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Abstract

The common γ-chain cytokine interleukin-15 (IL-15) plays a significant role in regulating innate 

and adaptive lymphocyte homeostasis and can stimulate anti-tumor activity of leukocytes. We have 

previously shown that the circulating IL-15 in the plasma is the heterodimeric form (hetIL-15), 

produced upon co-expression of IL-15 and IL-15 Receptor alpha (IL-15Rα) polypeptides 

in the same cell, heterodimerization of the two chains and secretion. We investigated the 

pharmacokinetic and pharmacodynamic profile and toxicity of purified human hetIL-15 cytokine 

upon injection in rhesus macaques. We compared the effects of repeated hetIL-15 administration 

during a two-week dosing cycle, using different subcutaneous dosing schemata, i.e. fixed doses 

of 0.5, 5 and 50 μg/kg or a doubling step-dose scheme ranging from 2 to 64 μg/kg. Following 

a fixed-dose regimen, dose-dependent peak plasma IL-15 levels decreased significantly between 

the first and last injection. The trough plasma IL-15 levels measured at 48 h after injections were 

significantly higher after the first dose, compared to subsequent doses. In contrast, following the 

step-dose regimen, the systemic exposure increased by more than 1 log between the first injection 

given at 2 μg/kg and the last injection given at 64 μg/kg, and the trough levels were comparable 

after each injection. Blood lymphocyte cell count, proliferation, and plasma IL-18 levels peaked at 

day 8 when hetIL-15 was provided at fixed doses, and at the end of the cycle following a step-dose 

regimen, suggesting that sustained expansion of target cells requires increasing doses of cytokine. 

Macaques treated with a 50 μg/kg dose showed moderate and transient toxicity, including fever, 
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signs of capillary leak syndrome and renal dysfunction. In contrast, these effects were mild or 

absent using the step-dose regimen. The results provide a new method of optimal administration of 

this homeostatic cytokine and may have applications for the delivery of other cytokines.
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1. Introduction

Interleukin-15 is a gamma-chain cytokine important for the survival, proliferation, 

mobilization and function of many lymphocyte subsets including NK, CD8, IEL and CD4 

[1–6]. IL-15 is produced by stromal cells in several tissues, some blood endothelial cells 

and antigen presenting cells [7–9]. IL-15 is co-produced in the same cells with a second 

polypeptide chain, named IL-15 Receptor alpha (IL-15Rα) [10–13], and the two proteins 

form stable heterodimers in the Endoplasmic Reticulum (ER) of the producing cell [14,15]. 

The heterodimeric complex is transported to the plasma membrane where the IL-15Rα chain 

is cleaved at the extracellular domain by membrane associated proteases [14,16,17]. The 

soluble IL-15:IL-15Rα complex is released in the extracellular space and circulates in the 

plasma in both mice and humans [18]. This soluble IL-15:IL-15Rα complex is bioactive 

and has a long plasma half-life [14,16,19–21], thus representing a long-acting gamma-chain 

cytokine form in vivo.

Recombinant human single-chain IL-15 has been produced in E. coli (sch rhIL-15) as a 

non-glycosylated monomer of ~12kDa [22] and has been shown to be immunostimulatory in 

macaques and humans. sch rhIL-15 has been tested in preclinical studies in macaques upon 

intravenous (IV) [23], subcutaneous (SC) [24] and continuous intravenous infusion (CIV) 

[24]. The first-in-human clinical trial of sch rhIL-15 delivered IV has been concluded [25], 

while a phase I clinical study of CIV is currently on-going in patients with advanced cancer 

(NCT01572493). Administration of IL-15 resulted in increased frequency and proliferation 

of peripheral NK cells and effector memory CD8+ T cells [23,26]. Increased proliferation 

and tissue migration of CD4+ effector memory cells were also reported [6]. Although 

administration of IL-15 was overall well tolerated, some toxicity was observed. In both 

non-human primates and human cancer patients, IV IL-15 administration was associated 

with hypotension, fever, chills and rigors beginning 2 h after IL-15 administrations [25,27]. 

Transient neutropenia with hepatic granulocyte accumulation was also observed in animals 

receiving the higher dose. Toxicities associated with IL-15 administration resolved after 

discontinuation of the treatment [27]. Limitations for the clinical use of sch rhIL-15 are 

its rapid plasma clearance and potential immunogenicity [24,27]. These problems can be 

overcome by the use of the heterodimeric complex of IL-15:IL-15Rα (hetIL-15) [16]. This 

form represents the naturally produced IL-15 in humans and it is currently evaluated in 

clinical trials in patients with refractory metastatic or unresectable cancer (NCT02452268). 

In the present work, we evaluated the pharmacokinetic and pharmacodynamic profile and 

toxicity of hetIL-15 in rhesus macaques. We also compare different doses and administration 
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schemes to provide a regimen for the sustained optimal expansion of lymphocytes in the 

body.

2. Material and methods

2.1. hetIL-15 source

hetIL-15 is a heterodimer cytokine consisting of IL-15 and soluble IL-15Rα and was 

produced and purified from a cloned cell line derived from the human embryonic kidney 

HEK293 cell line transfected with optimized plasmid DNA encoding IL-15 and IL-15Rα 
[14,16,28,29], and grown in serum-Free Medium (Lonza). Purified, lyophilized hetIL-15 

was reconstituted to the desired concentration using water for injection.

