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This study aimed to develop an automated method to detect live play periods from

accelerometry-derived relative exercise intensity in basketball, and to assess the criterion

validity of this method. Relative exercise intensity (% oxygen uptake reserve) was

quantified for twomen’s semi-professional basketball matches. Live play period durations

were automatically determined using a moving average sample window and relative

exercise intensity threshold, and manually determined using annotation of video footage.

The sample window duration and intensity threshold were optimised to determine the

input parameters for the automated method that would result in the most similarity to

the manual method. These input parameters were used to compare the automated and

manual active play period durations in another men’s semi-professional match and a

women’s professional match to assess the criterion validity of the automated method.

The optimal input parameters were a 9-s sample window and relative exercise intensity

threshold of 31% oxygen uptake reserve. The automated method showed good relative

(ρ = 0.95–0.96 and ICC = 0.96–0.98, p < 0.01) and absolute (median bias = 0 s)

agreement with the manual method. These findings support the use of an automated

method using accelerometry-derived relative exercise intensity and a moving average

sample window to detect live play periods in basketball.

Keywords: accelerometry, accelerometer, relative exercise intensity, AvFNET, active play demands

INTRODUCTION

Basketball is a high-intensity intermittent sport with periods of live play interspersed with frequent
stoppages (Stojanović et al., 2018). When quantifying basketball match demands, it is important
to consider the overall demands (i.e., including stoppages) and the live play demands (i.e., active
on-court periods; Russell et al., 2020). Quantifying overall match demands is useful for training
prescription, while quantifying live play demands better describes peak match demands, and
enables match demands to be described as a function of playing time.

Various methods are used to quantify both overall and live-play match demands in basketball
(Stojanović et al., 2018). Video-based time-motion analysis is often used in research (Abdelkrim
et al., 2010; Scanlan et al., 2011, 2012; Ferioli et al., 2020); however, manual processing of video
footage is somewhat subjective, vulnerable to human error and time-intensive (Barris and Button,
2008; Fox et al., 2017; Russell et al., 2020). Poor validity and reliability can also occur with different
observers and camera setups (Barris and Button, 2008; Russell et al., 2020), which limits its use for
season-long athlete monitoring (Fox et al., 2017).
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While semi-automated and automated vision-based tracking
systems address the time limitation, they are still vulnerable
to inconsistencies based on camera specifications (e.g., lens
type, recording frequency) and camera setup specifications (e.g.,
number of cameras, location of cameras relative to each other
and to the court), which influence validity and reliability (Leser
et al., 2011; Russell et al., 2020). Additionally, fully automated
systems require a fixed camera setup, and highmovement speeds,
unpredictable changes of direction and proximity to other players
can reduce the system’s performance (Barris and Button, 2008).
Automated local positioning systems (e.g., indoor GPS) can
address the camera-based limitations of vision-based tracking
systems, but require a fixed indoor satellite system and have
reduced accuracy for faster speedmovements and smaller playing
areas due to the low sample rate (typically 10Hz; Duffield et al.,
2010; Fox et al., 2017; Serpiello et al., 2018).

Micro-technology devices, such as accelerometers, are a
promising alternative (Fox et al., 2017; Russell et al., 2020)
for monitoring basketball demands (Montgomery et al., 2010;
Staunton et al., 2018a,b; Svilar et al., 2018; Palmer et al.,
2021) because they are objective, capture movement in three-
dimensions and have a high sampling rate (>50Hz; Russell
et al., 2020). Accelerometry enables efficient post-processing
of data (Russell et al., 2020) when assessing overall match
demands, however, quantifying live play demands is more
challenging. The simplest way to determine accelerometry-
derived match demands during live play is to manually annotate
live play time points and post-process the accelerometry data
to include only live play activity. This adds a significant time
burden to data processing, which suggests that an automated
method of detecting live play periods in basketball would
be beneficial.

Automated methods for detecting the start and end of
periods of muscle activation have been developed using
electromyography (EMG) signal (Marple-Horvat and Gilbey,
1992; Van Boxtel et al., 1993) and similarmethodsmight be useful
to detect live play periods in basketball using accelerometry.
Specifically, Marple-Horvat and Gilbey (1992) demonstrated that
a moving average window was effective in identifying time
points of interest in EMG signals due to the condition that a
“burst” of muscle activity must last for a certain time period
(Marple-Horvat and Gilbey, 1992). A similar condition exists in
basketball, where active and inactive periods have a minimum
duration and one isolated data point could not definitively be
considered as active or inactive by the magnitude of that point
alone. For example, classification of live play periods on a single
point basis could misclassify inactive periods as active when
bench players stand up to celebrate points being scored, or could
misclassify active periods as inactive when a shooting guard is
set up in an attacking corner of the court waiting for a play
to be executed. It is therefore possible that a moving average
window method might be effective to detect live play periods
using accelerometry in basketball.

