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Abstract

Background: The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes
that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators)
are difficult to classify using most function prediction algorithms and have remained uncharacterized.

Results: To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen
protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis
thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of
the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative
transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve
coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the
predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show
transactivation activity in planta and found that it might work with other members of its own family and a subunit
of the Polycomb Repressive Complex 2 to regulate transcription.

Conclusions: Our results demonstrate the feasibility of assigning molecular function to proteins of unknown
function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using
biological features enriched in transcription factors. The predictions reported here should accelerate the
characterization of novel regulators.
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Background
A gene product’s function can be described by its subcel-
lular localization, the biological process in which it par-
ticipates, and its molecular function (e.g. biochemical
activity) using the Gene Ontology (GO) nomenclature
[1]. Although these characteristics can be predicted for
proteins that lack experimental data using bioinformatic
tools, the molecular function of 25–75% of proteins in
sequenced genomes is still unknown because they lack
enough sequence similarity to characterized proteins [2–5].
Predictors that infer molecular function based on

protein structure or other properties such as patterns of
native disorder have been developed [6], but their applica-
tion is constrained by the limited number of available
protein structures and the molecular functions that dis-
play differential patterns of disorder, respectively [4, 6–8].
The inference of biological processes using algorithms
that incorporate sequence-independent criteria have been
performed successfully, but they are not suitable for infer-
ring molecular function [9–12].
The uncharacterized proteins in various organisms are

enriched in taxon-specific proteins that might be important
for species-specific metabolism, developmental pro-
grams, or adaptation to environmental niches [13, 14].
Since these proteins lack sequence similarity to known
proteins, features that are independent from sequence
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homology can be used to infer their molecular function.
For example, transcriptional coactivators lack obvious mo-
tifs in their protein sequences [15], but have other charac-
teristics such as nuclear localization and the ability to alter
transcription of target genes, which can be used to identify
new regulators within a set of uncharacterized genes.
Here, we sought to predict novel transcriptional regulators
by using sequence-homology independent features such
as subcellular localization, biochemical properties and ex-
perimental data.
In this paper, we define transcriptional regulators as

proteins that alter transcription through their direct inter-
action with other elements of transcription. These tran-
scriptional regulators include DNA-binding proteins such
as transcription factors (TFs) and non DNA-binding pro-
teins such as: 1) coactivators and corepressors that bind
and alter TF activity, 2) taxon-specific regulatory subunits
of chromatin remodelers and modifiers, and 3) scaffold
proteins that bridge the interaction between the transcrip-
tional machinery (e.g. RNA polymerase II holoenzyme
and associated factors, coactivator complexes, chromatin
remodelers and modifiers) and TFs. We anticipated that
the predicted proteins might have roles in transcriptional
initiation, termination, or RNA processing [16, 17].
To predict novel transcriptional regulators, we built a

computational pipeline that combines three features: nu-
clear localization, a high percentage of disordered amino
acids [18, 19], and the ability to activate transcription of
a reporter gene [20, 21]. We used this pipeline to screen
unknown protein families that lack sequence similarity
to known proteins and identified 43 novel candidate
transcriptional regulator families in Arabidopsis thaliana
(Arabidopsis), 7 in Drosophila melanogaster (fruit fly),
and 9 in Homo sapiens (human). We found support for
the predictions in the literature and through in silico
tests.
To investigate the mechanisms of action by which the

predicted regulators might act on transcription, we
assessed which of the predicted candidates could act as
coactivators by testing 33 Arabidopsis candidates from
25 families in an in planta transactivation assay. We
found 12 coactivators, of which 7 had literature support
for being transcriptional regulators and 5 were novel. To
uncover other potential mechanisms of action, we
looked for interactors of one of the candidates without
transactivation activity, which was selected because a
knockout mutant line showed a visible growth defect.
We name this candidate as CHIQUITA1 (CHIQ1).
CHIQ1 belongs to a plant-specific family of eleven mem-
bers in Arabidopsis and participates in organ size deter-
mination. Biochemical characterization of protein
interactions indicates that CHIQ1 might regulate tran-
scription by interacting with other members of its family
and a subunit of the Polycomb Repressive Complex 2

(PRC2). Our computational pipeline has enabled assign-
ment of potential molecular function to 195 of ~4000
proteins of unknown function in Arabidopsis. We fur-
ther showed that our pipeline could be easily imple-
mented in other organisms.

Results
A feature-based computational pipeline for predicting
novel transcriptional regulator families
To build a pipeline to predict novel transcriptional regu-
lators in Arabidopsis, we explored the feasibility of using
features found in some eukaryotic TFs' protein-protein
interaction domains such as intrinsically disordered re-
gions and transactivation ability because these features
are also found in other transcriptional regulators. We fo-
cused on the following features: nuclear localization, a
high percentage of disordered amino acids [18, 19], and
the ability to activate transcription of a reporter gene in
yeast (autoactivation) [20, 21]. To evaluate the selected
features, we first examined whether they were in fact
enriched in Arabidopsis TFs. To test whether the nu-
clear localization and the high percentage of disordered
amino acids features were enriched in TFs, we predicted
the subcellular localization and the percentage of disor-
dered amino acids of each Arabidopsis protein and com-
pared the average values for the TFs to those for the
entire Arabidopsis proteome. Another filter was the
autoactivation activity. Autoactivation refers to the abil-
ity of a protein to activate transcription in yeast when it
is fused to the DNA-binding domain of the yeast TF
GAL4 (GAL4BD) and in the absence of another protein
fused to the activation domain of GAL4. Large - scale
yeast two hybrid studies have identified proteins that
have autoactivation activity [22]. The autoactivation data
obtained from large-scale screenings [22] and our own
interactome covers 28% of the Arabidopsis protein-
encoding genes and was used to test whether the ability
to activate transcription (autoactivation feature) was
enriched in TFs.
As expected, all three features were significantly

enriched in TFs compared to all the proteins in the gen-
ome (Fig. 1b, e, h, white and dark gray bars). We then
used these three features to classify Arabidopsis protein
families that contain only proteins of unknown molecular
function (Fig. 1a). First, we filtered the families that con-
tained at least three members to increase the stringency of
prediction based on statistical support. Then, we filtered
the families based on the three TF-enriched features. Of
the 807 Arabidopsis families of unknown molecular func-
tion with at least three members, 43 were enriched in all
three TF-associated features and therefore were consid-
ered as putative transcriptional regulator families in Arabi-
dopsis (Fig. 1a, b, e, h, light gray bars). These families
consisted of 195 proteins (Additional file 1: Table S1). To
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determine the contribution of each feature towards identi-
fication of the regulators, we compared the proportion of
the predicted regulator families in each filtered set versus
the genome. The autoactivation activity feature contrib-
uted the most to enriching for transcriptional regulator
families (Additional file 1: Table S2).
The application of the same pipeline to yeast, fruit fly,

and human identified 7 candidate families (containing
23 proteins) in fruit fly and 9 families (containing 49
proteins) in human (Additional file 1: Figure S1b-c, Ta-
bles S3 and S4). No families were identified in yeast
(Additional file 1: Figure S1a). The autoactivation data
for yeast was obtained from [23] and the autoactivation
data for fruit fly and human was obtained from the
DroID and CCSB databases, respectively. The autoacti-
vation activity was evaluated in yeast cells containing a
protein of interest fused to GAL4BD. The autoactivation
data obtained covers 90% of yeast, 55% of fruit fly, and
87% of human protein-encoding genes. The proportion
of uncharacterized families with at least three members
in Arabidopsis is 3 to 9 times greater than in yeast, fruit
fly, and human (Additional file 1: Figure S2a) and filter-
ing by family size removed most uncharacterized fam-
ilies in yeast, fruit fly, and human. Despite this
difference, the proportion of the predicted candidate
families among the uncharacterized families with at least

three members is similar (4–7%) in Arabidopsis, fruit fly,
and human (Additional file 1: Figure S2b). These data
suggest that the thresholds defined for the three features
in Arabidopsis have similar prediction power in other
organisms and that the pipeline identifies fewer families
in yeast, fruit fly, and human because most of the
uncharacterized proteins in these organisms belong to
families of 1–2 members. Therefore, constraining the
predictions by family size might preclude the identifica-
tion of a large number of potential transcriptional regu-
lators in fungal and animal species. To expand our
predictions (particularly in fungi and animals), we pre-
dicted regulators from families with 1–2 members using
our current pipeline and found 152 regulators in Arabi-
dopsis, 248 in yeast, 105 in fruit fly, and 200 in human.