2.2. Treatment of rhesus macaques with hetIL-15

Rhesus macaques (Macaca mulatta) of Indian or Chinese origin were housed and handled 

in accordance with the Institutional Animal Care and Use Committee. Animals were housed 

at BIOQUAL, Inc. (Rockville, MD, US; animal welfare assurance no. A3086–01; protocol 

numbers 14-A478–11 and 17–024 and USDA Certificate number 51-R0036) and at Wuxi 

AppTec Animal Facility protocol #206–0001-TX (Suzhou, China). Animals were treated 

with hetIL-15 at the indicated doses either by IV or SC routes. The dose of hetIL-15 

was calculated and expressed as the equivalent amount of single-chain IL-15 found within 

the heterodimer. Both single and repeated injection treatments were performed. A cohort 

of 48 monkeys was randomly assigned to 4 groups of 6/sex/group to determine the 

pharmacokinetics, pharmacodynamics and toxicity of hetIL-15 when administered in two 

dosing cycles over 6 weeks by the subcutaneous injection route. hetIL-15 was provided at 

3 different doses, 0.5, 5, or 50 μg/kg, and the same dose was used for all the injections 

(fixed-dose regimen). The control group was administered vehicle (saline). Animals were 

randomly assigned to groups using a computer-generated randomization method (Provantis) 

based on body weight. Dosing cycle 1 was conducted on days 1, 3, 5, 8, 10 and 12 and 

dosing cycle 2 was conducted on days 29, 31, 33, 36, 38, and 40. The first day of dosing 

was designated as day 1. Animals were sacrificed at day 41 and 68. In additional studies 

with animals housed at BIOQUAL, Inc., monkeys were enrolled in a 2-week cycle following 

a doubling step-dose regimen. Injections were performed on days 1, 3, 5, 8, 10, and 12 

at doses of 2, 4, 8, 16, 32 and 64 μg/kg, respectively (step-dose regimen). Animals were 

sacrificed at day 15. A list of animals enrolled in the protocols is shown as Supplementary 

Tables 1, 2 and 3.

2.3. Cytokine measurements in rhesus macaques

Rhesus macaques were bled at different time points prior, during and after either single or 

repeated IL-15 administrations and plasma was collected for cytokine measurements. IL-15 

plasma levels were evaluated using a colorimetric immunoassay (Quantikine, D1500; R&D 

Systems), according to the manufacturer’s instructions. IL-18 plasma levels were evaluated 

using a colorimetric immunoassay (MBL International), according to the manufacturer’s 

instructions. These assays detect both human and rhesus macaque cytokines and allow the 

determination of endogenous plasma IL-15 and IL-18 levels prior to treatment or in control 

animals.
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2.4. Analysis of lymphocyte subsets in blood and tissue

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll density gradient 

centrifugation and cryopreserved in liquid nitrogen until analysis. Immunophenotypic 

analysis was performed using the following directly conjugated anti-human antibodies: 

APC-Cy7 CD3 (Clone SP34–2) and V500 CD4 (clone L200) obtained from BD 

Biosciences; AF405-CD8 (Caltag; clone 3B5). Cell proliferation was monitored by staining 

with AF700- or FITC-Ki-67 Ab in cells permeabilized with the Foxp3 Staining Buffer 

Set (eBioscience). All the samples were acquired in a LSR II Flow Cytometer (BD) and 

analyzed using FlowJo software (Tree Star, Inc., Ashland, OR).

2.5. Physical examinations and clinical pathology

2.5.1. Body temperature—Body temperature was recorded pre-dose and at 

approximately 4–6 and 24 h post-dose.

2.5.2. Body weight—Each animal was weighed once during pretest, on Day −1, and 

then once weekly throughout the dosing phases.

2.5.3. Hematology and clinical chemistry—All study animals were evaluated for 

hematology and clinical chemistry at the indicated time points. Hematology blood samples 

were also collected on days 1, 3, 8 and 15 for lymphocyte counts. Blood samples for 

hematology, coagulation, and clinical chemistry evaluations were obtained from a cephalic 

vein. Animals were compared to control animals assayed at the same time in the same 

facility.

2.6. Data and statistical analysis

Pharmacokinetic analysis of hetIL-15 plasma concentration-time data was performed using 

WinNonlin v6.3 (Pharsight Corp, Cary, NC). AUC was calculated using the linear up/log 

down trapezoidal rule by noncompartmental methods from drug-treated animals only. 

AUC and Cmax ratios were used to evaluate dose-proportionality and drug accumulation. 

Differences were evaluated by 1-way ANOVA or unpaired student’s t test. The p-values 

were corrected for multiple comparisons using Holm-Sidak test. Prism 6.0c software 

package (GraphPad Software, Inc., La Jolla, CA) was used for analysis.