The aims of this study were to: (1) develop an automated
method using a moving average sample window to detect
live play periods from accelerometry-derived relative exercise
intensity in basketball, and (2) assess the criterion validity

of the automated method against manual annotation from
video footage.

MATERIALS AND METHODS

Participants
Twelve players from a semi-professional men’s basketball team
(27.2 ± 5.1 years; 1.93 ± 0.08m; 97.6 ± 16.4 kg) and nine
players from a professional women’s basketball team (24.2 ±

4.9 years; 1.79 ± 0.11m; 74.3 ± 8.7 kg) participated. The
men competed in the 2019 NBL1 competition (Australian
second tier men’s competition) and the women competed in
the 2019/20 WNBL competition (Australian premier women’s
competition). All players provided written informed consent
prior to participating. Ethical approval was granted by the La
Trobe University Human Research Ethics Committee (HEC15-
088), and all testing procedures were conducted in accordance
with the Declaration of Helsinki.

Data Collection
Players were instrumented with a triaxial 100Hz accelerometer
(GT9x; Actigraph, FL, USA) located in a tightly-fitted vest
with the accelerometer positioned between the athlete’s scapulae
(Wundersitz et al., 2015). Activity intensity was quantified
using accelerometry-derived average net force output (AvFNET)
and individual relative exercise intensity was determined as
a percentage of relative oxygen uptake (V̇O2R), as described
previously (Staunton et al., 2017, 2018b; Palmer et al., 2021).
Matches were video-recorded by the leagues’ live streaming
services. Live play periods were manually determined by a
single observer from video footage and were used as the
criterion measure.

FIGURE 1 | Surface function representing the number of correctly-identified

seconds by the automated method compared to the manual method for

different combinations of sample window and intensity threshold.
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The study had two phases. In the first phase, accelerometer
signals from 12 players during two matches in which the men’s
team participated were used to develop an automated method to
detect live play periods. Of these 12 players, 11 participated in
the first match and 9 participated in the second match, according
to coach direction. The accuracy of the method was assessed
against manually determined live play periods to determine
optimal input parameters for the automated method. In the
second phase, a different men’s match and a women’s match
were used to test the accuracy and validity of the automated
method. Accelerometer data were collected on the nine players
who participated in the men’s match, and the nine players who
participated in the women’s match. Due to the observational
nature of these data, the number of participants who played each
match was not able to be controlled.

Data Analyses
Live play was defined as time when a player was on the court
and the game clock was running (Russell et al., 2020). Live play
time included short out of bounds throw-in stoppages (<15 s)
because players generally move around the court during these

stoppages to set up for throw-in plays. The tip-off time point was
used to synchronise accelerometry traces with the video footage
to the nearest whole second. A secondary observer manually
determined the start and end time points of 135 live play periods
to assess inter-rater reliability.

Accelerometer data were recorded continuously throughout
each match. Raw accelerometer data were downloaded (Actilife
v6.13.4; Actigraph, FL, USA) prior to processing in MATLAB
(R2018b; MathWorks, MA, USA). These data were filtered
using a fourth-order band-pass Butterworth filter with cut-off
frequencies of 0.1 and 15Hz (Staunton et al., 2017) and AvFNET
and V̇O2R were calculated as described previously (Staunton
et al., 2017).

Development of the Automated Method

An automated method of detecting live play periods was created
usingMATLAB (R2018b; MathWorks, MA, USA), where average
activity intensity (V̇O2R) was calculated in 1-s epochs prior
to determining the 10-s moving average. The 10-s moving
average activity was used to determine if activity intensity was
above or below the specified intensity threshold. The code

TABLE 1 | Descriptive and correlation details of the manual and automated methods.

Semi-professional men Professional women

Manual Automated Manual Automated

Total number of live play periods 268 283 265 288

Median live play period duration (s) 39 (22–60) 36 (20–55) 40 (24–66) 35 (16–62)

ICC (95% CI) 0.96* (0.94–0.96) 0.98* (0.95–0.96)

*Represents a statistically significant correlation (p ≤ 0.05).

Mean live play period durations are presented as median (lower quartile–upper quartile).

ICC, intraclass correlation coefficient; CI, confidence interval.

FIGURE 2 | Correlation between the manually and automatically determined live play period durations for the men’s match (A) and the women’s match (B).
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was developed iteratively to optimise performance and two
conditions were subsequently included. Inactive periods <10 s
were considered as active to minimise the frequency of short
periods of low-intensity on-court activity being misclassified as
inactivity because stoppages typically last longer than 10 s. If ≤2
players were active at any given time, all players were considered
inactive to account for times where players were running on
and off the court during substitutions. Half time was manually
classified as inactive.