In silico and literature-based support of the predictions
We evaluated the performance of our pipeline using sev-
eral independent approaches. First, we applied the pipe-
line to all protein families with molecular function
annotations and at least three members and calculated
precision and recall based on the number of TFs and
transcriptional regulators that were predicted. Precision
refers to the proportion of annotated TFs and transcrip-
tional regulators [24] in the predicted genes, while recall
refers to the fraction of all annotated TFs and

Fig. 1 Feature-based prediction pipeline to identify novel transcriptional regulator families. a Pipeline work flow: First, Arabidopsis protein families
were filtered based on their size and the GO annotations of their members. Then, uncharacterized families with more than 2 members were
filtered based on subcellular localization patterns using Yloc [98], percentage of disordered residues using Predisorder [99], and the ability of at
least one member to activate transcription of a reporter gene in yeast (autoactivation) [22, 103–107]. Numbers in the Venn diagram represent the
number of families with most members being nuclear localized (blue), high percentage of disordered residues (green) and autoactivation in yeast
(red). Families that met all criteria (intersection of the Venn diagram) were considered as candidate regulator families. b-j Proportion of proteins
predicted to contain nuclear localization signal (NLS) (b-d), distribution of the percentage of disordered amino acid residues (e-g), and proportion
of proteins with autoactivation activity (h-j) in the background (white), TFs (dark gray), and predicted regulators (light gray). The background
corresponds to all proteins in Arabidopsis (b, e, h), fruit fly (c, f, i), or human (d, g, j) genomes or the set of proteins that were tested for
autoactivation in yeast (h, i, j). * = p-value <0.0001, chi-square test with Yates correction (b-d and h-j) or t-test (e-g)
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transcriptional regulators belonging to families with at least
three members [24] identified by the pipeline. The pipeline’s
precision was 60% for Arabidopsis (Additional file 1: Figure
S3a), 57% for fruit fly, and 62% for human, while recall was
58% for Arabidopsis (Additional file 1: Figure S3b), 92% for
fruit fly, and 80% for human. Assessing performance at the
protein level is more stringent than doing so at the family
level since the prediction was made at the family level, but
we chose to be more conservative in our analysis. Further-
more, we analyzed how the features contributed to precision
and recall in Arabidopsis. We found that each feature can
identify most of Arabidopsis TFs, but precision is low when
used alone (Additional file 1: Figure S3). This is expected
since the individual features are not restricted to TFs [8, 25,
26]. By using the filters in combination, we improved preci-
sion at the cost of recall (Additional file 1: Figure S3). Since
we were interested in proving the concept for the approach
to see if we can find novel regulators, we opted to maximize
precision at the cost of recall.
We also analyzed the pipeline’s precision and recall

when identifying TFs from families with 1–2 members.
We found precision was 22% for Arabidopsis, 18% for
yeast, 30% for fruit fly, and 17% for human, while recall
was 14% for Arabidopsis, 26% for yeast, 37% for fruit fly,
and 28% for human. This indicates that our current pipe-
line performs poorly to predict regulators in families of
less than 3 members. Therefore, we did not analyze these
candidate regulators further. Instead, we focused our work
on the candidate regulators that belong to families of 3 or
more members.
Our second approach to evaluate the pipeline’s per-

formance was to seek for additional lines of evidence
that implicate the candidate proteins in transcriptional
regulation. Since GO annotations do not capture infor-
mation from all literature, we performed a literature-
based validation by manually curating the available lit-
erature on the candidate genes. Our criteria for calling a
protein to be implicated in transcriptional regulation
based on literature evidence included: 1) members be-
long to a characterized TF family [27–29] or coactivator
complex [30]; 2) at least one member of the family af-
fects transcriptional activity in vivo [31–33] or the activ-
ity of its TF partner by direct physical interaction
[34, 35]; 3) the candidate genes contain a DNA binding
domain [33, 36]; or 4) orthologs in other species have
been implicated in transcriptional regulation [37–40]
(e.g. EMSY-like proteins that are orthologous to human
EMSY, which has been implicated in altering transcrip-
tion via chromatin modification [38–43]). We found that
51 Arabidopsis proteins in 9 families and 9 fruit fly pro-
teins in 3 families that were annotated as unknown (i.e.
annotated to the root GO term molecular function [44])
when the pipeline was run, now have additional evidence
in the literature that potentially implicates them in

transcriptional regulation (Additional file 1: Tables S1, S3,
and S4). To date, none of the human candidate families
have been associated with transcriptional regulation in the
literature. To assess the pipeline for false positive predic-
tions, we looked for literature evidence that indicated that
the candidates are involved in functions other than tran-
scriptional regulation. None of the Arabidopsis and fruit fly
candidates had such evidence. Members of one human can-
didate family are membrane channels, suggesting they
might be false positive predictions [45]. In addition, two hu-
man families were considered as potentially false positive
because they have experimental evidence that indicates
localization to compartments such as Golgi and the corni-
fied envelope (differentiated plasma membrane of keracino-
cytes), not currently known to be sites of transcriptional
regulation [46–48]. Based on literature curation, 9 families
in Arabidopsis and 3 in fruit fly were considered true posi-
tive and 3 families in human were considered false positive
predictions. This analysis indicated that we identified 34
putative novel transcriptional regulator families in Arabi-
dopsis, 4 in fruit fly, and 6 in human.
Third, certain amino acids are overrepresented in tran-

scriptional activation domains such as acidic, glutamine-
rich, and proline-rich activation domains [49]. Moreover,
yeast transcription factors are enriched in asparagine,
glutamine, serine, proline, and aspartic acid [23]. To test
if the predicted transcriptional regulators are also
enriched in these amino acids, we analyzed the maximal
number of these amino acids in 20-amino acid sliding
windows per protein in the whole genome, annotated
TFs, and the predicted regulators. We also included glu-
tamic acid and the number of acidic amino acids (glutamic
and aspartic acid) in this analysis. Similarly to yeast [23],
the amino acid sequences of the Arabidopsis and fruit fly
TFs are enriched in all six amino acids individually and in
acidic amino acids (Additional file 1: Figure S4a and b,
black bars), while the human TFs are enriched in five of the
six amino acids and in the amount of acidic amino acids
(Additional file 1: Figure S4c, black bars). The Arabidopsis
candidate regulators are enriched in all six amino acids:
aspartic acid (Bonferroni-corrected p-value: 2.43E-13,
t-test), glutamic acid (Bonferroni-corrected p-value:
2.83E-05, t-test), asparagine (Bonferroni-corrected
p-value: 0.013, t-test), glutamine (Bonferroni-corrected
p-value: 3.12E-09, t-test), serine (Bonferroni-corrected
p-value: 1.37E-13, t-test), and proline (Bonferroni-cor-
rected p-value: 1.99E-05, t-test) and acidic amino
acids (Bonferroni-corrected p-value: 3.28E-10, t-test)
(Additional file 1: Figure S4a). Similarly, the human
candidates were significantly enriched in aspartic acid
(Bonferroni-corrected p-value: 0.031, t-test), glutamic
acid (Bonferroni-corrected p-value: 1.38E-05, t-test),
serine (Bonferroni-corrected p-value: 6.94E-06, t-test),
and acidic amino acids (Bonferroni-corrected p-value:
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6.07E-08, t-test) (Additional file 1: Figure S4c). Al-
though the fruit fly candidates contained a similar
number of these amino acids as the TFs, only aspartic
acid (Bonferroni-corrected p-value: 0.039, t-test) and
the sum of acidic amino acids (Bonferroni-corrected
p-value: 0.041, t-test) were significantly enriched
(Additional file 1: Figure S4b). The lack of statistical
significance for the other amino acids in fruit fly
could be a result of a smaller sample size.
Finally, we evaluated the performance of our pipeline