3. Results

3.1. Administration of hetIL-15 via SC route results in increased half-life and reduced 
Cmax in comparison to IV route

We have previously shown that administration of purified human hetIL-15 in mice resulted 

in sustained IL-15 plasma levels and in robust expansion of NK and T cells [16], 

demonstrating in vivo stability and bioactivity superior to E. coli derived single-chain sch 
rhIL-15. In this study, we evaluated the pharmacokinetic/pharmacodynamic profiles and 

toxicity of hetIL-15 upon administration in rhesus macaques. To determine the hetIL-15 

pharmacokinetics, a total of 16 macaques received a single injection of the cytokine via 

either IV or SC routes. At the dose of 5 μg/kg delivered IV, the peak IL-15 plasma level was 

determined as ~55 ng/ml at 10 min after injection. The exponential decay analysis showed 
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that hetIL-15 had a plasma half-life (T1/2) ~1.5 h. IV injection of a lower dose of hetIL-15 

(2 μg/kg) resulted in lower Cmax (~11 ng/ml), with similar decay kinetics and T1/2 (Fig. 1A 

and Table 1). The pharmacokinetic profile of hetIL-15 was also evaluated upon a single SC 

administration of 5 μg/kg in 12 macaques (Fig. 1B). Peak IL-15 plasma levels of ~2 ng/ml 

were achieved 4 h after injection and levels of IL-15 were detected in plasma between 8 

and 24 h. Administration of hetIL-15 via the SC route resulted in lower Cmax in comparison 

to the IV route at the same dose (2 ng/ml vs 55 ng/ml, Fig. 1B and Table 1). However, at 

24 h after injection, the plasma IL-15 levels in macaques treated via the SC route were ~1 

log higher in comparison to the levels found in macaques treated via the IV route (p < .01). 

SC administration of hetIL-15 resulted in a prolonged T1/2 of ~12 h. Therefore, SC delivery 

of hetIL-15 achieved lower peak plasma levels (Cmax) and longer plasma T1/2 compared to 

IV delivery, suggesting that SC delivery may require less frequent injections for effective 

treatment.

3.2. Delivery of hetIL-15 at fixed doses resulted in reduced peak and trough IL-15 levels at 
the end of the treatment

To evaluate the pharmacokinetic profile of hetIL-15 upon repeated SC administration, we 

analyzed the circulating IL-15 levels over time in 48 macaques treated as illustrated in 

Fig. 2A. Groups of 12 macaques (6 males and 6 females) received either vehicle (saline 

control), 0.5, 5 or 50 μg/kg hetIL-15 per injection, for a total of 6 SC injections in a 

2-week cycle. Two cycles were performed, separated by a rest period of 14 days. A detailed 

pharmacokinetic analysis was performed upon the first injection on day 1 and the last 

injection on day 40. The endogenous level of IL-15 in the control group ranged from 9.1 

to 21.4 pg/mL, (mean = 15.14, SD = 2.16) calculated as single chain IL-15. Upon hetIL-15 

administration, Tmax values were reached at 4–8 h post-dose and T1/2 values were estimated 

as 6.7–12.6 h for day 1. At the end of the second cycle (day 40) T1/2 values were lower 

(5.3–9.1 h, Fig. 2B and Table 2). As the dosage increased from 0.5 to 50 μg/kg/dose, 

the systemic exposure (measured by plasma AUC0–24h and Cmax) increased more than 

dose-proportionally on day 1, but increased less than dose-proportionally on day 40 in all 

the treated animals (Fig. 2B–C, Table 2). No significant sex difference in systemic exposure 

were detected at any dose levels (Table 2). Importantly, comparison between the circulating 

plasma IL-15 levels of day 1 and day 40 showed a significant lower Cmax (Fig. 2B) and 

AUC0–24h at day 40 (Fig. 2C) at hetIL-15 doses of 5 and 50 μg/kg. In macaques treated with 

a fixed dose of 5 μg/kg, AUC0–24h and Cmax were reduced by 2-fold and 4-fold, respectively, 

between day 1 and 40, whereas in macaques treated with a fixed dose of 50 μg/kg, AUC0–24h 

and Cmax were reduced by 9-fold and 8-fold, respectively, between day 1 and 40 (Fig. 

2B–C). No significant differences between day 1 and day 40 were observed at the lowest 

dose of 0.5 μg/kg.

To evaluate the kinetics of IL-15 consumption during treatment, we also determined the 

trough levels of IL-15 measured at 48 h after each injection. At fixed doses of 5 and 50 

μg/kg, the trough levels were significantly higher at day 3 in comparison to the following 

time points (p < .01, One-way ANOVA), suggesting that injected hetIL-15 remained in the 

plasma for > 48 h early in the treatment cycle (Fig. 2D). In macaques receiving hetIL-15 

at the dose of 5 μg/kg, no differences were observed in the IL-15 trough levels at day 
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5, however, at day 10 and day 12, the plasma IL-15 levels were significantly reduced in 

comparison to the endogenous IL-15 levels detected in control animals (p < .01, unpaired 

student’s t test). In macaques receiving hetIL-15 at the dose of 50 μg/kg, the trough levels 

at day 5, 10 and 12 progressively declined but remained significantly elevated in comparison 

to endogenous IL-15 levels (Fig. 2D). The decrease in plasma IL-15 continued after the end 

of the first cycle. At day 29, after 2 weeks of rest, the macaques in the groups receiving 

hetIL-15 at the dose of 5 and 50 μg/kg had lower IL-15 blood levels in comparison to 

controls (Fig. 2D). These data suggested that the consumption of the administered hetIL-15 

progressively increased during the treatment cycle, reflecting an increase in the pool of cells 

responding to IL-15 (see below). The amount of IL-15 utilized by the body lymphocytes 

after the first injection was less than the available IL-15, resulting in a substantial amount 

of free circulating cytokine two days after injection (trough level). During subsequent 

injections, expansion creates a pool of lymphocytes able to use hetIL-15, as a result the 

trough levels are significantly lower at the end of the two-week rest period (day 29).