To determine the optimal combination of sample window
and intensity threshold, the automated process was conducted
for two men’s matches for each combination of sample windows
of 5, 10, 15, 20, and 25 s and intensity thresholds of 20, 25,
30, 35, and 40% V̇O2R. These sample windows were selected
to be shorter than a typical stoppage period to minimise the
occurrence of stoppages being considered as live play. Intensity
thresholds were selected to approximate light and very light
intensity activity (Staunton et al., 2018b). For each combination
of sample window and intensity threshold, the number of seconds
correctly identified as active or inactive compared to the manual
method was determined. A second-order surface function was
then modelled and optimised to determine the best combination
of sample window and intensity threshold.

Testing of the Automated Method

The automated method with optimal input parameters was
used to determine live play period durations in a separate
semi-professional men’s match (n = 9) and a professional
women’s match (n = 9). The automatically determined live play
period durations for these matches were compared to manually
determined live play period durations to assess the accuracy and
validity of the automated method.

Statistical Analyses
Statistical analyses were performed using IBM SPSS Statistics
(v26; IBM Corporation, Armonk, NY, USA) with significance
set at p ≤ 0.05. Shapiro-Wilk tests indicated the manually
and automatically determined live play period durations were
not normally distributed, therefore data were expressed as
median (lower quartile-upper quartile). Inter-rater reliability was
assessed using the intraclass correlation coefficient (ICC) on log-
transformed data based on a single-rating, absolute-agreement,
two-way random effects model. The strength of the relationship
between methods was assessed using Spearman’s rho correlation
coefficient (ρ). Correlations were classified as large (0.50–0.69),
very large (0.70–0.89), or nearly perfect (≥ 0.90; Hopkins, 2002).
ICCs and their 95% confidence intervals (CI) were calculated
based on a single-rating, absolute-agreement, two-way mixed-
effects model on log-transformed data. ICCs were classified as
poor (< 0.40), fair (0.40–0.59), good (0.60–0.74), or excellent
(0.75–1.00; Cicchetti, 1994). Differences between methods were
not normally distributed, so absolute agreement was assessed by
plotting the differences between the manually and automatically
determined live play period durations against the manually
determined live play period durations, while the median and 5th
and 95th percentiles of the differences between methods were
calculated. Reasonable absolute agreement between methods was

TABLE 2 | Classification of match activity confusion matrix.

Automated method

On court Off court

Video method On court 23,275 (22%) 3,047 (3%)

True positive False negative

Off court 2,306 (2%) 75,367 (73%)

False positive True negative

considered a difference of less than twice the sample window
duration. Accuracy, misclassification, precision and sensitivity of
the automated method were calculated using a confusion matrix.

RESULTS

Development of the Automated Method
Of the 135 live play periods assessed by both observers, the
primary observer’s median play period duration was 26 s (16–
68 s), while the secondary observer’s median play period duration
was 31 s (13–68 s). Inter-rater reliability of the manual method
was deemed excellent (ICC= 0.99), with a median bias and lower
and upper quartiles of−1 s (−3 to 0 s).

The second-order surface function representing the similarity
between the manual and automated methods for varying
combinations of sample window and intensity threshold is shown
in Figure 1. Optimisation of this surface function determined a
sample window of 9 s and relative exercise intensity threshold
of 31% V̇O2R were the optimal input parameters. The shape
of the surface function at the maximum was reasonably blunt,
suggesting a range of sample windows and intensity thresholds
would result in similar performance of the automated method
compared to the optimal input parameters. As an example, a
sample window range of 5–15 s and intensity threshold range
of 25–35% V̇O2R altered the proportion of correctly identified
match time by ≤0.9%. The fit of the surface function was nearly
perfect (r = 0.97).

Testing of the Automated Method
Descriptive and correlation details of the manual and automated
methods with the optimised input parameters for the men’s and
women’s matches are presented in Table 1. The proportion of
match time correctly classified by the automatedmethod as either
active or inactive was ∼95% for both matches. The correlation
between methods was nearly perfect for the men’s (ρ = 0.95, p
< 0.01) and women’s matches (ρ = 0.96, p < 0.01; Figure 2).
The ICC between methods was excellent for both matches
(p < 0.01; Table 1).

A confusion matrix for classification of each individual
second of match time is presented in Table 2. The accuracy of
the automated method was 94.9%, misclassification was 5.1%,
precision was 91.0% and sensitivity was 88.4%.