by analyzing the interactors of the predicted transcrip-
tional regulators. Since the predicted proteins lack
known DNA binding domains, they might be recruited
to target promoters through other proteins. Consistent
with this hypothesis, we found that 28 Arabidopsis can-
didates, 7 fruit fly candidates, and 7 human candidates
physically interact with proteins implicated in transcrip-
tion, including TFs, chromatin remodeling, and histone
modifying complexes (Additional file 1: Table S5) in
yeast-two-hybrid or co-immunoprecipitation studies.
However, proteins implicated in transcriptional regulation
were not enriched among the candidates’ interactors, per-
haps due to the small sample size. Among the candidates
that interact with transcription-associated proteins, 20 Ara-
bidopsis and one fruit fly candidates had literature support
for being involved in transcriptional regulation. The pre-
dicted regulators interact more commonly with TFs and
transcriptional regulators (TRs) [24] than chromatin re-
modeling and histone modifying proteins (Additional file
1: Table S5). In fact, ~37% of Arabidopsis regulator candi-
dates with protein-protein interaction data interact with a
TF/TRs. This value is significantly higher (fold-
change = 1.7, p-value = 0.0051, Fisher-test) from what is
observed for the Arabidopsis proteome, where 22% of all
proteins with protein interaction data interact with a TF.

The predicted transcriptional regulator families are taxon-
specific
The predicted regulators are not similar in sequence to
known genes; therefore we posited that they would not
be widely conserved. To test this hypothesis, we per-
formed two analyses. First, we combined all the proteins
in Arabidopsis, yeast, fruit fly, and human to generate
meta-genome protein families and ran the pipeline on
the unknown families with more than two members. We
identified 59 candidate transcriptional regulator families
and found that most of them (~90%) contain proteins
from only one species (Fig. 2a). Second, we characterized
taxon-specificity of the predictions by looking for ortho-
logs of the candidate transcriptional regulators in the
Ensembl Genomes database [50] and found that 82% of
Arabidopsis candidate families are conserved only within
the plant kingdom (Fig. 2b). Of these, 12% have ortho-
logs in green algae, 42% have orthologs in early land

plants, and 28% have orthologs only in flowering plants.
Fruit fly candidates are conserved mainly in arthropods
(Fig. 2c) and human candidates are conserved mainly in
vertebrates (Fig. 2d). These independent lines of evidence
indicate that the predicted regulators are not widely con-
served, which reinforces the use of homology-independent
features for their identification and supports the notion
that they might control the expression of genes involved in
more taxon-specific processes or constitute components of
taxon-specific complexes. Our results are consistent with
previous reports indicating that transcription-associated
proteins are generally taxon-specific [51–53].

In planta analysis of transactivation ability of Arabidopsis
predictions
The predicted transcriptional regulators may participate
in transcription via different mechanisms. As a start, we
focused on testing for transcriptional activation using
Arabidopsis candidates. To determine which of the pre-
dicted Arabidopsis candidates are activators in planta,
we developed a quantitative in planta transactivation
assay and tested 33 Arabidopsis candidate genes from 25
families for their ability to activate transcription of a re-
porter gene. To select these families for in planta tests,
we randomly selected 22 of 34 families that do not have
supporting evidence for a role in transcriptional regula-
tion and 3 of 9 families with literature evidence implicat-
ing them in transcriptional activation. From these 25
families we then selected the genes with autoactivation
activity ([22] and Methods) for testing in planta, which
resulted in 33 candidate genes. The selected candidate
regulators were fused to GAL4BD (DNA binding do-
main that binds to the Upstream Activating Sequence
(UAS) motif ) and tested for their ability to activate tran-
scription of a β-glucuronidase (GUS)-encoding reporter
gene driven by a UAS-containing promoter in tobacco
leaves (Fig. 3). Tobacco leaves were co-infiltrated with
Agrobacterium cultures carrying four constructs (Fig. 3b):
1) the reporter construct containing the coding region of
the GUS gene driven by a promoter with three copies of
the GAL4 binding site (UAS) [54] and the −49 bp minimal
region of the constitutive promoter 35S [55, 56]; 2) the ef-
fector construct carrying the candidate gene fused to the
DNA binding domain of GAL4; 3) the fluorescent protein
(YFP-GFP), which served as a transformation control; and
4) the P19 gene which suppresses RNA silencing [57]. The
relative activity of each effector construct was calculated
as the effector’s fluorometric GUS activity divided by its
protein concentration.
We tested three negative controls: the fluorescent pro-

tein YFP and the chaperone J3 [58] fused to GAL4BD, and
YFP without the GAL4BD domain (Fig. 3c and Additional
file 1: Figure S5). GAL4BD-YFP showed higher back-
ground GUS activity compared to GAL4BD-J3 (Fig. 3c),
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and therefore was selected for the statistical comparison
between the GUS activity detected in leaves infiltrated
with the positive controls and candidate genes. The three
positive controls, yeast TF GAL4, plant TFs Arabidopsis
thaliana HOMEOBOX 1 (ATHB1) [59], and BASIC
HELIX-LOOP-HELIX PROTEIN 077 (bHLH077), all
acted as activators (Fig. 3c). The yeast protein GAL4 was
the strongest of the positive controls, and the two plant
TFs increased the expression of the reporter gene by 4–5
fold over the GAL4BD-YFP negative control (Fig. 3c).
Twelve candidate genes in eight families showed tran-

scriptional activity in planta (Fig. 3c). All 7 candidates
from 3 families with literature support showed transcrip-
tional activity. Of the 26 candidates from 22 families
with no other supporting information, we identified 5
novel activators that belong to 5 unknown families (Fig. 3c

and Additional file 1: Table S1). The remaining candidates
might be false positive predictions or proteins whose tran-
scriptional activity depends on context such as the avail-
ability of condition- or tissue-specific interactors.

A candidate regulator, CHIQ1, is involved in organ size
determination and interacts with the Polycomb repressive
complex 2 (PRC2) subunit EMF2 via the CHIQ1 family
protein CHIQUITA LIKE6 (CHIQL6)
Some of the predicted transcriptional regulators might
act as coactivators (Fig. 3c) and others might participate
in transcription through other mechanisms. To investi-
gate other potential mechanisms by which the predicted
regulators might work, we looked for interactors using
proteomics. To select which genes to study, we exam-
ined mutant lines of the candidate genes that lacked

Fig. 2 Ortholog distribution of the predicted regulator families. a Proportion of families that contain proteins from one, two, three or four species in all the
families and in the predicted transcriptional regulator families generated by OrthoMCL [109]. b-d Ortholog distribution of the predicted regulator
families in Arabidopsis (b), fruit fly (c), and human (d) using data from Ensembl Genomes [50] to classify taxon specificity of the candidate families within
each taxonomic domain
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transactivation activity in planta (Fig. 3c) for visible
growth, developmental, or morphological phenotypes as
many transcriptional regulators discovered through for-
ward genetics have strong visible phenotypes [60–63].
We tested 9 homozygous insertional mutant lines of 7
candidate genes for developmental phenotypes and iden-
tified one mutant line with a severe growth phenotype
(Additional file 1: Table S1). We found that plants har-
boring a knockout mutation in a candidate gene (TAIR:
AT2G45260), named hereafter as CHIQUITA 1 (CHIQ1),
was defective in organ size (Fig. 4). Adult plants carrying
a knockout allele of CHIQ1 (chiq1–1) were shorter in
stature and had smaller rosette leaves, indicating that
CHIQ1 is involved in determining organ size (Fig. 4).
These phenotypes were recessive and segregated as a
single Mendelian locus (Additional file 1: Table S6). To
confirm that a mutation in the AT2G45260 locus