3.3. Doubling step-dose regimen of hetIL-15 sustained constant trough levels of IL-15 
throughout the treatment

The study performed with hetIL-15 at doses of 0.5, 5, and 50 μg/kg suggested that the 

fixed-dose regimen provided an excess of IL-15 early in the 2-week cycle but not enough 

cytokine later in the treatment cycle (Fig. 2D). These results are compatible with the 

hypothesis that hetIL-15 leads to increased numbers of lymphocytes having IL-2/IL-15 

receptors, and therefore more cytokine is binding to the lymphocytes and is removed from 

the plasma at the later times of the 2-week administration. It was therefore postulated that 

hetIL-15 is a homeostatic cytokine in continuous equilibrium with the body lymphocytes. 

This is also in agreement with the experimental observation that lymphodepletion leads 

to a transient increase in IL-15 plasma levels [18,30]. Based on these considerations, we 

tested a novel administration regimen in 11 rhesus macaques, consisting of 6 progressively 

doubling doses of hetIL-15 administration over the course of two weeks, increasing from 

2 to 64 μg/kg (called “step-dose regimen”; Fig. 3A). We found that each injection resulted 

in a dose-proportional increase (1.3–1.8-fold) in the IL-15 peak plasma levels detected at 4 

h after cytokine administration (Fig. 3B). A~13-fold increase in the AUC0–24h was found 

after the injection on day 12 (performed at 64 μg/kg) in comparison to the injection on day 

1 (performed at 2 μg/kg). The step-dose regimen was associated with a progressive increase 

in systemic exposure to the cytokine during the treatment (Fig. 3C). Importantly, the trough 

levels of plasma IL-15 were comparable 48 h after each injection and slightly elevated in 

comparison to basal level (Fig. 3D), suggesting a better utilization of hetIL-15 during the 

entire treatment. Overall, these data indicated that the step-dose regimen better matched the 

increasing IL-15 need by the expanding pool of target cells during treatment.

3.4. Fixed-dose and step-dose regimens differentially supported the expansion of 
lymphocytes and plasma IL-18 levels

IL-15 has been previously reported to act as a homeostatic cytokine, influencing the 

survival, growth and mobilization of lymphocytes [3]. Previous studies in mice have 

demonstrated that hetIL-15 administration results in proliferation of CD8+ T and NK 

cells, lymphocyte subsets known to express the IL-2/IL-15βγ receptor [14,16,20,31]. 
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We hypothesized that the progressively increased cytokine consumption observed during 

treatment was a reflection of expansion of the target cell pool, acting as sink for IL-15 

[32]. For this reason, we evaluated the extend of proliferation of CD8+ T cells in blood 

by analyzing expression of the proliferation marker Ki67 by intracellular staining (Fig. 

4A). In all macaques, <10% of CD8+ T cells express Ki67 at pre-treatment. By day 8, we 

observed increased CD8+ T cell proliferation (65–75% of total CD8+ T cell). The percentage 

of proliferating CD8+ T cells declined at day 15 in macaques treated with fixed-dose 

regimens, although it remained elevated in comparison to baseline levels (Fig. 4A, top and 

middle panels). In contrast, macaques treated with the step-dose regimen showed high and 

comparable CD8+ T cell proliferation rate on day 8 and 15 (Fig. 4A, bottom panels). We 

also evaluated the absolute blood lymphocyte count. In macaques treated with a fixed-dose 

regimen, lymphocyte counts decreased in the 50 μg/kg/dose on Day 3, in agreement with 

previous findings [25]. These data reflect the activity of hetIL-15 inducing lymphocyte 

movement out of the circulation and into the tissues [25]. Lymphocyte counts significantly 

increased after day 3 in a dose-dependent manner, reaching peak at day 8 (90% and 450% 

increase over baseline levels in the 5 and 50 μg/kg/dose, respectively) (Fig. 4B, left panel). 

On day 15, lymphocyte counts remained significantly elevated only in macaques treated 

with the higher dose (200% increase over baseline levels) and returned to baseline levels by 

day 29. During the second cycle of dosing starting at day 29, lymphocyte counts increased 

peaking on Day 36 (100% over baseline levels in both groups), and returned to levels 

comparable to pre-treatment by Day 55 (Fig. 4B, middle panel). Interestingly, the peak 

during the second cycle (Day 36) was significantly lower than the one during the first 

cycle (Day 8) only in the macaques that were treated with 50 μg/kg/dose. This may reflect 

altered properties of lymphocytes, tissue redistribution or other processes. No differences in 

the absolute lymphocyte counts were observed in macaques treated with 0.5 μg/kg/dose in 

comparison to baseline levels through cycle 1 and 2. In general, treatment with hetIL-15 

resulted in a dose-dependent increase in the lymphocyte count in blood. The increase was 

transient and the lymphocyte count was normalized after the end of hetIL-15 dosing. A 

different profile in the absolute blood lymphocyte numbers was observed in macaques 

treated with a step-dose regimen (Fig. 4B, right panel). The lymphocyte counts remained 

similar to baseline levels during the first week of treatment, and started to progressively 

increase from day 8, reaching significantly elevated peak at day 15 (225% increase over 

baseline level).

