ2 association
statistic) of SNPs from GWAS, thereby improving the power of the analysis and
capturing true polygenic signal. In this study, LDSC was used to determine the
SNP-based heritability estimates, and then partition the heritability into separate
functional categories to demonstrate the disproportionate contribution of different
functional categories to the heritability of human complex traits and diseases.
These functional categories included six types of species-shared and species-specific
regulatory elements, chromatin states of each tissue, and TSR of EnhA and TssA.
We calculated the stratified LD scores using 1000 G Phase 3 European human
samples, where only HapMap3 SNPs with INFO ≥ 0.9 and MAF > 0.05 in 1000 G
European samples were used (the 1000 G samples and default SNP weights were
obtained from https://github.com/bulik/ldsc).

The GWAS summary statistics for 47 human complex traits were obtained from
public databases (Supplementary Data 16), with an average sample size of 321,978 (all
European ancestry) and a high-quality overlap with HapMap3 panel. In addition,
these GWAS results had a mean χ2 statistic >1.02 and a heritability Z-score >485. We
also performed default quality control for GWAS summary statistics by LDSC to
remove GWAS SNPs with MAF ≤ 0.01, genotype call rate ≤0.75, INFO ≤ 0.9, an out-
of-bounds P-value, duplicated Rsid, strand ambiguous variants or an extremely large
χ2 statistic85. The results of LDSC regression for the base model, which has not been
partitioned for heritability, are available in Supplementary Data 17.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
High-throughput sequencing data for six gut tissues generated in this study were
deposited in European Nucleotide Archive (ENA) with accession number PRJEB37735.
High-throughput sequencing data of eight tissues used in this study are available the
Gene Expression Omnibus (GEO) under accession GSE158430. And all the RRBS
datasets were deposited in European Nucleotide Archive (ENA) with accession number
PRJNA762083. All raw data are also available through the FAANG portal (https://
data.faang.org/dataset). All processed data are publicly available at http://
farm.cse.ucdavis.edu/~zhypan/Nature_Communications_2021 and https://doi.org/
10.6084/m9.figshare.13480425. Chromatin states of pig, mouse, and human are available
through the UCSC Genome Browser: http://genome.ucsc.edu/s/zhypan/
susScr11_15_state_14_tissues_new; http://genome.ucsc.edu/s/zhypan/
mm10_7tissues_chr_state; http://genome.ucsc.edu/s/zhypan/hg38_9tissue_chr_state.

Code availability
The pipeline for RNA-seq, ATAC-seq, DNase-seq, and ChIP-seq processing is available
at GitHub86 (https://github.com/kernco/functional-annotation). The RRBS pipeline and
other processing codes are publicly available at GitHub87 (https://github.com/zhypan/
Functional-Annotation-of-Pig).
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