(CHIQ1) causes the small size phenotype, we intro-
gressed the mutant allele into wild type to remove unre-
lated non-linked mutations and performed a linkage
analysis, which indicated that the homozygous mutant
allele co-segregated with the small organ size phenotype
(Additional file 1: Table S7). To rule out the possibility
that the phenotype is caused by a locus linked to
AT2G45260, we introduced the coding region of CHIQ1
into the homozygous mutant line. This complemented
the organ size phenotype (Fig. 4), indicating CHIQ1 is
responsible for the organ size phenotype.
To study the effect of CHIQ1 on organ size, we exam-

ined leaf size reduction in chiq1–1 compared to the wild
type. We found that size reduction varies from 28 to 60%
depending on the final leaf size, with the older leaves that
have smaller final leaf size decreasing less than the youn-
ger leaves that have larger final size (Fig. 4b and d).

Fig. 3 Experimental analysis of the predictions. a Steps of the in planta transactivation assay procedure from bacterial growth to quantification of
the normalized transactivation activity. b Constructs used in the transactivation assay. c Average relative transactivation activity calculated as the
GUS activity (nmol of 4MU/min/mg total protein) divided by the concentration of the effector protein (ng/ml). Error bars represent standard error
from 3 independent experiments. The asterisk (*) indicates that the relative activity is statistically different from the YFP control
(p-value <0.002, t-test). A line under the gene names indicates that they belong to the same family
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Organ shape, flowering time, and the number of
leaves in the rosette were not affected in the chiq1–1
mutant (Fig. 4b and Additional file 1: Figure S6), in-
dicating that organ morphology and developmental
transitions are independent of CHIQ1 function. Con-
sistent with CHIQ1’s potential role in leaf growth,

CHIQ1 is expressed specifically in dividing and
expanding tissues (Fig. 4e-g).
The CHIQ1 protein did not activate transcription of

the reporter gene in planta (Fig. 3c, AT2G45260).
CHIQ1 is expressed in growing tissue and since the in
planta transactivation assay is performed in mature

Fig. 4 Mutants lacking CHIQ1 have smaller organs. a-b, Whole plants (a) or rosette leaves (b), of wild type (Col-0, left or top), chiq1–1
(middle), and chiq1–1 complemented with CHIQ1 (B12, right or bottom) grown in soil for 7 weeks. Leaves are ordered from the oldest
(left) to the youngest (right). c Height of the primary inflorescence stem in wild type (black), chiq1–1 (white), and complemented (gray)
plants grown in soil for 11 weeks. Stature of chiq1–1 plants is reduced by 53% compared to the wild type and 42% compared to the
complemented line (* = p-value: 2E-34 against wild type and 2E-25 against complemented line, t-test). n = 30 per genotype from 8 independent
experiments. d Measurements of leaf area from wild type (black), chiq1–1 (white), and complemented (gray) plants grown in soil for 7 weeks. n = 8 per
genotype from 3 independent experiments. c-d Error bars represent standard error from 3 independent experiments. e-g Expression of the CHIQ1-GUS
transgene driven by CHIQ1 promoter in the root apical meristem (e), shoot apical meristem and leaf primordia of 2 day-old seedlings (f) and rosette of
14 day-old plants (g) grown on MS media. Each image is a representative of at least three independent experiments with n = 10 plants. At least three
independent transgenic lines were analyzed
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tissue, some key CHIQ1 interactors important for func-
tion might be missing. Alternatively, CHIQ1 might be a
scaffold protein without any transcriptional activity on
its own. CHIQ1 belongs to a plant-specific family of
eleven members that lack a known DNA binding domain
and contain the domain of unknown function 641
(DUF641) (Fig. 5a, DUF641 corresponds to motif 1 and 4).
To gain insight into the mode of action of CHIQ1, we

immuno-purified CHIQ1::GFP interactors. Based on LC/
MS-MS, 201 proteins were associated specifically with
CHIQ1::GFP compared with the GFP control, including

four members of the CHIQ1 family, EMBRYONIC
FLOWER 2 (EMF2), a subunit of PRC2, two proteins
(PICKLE-RELATED1 (PKR1) and PICKLE-RELATED2
(PKR2)) that belong to the CHROMODOMAIN-
HELICASE-DNA-BINDING PROTEIN (CHD) chroma-
tin remodeling family, and several TFs (Additional file 1:
Table S8). Orthogonal protein-protein interaction tests
between CHIQ1 and eleven potential interactors con-
firmed direct interactions between CHIQ1 and two
members of CHIQ1 family: CHIQUITA1-LIKE 6
(CHIQL6) and CHIQUITA1-LIKE 5 (CHIQL5) in yeast

Fig. 5 CHIQ1 family interacts with EMF2. a Phylogenetic tree of Arabidopsis CHIQ1 family (left) made using Phylogeny.fr [121] and motif
conservation in CHIQ1 protein family (right) predicted by MEME [122]. Motifs 1 and 4 correspond to the DUF641 domain. Height of the domains
indicates the degree of conservation, where taller domains are more conserved than shorter ones. CHIQ1 is in blue and CHIQ1’s interactors in
red. CHIQL6 (TAIR: AT1G29300), CHIQL7 (TAIR: AT2G32130), CHIQL4 (TAIR: AT3G14870), CHIQL5 (TAIR: AT1G53380), CHIQL8 (TAIR: AT2G30380),
CHIQL3 (TAIR: AT4G36100), CHIQL2 (TAIR: AT4G33320), CHIQ1 (TAIR: AT2G45260), CHIQL1 (TAIR: AT4G34080), CHIQL9 (TAIR: AT3G60680), CHIQL10
(TAIR: AT5G58960). b-d Physical interaction between CHIQ1, CHIQL6, CHIQL5, and EMF2 based on yeast two-hybrid assays (b), pull-down assays in
tobacco (c), and bimolecular fluorescence complementation assays in Arabidopsis protoplasts (d). Pull-down assays were performed with
anti-FLAG antibody and we used anti-GFP antibody to detect CHIQ1, anti-GST antibody to detect EMF2, and anti-FLAG antibody to detect CHIQL6,
CHIQL5, and EMF2 in the eluted immuno-precipitate. The input corresponds to the total protein extract and IP is the eluted immuno-precipitate.
Error bars in (b) represent standard error. * = p-value <0.001, t-test. In (d), green indicates fluorescence from reconstituted Venus fluorescent
protein. Red indicates autofluorescence from the chloroplast. The percentage corresponds to the fraction of cells expressing Venus in each
sample. Representative images from three independent experiments are shown (n = 258–321 cells per pair per experiment)
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and in planta (Fig. 5). An all-by-all physical interaction
analysis among nine CHIQ proteins indicated that
CHIQ1 also interacts with CHIQUITA1-LIKE 7
(CHIQL7) in yeast (Additional file 1: Table S9). CHIQ1
did not interact with the identified TFs in yeast-two-
hybrid or pull-down assays (Additional file 1: Table S8).
The interactions between CHIQ1 and PKR1 and PKR2
have not yet been tested. We confirmed the physical
interaction between the PRC2 complex component
EMBRIONIC FLOWER2 (EMF2) and CHIQL6 by quan-
titative yeast two-hybrid tests, bimolecular fluorescence
complementation (BiFC) assays in Arabidopsis proto-
plasts, and pull-down assays in tobacco (Fig. 5b-d).
Based on these results, we tested the physical interac-
tions between nine members of the CHIQ1 family and
the core subunits of the PRC2 complex using yeast-two-
hybrid assays. Besides CHIQL6, two members of the
CHIQ1 family, CHIQL7 and CHIQUITA1-LIKE 10
(CHIQL10), interacted with the methyltransferases
CURLY LEAF (CLF) and SWINGER (SWN) (Additional
file 1: Table S5). The role of these interactions in tran-
scriptional regulation remains to be elucidated.