These data suggested that all treatments resulted in lymphocyte proliferation and increase 

during treatment. Since the majority of the lymphocytes leave the blood and are redistributed 

in the tissues, measurements of the total lymphocytes during different courses are not 

easily obtained. As a measure of the extent of lymphocyte expansion and accumulation, as 

previously reported [14], macaque spleen weights were recorded at necropsy (Fig. 2A and 

3A). Macaques treated with the fixed-dose regimen at 50 μg/kg showed significant spleen 

enlargement at completion of hetIL-15 treatment (day 41, Fig. 4C, left panel). The dose 

of 5 μg/kg also resulted in a marginal spleen weight increase, although it did not reach 

statistical significance (one-way ANOVA). After a 4-week rest period (day 68, Fig. 4C, 

middle panel), spleen weight decreased in the animals receiving 50 μg/kg dose, although 

remained significantly higher than control animals. This indicates the high dose of 50 μg/kg 
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hetIL-15 treatment had prolonged effects on the body lymphocytes detectable one month 

after administration. Interestingly, macaques treated by the step-dose regimen showed an 

increase in spleen weight at completion of hetIL-15 treatment (day 15) that was comparable 

to the animals receiving 50 μg/kg at fixed dose (Fig. 4C, right panel). Therefore, the 

step-dose regimen achieved proliferation and tissue distribution of lymphocytes comparable 

to the high fixed-dose regimen, using less than half of the total dose of hetIL-15 during 

the two-week treatment. Additional observations showed that both the 50 μg/kg treated and 

the step-dose treated animals had enlarged lymph nodes, indicating significant lymphocyte 

expansion. Taken together, these data suggested that the increasing doses of hetIL-15 during 

the step-dose regimen match the needs of the growing number of target cells and support 

their continuous expansion. Therefore, delivery of hetIL-15 following a doubling step-dose 

regimen provides enough cytokine to sustain the continuous expansion of lymphocytes 

within the two-week cycle.

Increased plasma IL-18 concentrations have been previously identified as biomarker of 

IL-15 activity [27,33,34]. As an additional measure of hetIL-15 effects, we determined 

the circulating IL-18 levels during hetIL-15 administration following both regimens. In 

macaques treated with the fixed-dose regimen, the increase in plasma IL-18 levels was 

dose-dependent (3.5 and 13.5-fold for the 5 and 50 μg/kg/dose, respectively) and peaked at 

day 8. The plasma IL-18 levels significantly declined during the second week of treatment 

and, at day 15, only macaques treated with the higher dose showed IL-18 plasma levels 

significantly higher than controls (6.5-fold; Fig. 5A). In contrast, in animals treated with 

the hetIL-15 step-dose regimen, we observed a progressive increase in plasma IL-18 levels 

throughout the treatment with peak levels at day 15 (Fig. 5B). Interestingly, the peak IL-18 

levels achieved upon step-dose regimen were as high as the levels obtained after fixed-dose 

regimen at 50 μg/kg/dose (Fig. 5), supporting the conclusion that progressively increasing 

doses of hetIL-15 is an effective way to induce the cytokine effects. No increased plasma 

level of IL-18 was observed throughout the treatment at the fixed dose of 0.5 μg/kg.

3.5. Toxicity associated with hetIL-15 delivery

One of the objectives of this study was to determine the potential toxicity of hetIL-15 

administration following different treatment regimens. It has been suggested that the fever 

following the IL-15 treatment is likely associated with the cytokine spike that occurs within 

the first hours of administration [27]. Body temperature increased at 6 h after each cytokine 

administration in all macaques treated with the 50 μg/kg, and in few animals treated with 

the 5 or 0.5 μg/kg fixed-dose regimens (Fig. 6A). In the step-dose regimen, the rectal 

temperature of hetIL-15 treated animals was also significantly higher than in controls at 4 h 

after injections performed on day 12 (64 μg/kg dose), (Fig. 6B), although the frequency of 

animals with high fever (≥40 °C) was significantly lower in the step-dose regimen (Fisher 

test, p < .001).

At selected time points, blood samples were also monitored through complete blood counts 

and blood chemistry. Comparisons of treated animals were done to concurrent controls 

in the same facility. A decline in albumin (Fig. 7A, left panel) and sodium levels (Fig. 