Absolute agreement between methods for the men’s (a) and
women’s (b) matches is presented in Figure 3. The median bias
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FIGURE 3 | Differences in live play period durations between the automatic and manual methods for each active play period with median bias and 5th and 95th

percentiles for the men’s (A) and women’s (B) team.

and 5th and 95th percentiles were 0 s (−18 to 10 s) for the men’s
match and 0 s (−15 to 9 s) for the women’s match.

DISCUSSION

This study is the first to assess the criterion validity of an
automated moving average sample window method to detect
live play periods in basketball matches from accelerometry-
derived exercise intensity. Strong relative agreement (almost
perfect correlation and excellent ICC) and good absolute
agreement (median bias of 0 s with 5 and 95th percentiles
within two sample window durations) between the automated
and manual methods demonstrate acceptable accuracy of
the automated method. This accuracy was replicated across
matches and demographics, suggesting the method can be used
across different matches, demographics and competition levels.
Practitioners can confidently use this automated method to
identify live play periods in basketball.

The optimised sample window and intensity threshold were
9 s and 31% V̇O2R, respectively. Previous literature suggests
31% V̇O2R represents “light” intensity activity (Staunton et al.,
2018a,b; Staunton et al., 2020). Therefore, this threshold has
face validity as it exceeds the thresholds representing sedentary
and very light activity, which typically represents time when
players are out of live play (Staunton et al., 2018b). The
shape of the surface function at the local maximum suggests a
range of sample windows and intensity thresholds would result
in similar performance to the optimal combination of input
parameters. This finding, in combination with the use of a relative
exercise intensity threshold, suggests that this automated method
could perform well for other basketball teams, divisions and
competition levels, even if the match activity differs.

The correlation between methods was nearly perfect and
the ICC was excellent. The automated method therefore shows
strong relative agreement with the manual method. The 5 and
95th percentiles lying within two sample window durations
suggests the automated method shows reasonable absolute
agreement with the manual method, and the median bias of 0 s
suggests no systematic bias is present.

While the automated method displays some error compared
to the manual method, all methods of quantifying match
activity in team sport are vulnerable to error. No previous
studies have assessed the accuracy of a similar method to
the present study. The present method does, however, show
good face validity, characterised by good classification accuracy
(∼95%) and good absolute agreement. The present method offers
advantages over other methods (e.g., video analysis) due to its
time-efficient processing, minimal manual input and relative
ease of implementation, and could be extended to other sports.
As an example, the processing time for the automated method
to determine the on- and off-court transition time points for
an entire team for a whole match was 3 s, whereas collecting
these time points via manual annotation of video footage can
take many hours. If accelerometry data are transferred in real
time, information can be fed back to the coaches in a matter of
seconds. Therefore, this method can be used to efficiently process
accelerometry-derived live-play match demands in basketball to
quantify on-court activity separate from overall match activity.
Additionally, quantifying live-play match demands can enable
more specific training prescription by determining work-to-
rest ratios, more accurately describing peak match demands,
and enabling match demands to be described as a function of
playing time.

The main limitation of the automated method is the output
resolution. A 9-s sample window means the automated method
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is unlikely to detect live play periods of<9 s and the performance
of the automated method will typically be poorer for shorter play
periods. The automated method is therefore more appropriate
for quantifying total live play match demands than the demands
of a specific play period. Certain match situations also limit
the automated method’s efficacy. For example, when assessing
agreement between methods, some large outliers were evident
(Figure 3). These outliers reflected periods where one team
was running down the clock, causing the automated method
to consider that entire possession as inactive. This tactic
occurred twice in the analysed matches and is a situation where
the automated method will typically not perform well. Other
examples include when: players move on and off the court for
time outs, players move around during stoppages, more than
two people are simultaneously substituted, and when back-court
throw-ins follow stoppages. These scenarios represent periods
of low activity during live play, or periods of moderate activity
outside of live play.

Future research could refine the methods in the current
study to detect live play more accurately in the above scenarios.
Alternatively, additional data could be included to perform
a complex analysis using artificial intelligence and machine
learning (Barshan and Yüksek, 2014). This approach would add
to the data processing burden and require a more skilled user
and the cost benefit balance of this approach would need to
be assessed. An important consideration when improving the
method in the present study is the turnaround time for reporting
results, as team staff want to receive match reports as soon as
possible following a match. Another option to ensure data is
processed quickly following a match could be to incorporate live
data processing and analysis during matches using a receiver,
such as that typically performed with GPS analysis.

CONCLUSION

In conclusion, a 9-s sample window and intensity threshold of
31% V̇O2R were the optimal input parameters to automatically
detect live play periods using accelerometry in basketball.
The automated method showed strong relative and absolute
agreement with the manual method of detecting live play periods
across multiple demographics and competition levels. These

findings support the criterion validity of an automated method
of detecting live play periods in basketball using accelerometry-
derived relative exercise intensity and a moving average sample
window technique.
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