Discussion
A feature-based pipeline can identify novel transcriptional
regulators in eukaryotes
Advances in genome sequencing revealed numerous
protein-encoding genes that are unknown for function.
Sequence similarity to characterized genes has been the
main paradigm for predicting gene function. Under this
paradigm, many genes whose sequences are not similar
to known genes remain recalcitrant to function predic-
tion. To discover new types of transcriptional regulators
from genes whose sequences are not similar to known
genes, we developed a computational pipeline that lever-
ages genome-wide information and the corpus of know-
ledge gathered about transcriptional regulators. Using
this pipeline on Arabidopsis, fruit fly, and human ge-
nomes, we predicted 34, 4, and 6 novel protein families
with potential roles in taxon-specific transcriptional
regulation. The pipeline’s performance evaluated by its
ability to identify known TFs and by literature and in
silico data indicated that we were able to predict regula-
tors with good precision and recall. Furthermore, experi-
mental tests in Arabidopsis identified 5 novel activator
families and one family that might regulate transcription
via histone modification. Since we did not perform any
experimental tests on the animal candidates, it is cur-
rently unknown whether they act as transcriptional regu-
lators in their corresponding native environments and
what their potential mechanisms are. Overall, our pipe-
line found a substantial number of potentially new tran-
scriptional regulators in Arabidopsis, fruit fly, and

human, which opens the door for new hypotheses and
axes of investigation.
We sought to identify novel transcriptional regulators,

in particular proteins that have potential activation or
repression activities without necessarily binding directly
to DNA. Since these types of proteins do not have obvi-
ous, conserved domains in their protein sequence, we
used criteria that are independent of sequence hom-
ology. To select those criteria, we focused on features
found in TFs’ protein-protein interaction domains such
as high degree of disorder and autoactivation because
they are shared with other regulators. These features
acted additively to predict regulators with good precision
and recall (Additional file 1: Figure S3). For example, the
autoactivation feature did not perform well when used
alone (Additional file 1: Figure S3, red bar). Several rea-
sons might have contributed to this: 1) incomplete data
for the autoactivation activity of proteins in yeast; 2)
some activator domains (i.e. proline- and glutamine-rich
domains) have variable autoactivation activity in yeast
[21, 64–69]; and 3) proteins with no transcriptional
regulatory function can alter the expression of the re-
porter gene in yeast. Despite the limited predictive
power of the autoactivation feature, when it is used in
combination with the other features, it increased their
combined precision (Additional file 1: Figure S3a). These
results show that combining different types of character-
istics improves the predictive power of the pipeline.
To our knowledge, this is the first report describing a

filter-based pipeline that incorporates TF-features to find
novel transcriptional regulators in genomes. Further im-
provements to this pipeline include the addition of fea-
tures that were identified in the in silico validation in
this study (e.g. amino acid composition, taxon-
specificity, and physical interaction with TFs).

Five novel Arabidopsis transcriptional regulators might
be coactivators
Our pipeline was designed to identify transcriptional
regulators: novel TFs and other regulatory proteins that
can alter gene expression directly by physical interaction
with transcription-associated proteins such as chromatin
remodelers and modifiers, TFs, and components of the
general transcriptional machinery. Therefore, we antici-
pated that the predicted regulators might work through
different mechanisms. Some non-DNA binding regula-
tors might be coactivators or corepressors that alter TF
binding or activity, while others might be scaffold or
regulatory subunits of coactivator complexes and chro-
matin remodelers and modifiers.
In planta transactivation assays have been used to test

the effect of TFs and other regulatory proteins on tran-
scription [56, 59, 70, 71] indicating that the transactiva-
tion activity of transcriptional regulators can be assessed
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successfully using this system. To identify which pre-
dicted Arabidopsis regulators activate transcription in
planta when tethered to the promoter of a reporter
gene, we developed a transient transactivation assay.
Using this system, we identified 5 novel coactivators. The
remaining tested candidates that did not show activator
activity could be false positives, repressors or unsuitable
for testing in our current system. Transcriptional activa-
tors usually work combinatorially [72] and the individual
contribution of certain activators to transcription is
context-dependent [73]. For example, the activator activity
might depend on posttranslational modifications or the
interaction with specific partners that are lacking in our
system. Transactivation activity could also depend on pro-
moter context [74] since many TFs depend on the pos-
ition of the TF binding motifs within the promoter to
activate transcription [75–77]. It is also possible that some
of the predicted regulators act as repressors in plants. This
is supported by the fact that some of the predicted candi-
dates with literature support (such as members of the
LOB and OVATE [31, 78] and EMSY [39, 40] families)
function as repressors, indicating that our pipeline could
identify repressors. Since we predicted at the family level,
we might identify repressors simply because they belong
to a candidate family whose members include both activa-
tors and repressors as is the case for some TF families
[71, 79]. Alternatively, some of the candidates with
activator activity in yeast might be repressors in
plants, depending on the repertoire of available interacting
proteins. This dual transcriptional function has been ob-
served for some TFs [73, 80–83]. Finally, the predicted
regulators might work as regulatory subunits or scaffold
proteins of the transcriptional machinery, in which case
determining their partners of interaction will give us
insight into their mechanism of action. While we tested
three positive (TFs) and two negative (nuclear-localized,
non-transcriptional regulators) controls in this system, a
wider selection of proteins (e.g. selected randomly from
the genome) to test for transcriptional activity in this sys-
tem would provide a better baseline to assess the recovery
rate of transcriptional activators. Further characterization
of the candidates that show transcriptional activity would
be required to confirm their roles in transcriptional
regulation.

Novel regulators from CHIQ1 family might control gene
expression through Polycomb repressive complex 2
(PRC2)
To investigate CHIQ1’s mechanism of action, we
searched for interactors involved in transcriptional regu-
lation using proteomics, yeast-two-hybrid, and BiFC as-
says and found that CHIQ1 directly interacts with other
CHIQ1 family members and, via CHIQL6, interacts with
the EMF2 subunit of the repressive complex PRC2.

The PRC2 is a transcriptional repressor complex that
silences genes by tri-methylating lysine 27 of histone H3
(H3K27me3) in the nucleosomes of target loci [84]. The
complex consists of four widely conserved core subunits:
1) a methyltransferase; 2) a zinc finger and VEFS
domain-containing protein that provides stability; 3) a
WD40 repeat protein that binds to H3K27me3; and 4) a
WD40 repeat protein that binds nucleosomes [84]. The
Arabidopsis PRC2 complex exists in three variants,
named after the zinc finger/VEFS domain protein,
EMF2-PRC2, VRN2-PRC2 and FIS2-PRC2 [85]. PRC2 is
essential during developmental transitions in plants [86].
In Arabidopsis, FIS2-PRC2 participates in embryogen-
esis, EMF2-PRC2 is involved in cell fate determination
and cell differentiation in leaves and in the transition
from vegetative to reproductive development, and
VRN2-EMF2 is important for the transition to flowering
after a cold period [86].
Based on our protein-protein interaction data, we

hypothesize that CHIQ1, CHIQL6, and EMF2-PRC2
might work together to modulate transcription. The pre-
cise roles of CHIQ proteins in transcriptional regulation
and how they affect EMF2-PRC2 function remain to be
elucidated. PRC2 can be regulated by controlling its re-
cruitment to target genomic regions or its enzymatic ac-
tivity. PRC2 core subunits do not have sequence-
specificity; therefore PRC2 target-specificity relies on its
interaction with long non-coding RNAs, transcription fac-
tors, or other histone modifications to recognize target
sites [87–91]. Overall, molecular mechanisms for PRC2
recruitment are poorly understood [92, 93]. Moreover, lit-
tle is known about how PRC2’s activity can be modulated.
One possible role for CHIQ proteins might be to work as
adaptors that link chromatin regulators with elements that
control sequence specific recruitment or have a regulatory
role on the methyltransferase activity of PRC2.