7B, left panel), together with an increase in Creatinine levels (Fig. 7C, left panel) were 
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found in macaques treated with 50 μg/kg, as early as day 5. All levels returned to normal 

values upon interruption of hetIL-15 treatment. In addition, dependent edema in the lower 

abdomen, extremities and genital tissues was detected in 9 of 12 (75%) animals treated 

with 50 μg/kg/dose and in 1 of 12 (8.3%) animals treated with 5 μg/kg/dose. None of the 

animals treated at 0.5 μg/kg or the controls showed any sign of edema. A Fisher test of the 

frequency of clinically evident edema showed a strong association with the dose level of 

hetIL-15 (p < .0001). Taken together, these findings were compatible with decreased oncotic 

pressure due to the decline in serum albumin, as result of increased vascular permeability 

(capillary leak). The phenomenon was also associated with renal dysfunction, measured by 

increased creatinine levels. Given the apparent capillary leak syndrome observed in animals 

treated with the fixed high-dose regimen of hetIL-15, we also monitored the same clinical 

pathology parameters in macaques treated with the step-dose regimen. Unlike the animals 

receiving 50 μg/kg/dose, the step-dose regimen led only to mild effects in the case of 

albumin (day 8), which became more significant after the end of the treatment cycle (day 

15) (Fig. 7A, right panel). A mild decrease in sodium was also evident on day 15 (Fig. 

7B, right panel). Importantly, we observed neither signs of edema nor of renal dysfunction 

(measured by serum creatinine levels), in contrast to the findings of animals in the 50 

μg/kg/dose treatment group (Fig. 7C). In agreement with the blood chemistry data, increased 

lung weight at necropsy was detected only in animals treated at 50 μg/kg/dose (Fig. 7D), 

suggesting movement of fluids from the intravascular to the interstitial compartment and 

increased vascular permeability (capillary leak syndrome). Therefore, the drop-in albumin at 

the end of step-dose regimen was transient and not associated with edema or other sequelae 

of capillary leak such as fever, decreased blood pressure, and lung edema. In contrast, the 

animals treated with 50 μg/kg had elevated creatinine, an indication of acute kidney injury. 

None of these changes were observed in the animals treated at 5 μg/kg/dose, suggesting 

that the no observed adverse effect level (NOAEL) for the fixed-dose regimen study was 5 

μg/kg/dose.

Overall, our data showed that hetIL-15-related toxicity, including altered renal function and 

clinically apparent capillary leak syndrome, was associated with the provision of higher 

doses of cytokine earlier in the treatment cycle, and that the step-dose regimen was a 

preferred administration regimen aimed to improve safety early in the two-week cycle and 

to better match the administered levels of hetIL-15 to the dynamic changes of the target cell 

pool.

4. Discussion

Cytokine administration is a promising immunotherapy strategy to fight cancer. 

Recombinant human interleukin-2 (rhIL-2) is a prototypic immunotherapy treatment 

approved for subjects with metastatic malignancy [35–40]. High dose interleukin-2 

(HDIL-2) stimulates the proliferation of effector cells capable of killing cancer cells but also 

suppresses immune responses through the increase of inhibitory CD25+Foxp3+T regulatory 

cells (Tregs) [41,42], causing activation-induced cell death (AICD) and serious toxicities 

such as hypotension, renal failure, and capillary leak syndrome that can lead to respiratory 

failure [43,44]. These detrimental factors have prompted a search for immunotherapies 

possessing the benefits of HDIL-2 but fewer negative features. Extensive preclinical 
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investigations have demonstrated that IL-15 has favorable characteristics that could lead to 

more effective and less toxic immunotherapy for the treatment of metastatic cancers. IL-15 

is pivotal in the generation and maintenance of natural killer (NK) cells and CD8+ T-cells 

[45], leading to tumor growth control in different murine models [31,46–50]. Recently, high 

serum levels of IL-15 were found to be associated with CAR T cell treatment effectiveness 

in patients with lymphoma [51].

A first-in-human trial using E. coli-derived sch rhIL-15 was recently concluded in patients 

with advanced stage metastatic disease [25]. IL-15 was shown to affect lymphocyte 

homeostasis through both redistribution and proliferation of target cells. However, the 

administration of sch rhIL-15 as IV bolus resulted in clinical toxicities occurring within 2 h 

after treatment. Cytokine on- and off-target effects were similar in macaques administered 

IL-15, suggesting that the rhesus macaque is a useful animal model to evaluate effects of 

cytokine administration. In this study, we took advantage of the favorable PK properties 

of hetIL-15 [14,16] to develop delivery methods that avoid cytokine spikes. This was 

accomplished by SC injections of hetIL-15, that resulted in persistent bioactive levels of 

plasma IL-15 with lower Cmax and much longer T1/2 (~12 h) compared to the IV route (~1.5 

h). The study was also designed to monitor the toxicity of hetIL-15 administered in two 

2-week cycles over a 6-week period at dose levels of 0.5, 5, or 50 μg/kg. A phase I clinical 

trial using the same schedule is currently underway (NCT02452268). Edema in the lower 

abdomen, extremities and genital tissues and swollen axillary and inguinal lymph nodes 

were observed mainly in animals treated at 50 μg/kg/dose. Body temperature generally 

increased following dose administration. Other clinical pathology findings included signs of 

capillary leak syndrome and renal dysfunction. Based on the absence of adverse findings 

related to the hetIL-15, the NOAEL for this study was 5 μg/kg/dose.

While a fixed-dose regimen of cytokine administration is simple, it may not be optimal 

for achieving maximal immune cell expansion and activation with minimal toxicity. 