Conclusions
This paper describes a “reverse genomics” approach that
systematically identifies previously uncharacterized tran-
scriptional regulators, which might control the activity
of TFs or chromatin regulators. For example, the discov-
ery of CHIQ1 family and its initial characterization iden-
tified a novel plant-specific family that might work with
PRC2 complex during growth. We hypothesize that the
predicted regulators might form higher order complexes
with TFs and chromatin modifying complexes to fine-
tune transcriptional activity. Other, more unexpected
mechanisms of transcriptional regulation could also be
revealed in these candidate genes. Our approach con-
tributes to assigning a molecular function to previously
unknown genes, which still represent 25–75% of genes
in eukaryotic genomes [3–5], and accelerating the dis-
covery of new regulators of transcription.

Bossi et al. BMC Genomics  (2017) 18:480 Page 11 of 20



Methods
Clustering Arabidopsis proteins in families based on
overall sequence similarity
Arabidopsis thaliana (Arabidopsis) protein sequences
were downloaded from Phytozome (ftp://ftp.jgi-psf.org/
pub/compgen/phytozome/v9.0/Athaliana/annotation/
Athaliana_167_protein_primaryTranscriptOnly.fa.gz)
[94]. The proteins were clustered based on sequence
similarity (BLASTP e-value cut-off of 1E-5) using
BLAST+ 2.2.29 and the Markov Cluster Algorithm
(MCL version 12–068) [95] at four different inflation
values: 1.4, 2, 4, and 6. Results from the different cluster-
ing schemes were consistent with each other, with the
inflation value of 1.4 being the least restrictive and gen-
erating larger clusters and 6 being the most restrictive
and generating smaller clusters. To determine the most
appropriate inflation value externally, we randomly
picked seven transcription factor families (CCAAT-DR1,
C2C2-YABBY, G2-like, GeBP, NAC, bZIP, and MYB)
with 2, 6, 16, 40, 73, 96, and 131 members from the Ara-
bidopsis Transcription Factor Database (http://arabidop-
sis.med.ohio-state.edu/AtTFDB/) [96] as the gold
standard clusters. To measure clustering quality, we
used Jaccard Index between the MCL-generated clusters
and the gold standard clusters. Inflation value 4 was
chosen for subsequent analysis because it had the high-
est overlap with gold standard data (average Jaccard
Index of 0.71) among the four inflation values.

Selection of functionally unknown clusters
To select the clusters containing only the functionally
unknown proteins, the Gene Ontology (GO) annotations
[44] for molecular function were extracted from the GO
annotation file in The Arabidopsis Information Resource
(TAIR) [97] website (ftp://ftp.arabidopsis.org/home/tair/
Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt,
downloaded 09/03/2013). Proteins annotated to the root
molecular function term (GO:0003674) as well as pro-
teins without any molecular function GO annotation
were considered as unknown.

Selection of candidate transcriptional regulator families
The regulator families were predicted from the set of
unknown families with more than two members. An un-
known cluster was considered to be a candidate tran-
scriptional regulator family if it met the following three
criteria: 1) more than 50% of its members were pre-
dicted to localize to the nucleus; 2) the average ratio of
disordered amino acid residues of its members was
higher than 0.341 (a cutoff set for the 5% cumulative dis-
tribution of all transcription factors); and 3) at least one
of its members was able to activate transcription in yeast
based on experimental evidence (autoactivation). The
subcellular localization of Arabidopsis proteins was

predicted using YLoc [98]. The disordered amino acids
in each protein were predicted using Predisorder 1.1
[99]. We calculated the ratio of disordered residues for
each protein as the number of disordered amino acids
divided by the protein length. Predisorder does not work
for proteins larger than 2500 amino acids. To overcome
this restriction, long proteins were split into pieces for
prediction. To address the potential bias in the prediction
from the split ends, two splitting scenarios were imple-
mented. In the first method, the sequence of long proteins
was split equally into n parts, where n is the minimal
number for each piece shorter than 2500 amino acids. In
the second method, the sequence was split equally into
(n + 1) parts. Predisorder was applied to predict the disor-
dered amino acids for each piece resulting from the two
splitting methods. The ratio of disordered residues of the
long protein was then calculated as the average ratio of
disordered residues of the pieces from the two splitting
methods. The list of proteins with autoactivation activity
was obtained from The Arabidopsis Interactome Mapping
Consortium [22] and in-house tests (see Autoactivation
assays in yeast below). The autoactivation data covers
~28% of Arabidopsis proteome and refers to the ability of
Arabidopsis proteins to activate transcription of a reporter
gene in yeast when fused to the DNA binding domain of
the yeast transcription factor GAL4. This construct is used
in yeast-two-hybrid assays that study protein-protein
interaction and its transcriptional activity must be evalu-
ated before performing yeast-two-hybrid studies, as an im-
portant negative control. We asked The Arabidopsis
Interactome Mapping Consortium for their results of the
aforementioned negative control.

Application of the pipeline to other organisms
The pipeline, as described for Arabidopsis, was applied
to three model organisms: yeast, fruit fly, and human.
Yeast protein sequences were downloaded from Ensembl
(version R64–1-1). Fruit fly protein sequences were
downloaded from Ensembl (BDGP5) and the longest
transcript for each gene was used. The human complete
proteome (filtered for ‘reviewed’) was downloaded from
Uniprot on 07/24/2014. GO annotation files of the three
organisms were downloaded from Gene Ontology Con-
sortium (geneontology.org, [44]) (SGD [100] on 7/26/
2014, FlyBase [101] on 7/15/2014, and EBI GO Annota-
tions Homo sapiens [102] on 7/10/2014). The yeast pro-
teins that activate transcription in yeast were obtained
from [23]. The fruit fly proteins with autoactivation ac-
tivity were provided by Dr. Russ Finley (personal com-
munications, DroiD database) from previously published
high throughput protein-protein interaction studies
[23, 103–107] and the human proteins with autoactiva-
tion activity was provided by Dr. Tong Hao (personal
communications, Dana-Farber Cancer Institute, USA).
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The autoactivation data covers ~90%, 55% and 87% of the
yeast, fruit fly, and human proteome, and the rationale for
obtaining and using the data has already been explained in
the section “Selection of candidate transcriptional regula-
tor families”.

Fold-enrichment analysis
To determine the fold enrichment each criterion yielded to-
wards identification of the regulators, we counted the num-
ber of families that passed each criterion in the genome. We
then calculated the fold enrichment of each criterion using a
hypergeometric test. The fold enrichment was obtained by
dividing the ratio of the predicted regulator families within
the families that met each criterion by the ratio of the pre-
dicted regulator families in all the families in the genome for
all criteria except autoactivation and final candidates. To cal-
culate fold enrichment for the autoactivation criterion and
final candidates, only the families with at least one member
tested for autoactivation was used in the denominator ratio.

Amino acid composition and protein-protein interaction
analyses
We counted the number of each amino acid found in 20
amino acid sliding windows with an overlap size of 19
amino acids as described in [23] for all Arabidopsis, fruit
fly, and human proteins and compared the averages of
the maximum of each amino acid in the predicted candi-
date proteins, TFs, and the whole proteome using a t-
test. P-values were adjusted using Bonferroni correction.
To find interactors of the predicted regulators and cal-

culate the percentage of proteins that interact with TFs/
TRs, we used the file: "BIOGRID-ORGANISM-Arabi-
dopsis_thaliana_Columbia-3.4.149.tab2" from the Bio-
GRID website (https://thebiogrid.org/download.php)
[108]. To calculate the percentage of proteins that inter-
act with TFs/TRs, we divided the number of proteins
that interact with a TF/TR by the number of proteins
that have any interaction data. To calculate the percent-
age of predicted regulators that interact with a TF/TR,
we divided the number of predicted regulators that
interact with a TF/TR by the number of predicted regu-
lators that have any interaction data.

Taxon specificity analysis of candidate genes
All proteins from Arabidopsis, yeast, fruit fly and human
genomes were combined and clustered by OthoMCL
[109]. To be consistent with the single-genome cluster-
ing method described in the prediction pipeline, inflation
value 4 was chosen for MCL clustering of the meta-
genomes. To estimate the degree of taxon specificity of
the predicted regulators, the protein families were
grouped into four categories containing proteins from 1,
2, 3, and 4 species. The percentage of candidate regula-
tors in each category was calculated. To find orthologs

of the predicted regulators in other organisms, we
manually extracted the ortholog information for each
gene from Ensembl Genomes database [50].

Construction of plasmids
For the in planta transactivation assay, we constructed the
reporter vector 3xUAS/−49 35S:GUS and 38 effector vec-
tors. To construct the vector 3xUAS/−49 35S:GUS, two
complementary primers containing three Upstream Acti-
vating Sequence (UAS) [110] cis-elements and the -49 bp
region of the constitutive tobacco promoter 35S (3xUAS-
4935S_for: 5′ GGGGACAAGTTTGTACAAAAAAGCA
GGCTTCCGGCCGCGGAGGACTGTCCTCCGTGC
ACGGAGGACTGTCCTCCGATCGGAGGACTGTCC
TCCGTGCAATCCTTCGCAAGACCCTTCCTCTATATA
AGGAAGTTCATTTCATTTGGAGAGGAGGCGCGCC
GACCCAGCTTTCTTGTACAAAGTGGTCCCC 3′ and
3xUAS-4935S_rev: 5′ GGGGACCACTTTGTACAAGAA
AGCTGGGTCGGCGCGCCTCCTCTCCAAATGAAAT
GAACTTCCTTATATAGAGGAAGGGTCTTGCGA
AGGATTGCACGGAGGACAGTCCTCCGATCGGAGG
ACAGTCCTCCGTGCACGGAGGACAGTCCTCCGCG
GCCGGAAGCCTGCTTTTTTGTACAAACTTGTCCCC 3′)
were annealed at 70 °C for 10 min, cooled down on ice,
cloned directly into pDONR221, and transferred into the
binary vector pGWB633 [111] using Gateway cloning (Life
Technologies). To construct the backbone of the effector
vector, we modified the binary vector pB7HFC3_0 (do-
nated by Dr. Dmitri Nusinow, Donald Danforth Plant Sci-
ence Center, USA) to create pHT-GAL4BD-HFC by: 1)
cloning the DNA binding domain of GAL4 amplified from
the plasmid pDEST32 (Life Technologies) at the SpeI re-
striction site (located between the end of the 35S pro-
moter and the beginning of the left Gateway cloning
cassette of pB7HFC3_0) and 2) cloning the HT leader se-
quence amplified from pEAQ-HT-DEST1 [112] between
the end of the 35S promoter and the beginning of the
GAL4 DNA binding domain. The HT leader sequence was
cloned using megaprimers generated by PCR using the fol-
lowing primers: HT-for: 5′ CTATTCTAGTCGACCTG-
CAGGCGGCCGCTATTAAAATCTTAATAGGTTTTG
3′, and HT-rev: 5′ CTTGTTCGATAGAAGACAG-
TAGCTTCATACTAGTGTTTGATCGAATTTGGGCAG
3′; and the QuickChange II XL Site-directed mutagenesis
protocol (Agilent Technologies). To generate pB7HFC3_0,
the vector pB7HFC [113] was used as template to amplify
two overlapping fragments using primers pDAN0193 5′–
TGCCCGCCTGATGAATGCTC–3′ and pDAN0239 5′–
GTGATGCGATCCTCCTCCCACTTTGTACAA-
GAAAGCTGA–3′ to generate attR2A, and pDAN0240
5′–TCAGCTTTCTTGTACAAAGTGGGAGGAG-
GATCGCATCAC–3′ and pDAN0223 5′–ATTCTCATG-
TATGATAATTCGAGG–3′ to generate attR2B. The PCR
products attR2A and attR2B were diluted, mixed and re-
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amplified with primers pDAN0193 and pDAN0223 to gen-
erate the fragment attR2C. The vector pB7HFC was linear-
ized by digestion with EcoRI and XbaI (NEB) and
recombined with attR2C fragment using In-Fusion® HD
cloning (Clontech) to generate the pB7HFC_3.0 vector,
which was verified by sequencing before further use. Entry
vectors for the following genes AT2G45260, AT1G23710,
AT4G21930, AT4G14620, AT1G73210, AT4G03420,
AT4G04630, AT5G08360, AT3G16760, AT5G24640,
AT5G14540, AT5G09670, AT3G18240, AT1G44770,
AT1G05410, AT5G38650, AT3G14700, AT3G59670,
AT5G32440, AT3G26990, AT3G53630, AT2G37570,
AT3G50040, AT3G23690 (bHLH077) and AT3G44110 (J3)
were constructed as follows: the coding sequence of each
gene was amplified by PCR from pUNI51 vectors acquired
from the Arabidopsis Biological Resource Center (ABRC)
or from genomic DNA, and cloned into the entry vector
pENTR-SD or pDONR221 (Life Technologies). The entry
vector containing the activation domain of GAL4 was amp-
lified by PCR from pDEST22 and cloned into pENTR-SD
(Life Technologies). The entry vectors containing the genes
AT3G29180, AT3G13990, AT4G28300, AT5G46780,
AT1G78310, AT2G33350, AT1G04500, AT5G41380,
AT5G59990 and AT4G00130 were obtained from ABRC.
Dr. Enrico Magnani provided the entry vector containing the
ATHB1 gene (INRA, Centre de Versailles-Grignon, France)
and Dr. Zhiyong Wang donated the entry vector containing
the gene YFP (Carnegie Institution for Science, USA). These
38 genes were transferred from the entry vectors into the
binary vector pDB-HT-GAL4-HFC, using Gateway cloning
(Life Technologies), to create the effector vectors.
To construct a binary vector that overexpresses the re-

combinant gene CHIQ1-GFP, the AT2G45260 (CHIQ1)
protein-coding sequence was amplified by PCR from
Col-0 genomic DNA, cloned into the entry vector
pENTR-SD (Life Technologies), and transferred to the
binary vector pGWB5 [114], using Gateway cloning (Life
Technologies), to create the vector pGWB5-CHIQ1.
To construct the translational fusion CHIQ1-GUS,

642 bp of the promoter region (including the 5′ UTR)
plus the coding region of AT2G45260 lacking the stop
codon was amplified by PCR from Col-0 genomic DNA,
cloned into pENTR-SD (Life Technologies), and trans-
ferred into pGWB3 [114] using Gateway cloning (Life
Technologies) to create the vector pGWB3-CHIQ1.
To construct the vectors for the yeast two-hybrid assays,

we amplified the following genes: AT4G33320, AT4G34080,
AT2G32130, AT5G58960, AT1G29300, AT1G53380,
AT3G14870, AT5G60680, AT3G23690 (bHLH077),
AT1G18040 (CDKD1;3), AT1G76010, AT5G65630 (GTE7),
AT3g20740 (FIE), AT5G58230 (MSI1), AT5G51230 (EMF2,
full length protein and C-terminal [115]), AT4G16845
(VRN2, full length protein and C-terminal [115]),
AT2G23380 (CLF, N-terminal region lacking the SET

domain [115]), AT4G02020 (SWN, N-terminal region lack-
ing the SET domain [115]) from genomic DNA, cDNA, or
plasmids obtained from ABRC. The PCR products were
cloned in the entry vector pENTR-SD or pDONR221 and
transferred to the yeast destination vectors pDEST22 and
pDEST32, using Gateway cloning (Life Technologies). The
entry vector containing the gene AT5G28540 (U16271) was
obtained from ABRC. AT5G45050 (WRKY16) in pDEST22
was donated by John Gierer and Dr. Todd Mockler (Donald
Danforth Plant Science Center, USA).
The vectors for the BiFC and pull-down assays were

constructed by transferring the entry clones of
AT2G45260, AT1G29300, AT1G53380, AT3G23690,
AT5G58230, and AT5G51230 described above into the
following plant destination vectors: pUC-SPV-NEGW,
pUC-SPV-CEGW, pB7HFC3_0, pGWB5 [114], and
pGWB24 [114]. The vectors pUC-SPV-NEGW and pUC-
SPV-CEGW were modified from the pDEST-VYNE/
CE(R)GW vectors [116] by switching the split Venus-
Gateway cassette into pUC18 backbone.