IL-15 is a homeostatic cytokine known to induce the expansion of lymphocyte subsets, 

including NK and CD8+ T cells, that express high levels of the IL-2/IL-15Rβγ receptor 

complex [52]. These cells constitute the IL-15 cytokine sink [32]. Following a fixed-dose 

regimen, systemic exposure to the cytokine decreased during the treatment, while the IL-15 

consumption by the cytokine sink increased. The decreasing trough levels throughout the 

treatment were attributed to the increased consumption of circulating IL-15 after repeated 

injections, which in turn reflect the dynamic of expansion of lymphocytes targeted by 

IL-15. In agreement with these data, peak in IL-15-related effects was observed at day 

8, suggesting that the provided cytokine was not sufficient to further increase the rate of 

lymphocyte expansion during the second week of treatment. The peak at day 8 has also 

been observed in clinical trials. These results support our hypothesis that the capacity of the 

treated animals to utilize IL-15 increases as the responding cells expand. This explains the 

high trough levels after the first administration, when few lymphocytes are available, and 

the low trough levels at the end of the cycles (Fig. 2D). An additional hypothesis fitting the 

observations is that toxicity is associated with high free plasma levels of IL-15.

Only 7 of the 36 treated animals showed low/moderate and transient antibodies against 

human hetIL-15 (data not shown). Anti-hetIL-15 antibodies (ADA) developed in 2 
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macaques treated with the 0.5 μg/kg/dose and in 5 macaques treated with the 5 μg/kg/dose. 

None of the animals that received the higher dose of 50 μg/kg developed antibodies. These 

data indicate that antibodies against hetIL-15 have no effects in the different PK profiles 

between day 1 and day 40 illustrated in Fig. 2, where the greatest effects were seen in 

the 50 μg/kg/dose group, i.e., in the group of animals with no ADA. In addition, plasma 

IL-15 measurements at day 40 were comparable between macaques that developed ADA and 

macaques that did not, within the same dose treatment group.

In an effort to improve safety as well as to better match the circulating levels of IL-15 to 

the dynamic changes of the target cell pool, we designed a step-dose regimen of hetIL-15 

administration, consisting of increasing (doubling) doses of hetIL-15 ranging from 2 to 

64 μg/kg. The administered cytokine was consumed to a similar extent throughout the 

treatment cycle and toxicity was minimal, while the expansion of circulating lymphocytes 

was sustained throughout the treatment. This administration scheme resulted in high levels 

of lymphocytes with minimal adverse effects.

The comparison of PK and PD data from the two regimens supports a model in which, early 

in treatment, a low dose of hetIL-15 is sufficient to activate target cells, while provision of 

high doses resulted in an excess of circulating unbound cytokine linked to toxicity. During 

the treatment, lymphocytes expanded under the influence of IL-15 forming a larger cytokine 

sink. After expansion of lymphocytes is initiated, sequentially increasing doses of cytokines 

can be safely administered, to match the needs of the expanding lymphocytes.

In conclusion, our study highlights the benefits of a step-dose regimen for the in vivo 
administration of homeostatic cytokines. This is a new way to provide hetIL-15 and can be 

useful in the delivery of other cytokines.
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Fig. 1. 
Plasma levels of IL-15 after a single administration of hetIL-15 in rhesus macaques. 

Macaques received a single injection of hetIL-15 at 5 μg/kg IV (A, grey square, n = 1), 

at 2 μg/kg IV (A, open square, n = 5 ) and at 5 μg/kg SC (B, filled square, n = 12) at 

time point 0. IL-15 levels were determined in plasma over the course of 24 h. Each point 

corresponds to the mean ± SD.
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Fig. 2. 
Pharmacokinetics and consumption of IL-15 upon repeated administration of hetIL-15 at 

fixed-dose. (A) Fixed-dose regimen of hetIL-15 administration. hetIL-15 was administered 

in 2 dosing cycles over 6 weeks by the SC route. Each cycle consisted of 6 injections 

performed over the course of 2 weeks (3 injections/week). A rest period of 2 weeks 

separated the 2 treatment cycles. hetIL-15 was provided at 3 different doses, 0.5, 5, and 

50 μg/kg/dose (12 animal/group). A group of 12 animals received vehicle and was used as 

control. Necropsies were performed at day 41 and 68. (B) Detailed pharmacokinetics of 

IL-15 was performed after injection at day 1 (filled symbols) and at day 40 (open symbols). 

Macaques were bled over the course of 24 h after injections and plasma IL-15 were 

determined overtime. Left panel depicts IL-15 plasma levels in control animals (circles) 
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and in animals treated at 0.5 μg/kg/dose (inverted triangles). Middle panel depicts IL-15 

plasma levels in animals treated at 5 μg/kg/dose (squares). Right panel depicts IL-15 plasma 

levels in animals treated at 50 μg/kg/dose (triangles). Each data point shows mean ± SD. 

* indicates time points with statistical significant difference between day 1 and day 40 by 

t-test analysis; *, p < .05; **, p < .01. (C) AUC0–24h (as measure of systemic exposure 

IL-15) was determined for injection at day 1 (filled bar) and at day 40 (open bar) for 

macaques in control, 0.5, 5 μg/kg/dose and 50 μg/kg/dose groups. Bar represents mean ± 

SD. **, p < .01, unpaired student t-test analysis. (D) Trough plasma IL-15 levels (as measure 

of IL-15 consumption) were evaluated at 48 h after injections, on day 3, 5, 10, 12 and at 

day 29 (after 2 weeks rest period). The IL-15 levels for the animal in the control (circles), 

0.5 (inverted triangles), 5 μg/kg/dose (squares) and 50 μg/kg/dose (triangles) groups are 

depicted. Values from individual animals and mean are shown. **, p < .01.
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Fig. 3. 
Pharmacokinetics and consumption of IL-15 upon repeated administration of hetIL-15 

following a step-dose regimen. (A) Step-dose regimen of hetIL-15 administration. Six SC 

hetIL-15 injections were given over the course of 2 weeks (3 injections/week) in 11 rhesus 

macaques. Starting with 2 μg/kg, each subsequent dose was doubled (from 2 to 64 μg/kg). 

Necropsies were performed at day 15. (B) Plasma IL-15 levels were determined overtime 

in macaques treated with the hetIL-15 step-dose regimen. Injections performed on day 1, 

3, 5, 8, 10 and 12. Each data point shows mean ± SD. (C) AUC0–24h (as measure of 

systemic exposure of IL-15) was determined for injection at day 1 (dose: 2 μg/kg; filled 

bar) and at day 12 (dose: 64 μg/kg; open bar). Bar represents mean ± SD. **, p < .01. (D) 

Trough plasma IL-15 levels (as measure of IL-15 consumption) were evaluated at 48 h after 

injections, on day 3, 5, 10, 12 and 14. The IL-15 levels before treatment are also plotted. 

Individual animal values and mean are showed. *, p < .05; **, p < .01.
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Fig. 4. 
Comparison of lymphocyte expansion by hetIL-15 fixed-dose and step-dose regimens. 

hetIL-15 was administered SC at day 1, 3, 5, 8, 10 and 12. Twelve macaques received 

hetIL-15 at 0.5 μg/kg/dose (inverted triangles), 12 macaques received hetIL-15 at 5 μg/kg/

dose (squares), 12 macaques received hetIL-15 at 50 μg/kg/dose (triangles), 11 monkeys 

received hetIL-15 at increasing doses ranging from 2 to 64 μg/kg (diamonds). Animals 

treated with vehicle (circles) were included as controls. (A) CD8+ T cells were analyzed 

for the expression of the proliferation marker Ki-67. The frequency of proliferating CD8+ 

T cells (Ki-67+) in blood prior to treatment (left panels), at day 8 (middle panels) and 

day 15 (right panels) was determined by intracellular staining followed by flow cytometry. 

A representative animal for each treatment group is shown. (B) Absolute counts of 

lymphocytes in blood (reported as cells/μl) were determined at the indicated time points 

for the fixed-dose regimen during cycle 1 (left panel) and cycle 2 (middle panel), and 
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the step-dose regimen (right panel). Each data point shows mean ± SEM. * indicates 

time points with statistical significant difference in comparison to day 1; *, p < .05;**, 

p < .01. (C) Spleen weight measured at necropsy. Animals treated with the fixed dose 

regimen were euthanized at completion of hetIL-15 treatment (day 41, left panel) or after 

a 4-week rest period (day 68, middle panel). Animals treated with the step-dose regimen 

were euthanized after completion of hetIL-15 treatment (right panel). Individual animals and 

mean are shown. *, p < .05; **, p < .01.
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Fig. 5. 
Plasma IL-18 measurements during hetIL-15 administration. Plasma IL-18 levels were 

determined at the indicated time points for the fixed-dose regimen (A) and the step-dose 

regimen (B). Each data point shows mean ± SEM. * indicates time points with statistical 

significant difference in comparison to day 1; Statistical analysis was done by 1-way 

ANOVA *, p < .05; **, p < .01.
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Fig. 6. 
Comparison of rectal temperature during fixed-dose or step-dose regimen. Rectal 

temperature was measured before and 4–6 h after the cytokine administration (6th injection) 

in animals enrolled in the study with fixed-dose regimen (A) and in animals treated with the 

step-dose regimen (B). Individual animals and mean are shown. Statistical analysis was done 

by 2-way ANOVA. *, p < .05:**, p < .01. Dotted line corresponds to 40 °C.
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Fig. 7. 
Comparison of predictors of capillary leak syndrome and kidney function in animals 

receiving hetIL-15. Chemistry lab analysis was performed in all macaques prior, during and 

at the end of the treatment. Albumin levels measured as g/dL (A), sodium levels measured as 

mmol/L (B), creatinine levels measured as mg/dL (C) were determined at the indicated time 

points for macaques in the fixed-dose regimen (left panels) and in the step-dose regimen 

(right panels). (D). Animals were sacrificed at the end of the treatment and lung weight was 
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determined at necropsy. Individual animals and mean are showed. Statistical analyses were 

performed by unpaired t-test and 1-way ANOVA. *, p < .05; **, p < .01 respectively.
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Table 1

Pharmacokinetics upon single administration of hetIL-15 via IV and SC routes in rhesus macaques.

Dose (μg/kg) n Route Cmax (ng/mL) AUCInf (h * ng/mL) T1/2 (h)

5 1 IV 54.84 86.91 1.5

2 3 IV 11.41 ( ± 2.03) 21.2 ( ± 6.1) 1.8 (0.9–2.9)

5 12 SC 1.72 ( ± 1.53) 55.24 ( ± 10.67) 12.2

(8.3–28.3)
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