Autoactivation assays in yeast
We tested the following genes: AT1G04500,
AT1G05040, AT1G05730, AT1G15600, AT1G15610,
AT1G15620, AT1G15630, AT1G15640, AT1G17400,
AT1G22980, AT1G44010, AT1G50690, AT1G54180,
AT1G72490, AT2G15590, AT2G20590, AT2G24140,
AT2G29880, AT2G32050, AT2G33350, AT2G33400,
AT2G36540, AT2G36550, AT2G38823, AT2G45260,
AT3G01015, AT3G02125, AT3G54520, AT3G54530,
AT4G00390, AT4G27660, AT4G30830, AT4G30830,
AT5G41380, AT5G59990, AT4G00130. The entry vec-
tors in pDONR221 were obtained from ABRC (except
for AT2G45260, whose cloning was described in the pre-
vious section) and were transferred to the yeast destin-
ation vector pDEST32 using Gateway cloning (Life
Technologies). Genes in the pDEST32 vector (Life Tech-
nologies) plus the vector pEXP502 (Life Technologies)
were co-transformed into the yeast strain MaV203 (Life
Technologies) following the manufacturer’s instructions.
The transformation reaction was plated on selective
media (6.7 g/L Yeast nitrogen media without amino
acids (DIFCO) supplemented with 2% glucose (SIGMA),
2% agar (Carolina), 1X leucine (Clontech), and 1X tryp-
tophan (Clontech) at 30 °C for 3–5 days. Positive col-
onies were tested for β-galactosidase activity on nylon
membranes as described in the ProQuest manual (Life
Technologies).

Plant material and growth conditions
Nicotiana benthamiana plants were grown in soil (PRO-
MIX® HP Mycorrhizae) for 5–6 weeks at 22°C in 16/8
photoperiod. Arabidopsis thaliana plants were grown at
22 °C in 16/8 photoperiod either in soil (PRO-MIX® HP
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Mycorrhizae) or in 0.5X Murashige and Skoog basal salt
mixture (MS) media (PhytoTechnologies Laboratories)
(pH 5.7), supplemented with 0.8% agar (Difco) and 1%
sucrose (SIGMA). Seeds were stratified in the cold room
(~4 °C) for four nights to break dormancy.
We obtained Arabidopsis thaliana ecotype Col-0 (wild

type) plants and 9 mutant lines (in Col-0 background)
from ABRC (stock numbers included in Additional file
1: Table S1). We generated plants overexpressing
AT2G45260 by introducing the transgene 35Spro:-
CHIQ1-GFP from the plasmid pGWB5-CHIQ1 into the
chiq1–1 mutant background (ABRC stock number:
SALK_064001). Five transgenic lines were selected in 1X
MS medium (PhytoTechnologies Laboratories), supple-
mented with 1% sucrose (Sigma-Aldrich) and 50 mg/L
kanamycin (Gibco). Two homozygous lines (A13 and
B12) were used for the macroscopic phenotypic
characterization and the line B12 was used for the scan-
ning electron microscopic and immunoprecipitation
studies.
Transgenic lines carrying the translational fusion

CHIQ1-GUS were generated by introducing the trans-
gene CHIQ1pro:CHIQ1-GUS from the plasmid pGWB3-
CHIQ1 into Col-0 plants. The expression of the trans-
gene in seedlings was analyzed in at least six independ-
ent lines.

Linkage analysis and functional complementation of
chiq1–1 mutant phenotype
The Arabidopsis mutant line SALK_064001 (chiq1–1)
was backcrossed to Col-0 once. The resulting F1 plants
were selfed, and 125 F2 seeds were planted in soil. After
seven weeks, the stature of each plant was scored as ei-
ther short or tall (wild type), and the genotype of 59
plants was assessed by PCR. The seeds from one of the
backcrossed homozygous lines (line 22) were used for all
the phenotypic analyses.
The chiq1–1 plants were transformed with the trans-

gene 35Spro:CHIQ1-GFP. F1 heterozygous plants were
planted on soil and their stature was scored after seven
weeks. The line B12 was chosen for further phenotypic
studies, including organ size and developmental traits
(see below). B12 was selfed and homozygous plants were
selected using kanamycin.

Phenotypic analyses
Plant height
The height of the primary inflorescence stem was mea-
sured with a ruler from plants grown in soil for 11 weeks.
At least 30 individuals per genotype (Col-0, chiq1–1, line
B12) from eight independent experiments were
measured.

Flowering time
The number of leaves with a visible petiole was counted
daily from day 16 after sowing to day 39–40 in soil-
grown plants. To determine bolting time, the number of
days that passed between sowing and when the inflores-
cence of at least 1 cm in height appeared was counted.
These experiments were performed eight times (n = 9–
12 per genotype per experiment).

Leaf size
Leaf size was measured from plants grown in soil for
7 weeks. Fully expanded rosette leaves with a visible
petiole were scanned and their blade area was measured
with ImageJ. This experiment was performed three times
and eight individuals from each genotype were analyzed.
In all cases, we performed t-tests to determine statis-

tical significance.

In planta transactivation assay
Fully expanded 3rd, 4th, or 5th leaves from 5 to 6 week-
old tobacco (Nicotiana benthamiana) plants were co-
infiltrated with the reporter construct, the effector con-
struct, a construct overexpressing a fluorescent marker
(transformation control) and another overexpressing the
protein P19 [57]. Agrobacterium cultures carrying each
construct were grown overnight at 28 °C. Each culture
was washed four times in infiltration buffer (10 mM
MgCl2 (omniPur, EMD), 10 mM MES (pH 5.6) (J. T.
Baker) and 100uM acetosyringone (Sigma-Aldrich)) and
diluted to reach an OD600 of 0.8. The effector and re-
porter construct were infiltrated at a ratio of 9 to 1. Each
combination was infiltrated in one leaf (four ~1 cm-
diameter dots per leaf ) from different plants [117]. We
used the transcription factors GAL4, ATHB1 [59], and
bHLH077 as positive controls, and YFP and the
chaperone J3 [58] as negative controls. Three days after
infiltration, leaves (two per plasmid combination) with
similar GFP expression were collected. The four infil-
trated areas in each leaf were excised and pooled into
one sample. We performed 3 independent infiltrations
per plasmid combination resulting in 6 samples per
gene.
Protein extracts were prepared and used for GUS en-

zymatic activity measurements and ELISA assays. Total
protein content was extracted using the following buffer
(GUS extraction buffer: 50 mM NaHPO4 (pH 7.0)
(Sigma-Aldrich), 10 mM β-mercaptoethanol (Sigma-Al-
drich), 10 mM EDTA (Sigma-Aldrich), 0.1% (w/v) so-
dium lauryl sarcosine (Sigma-Aldrich), 0.1% (w/v) Triton
X-100 (Sigma-Aldrich), and one tablet of cOmplete
ULTRA protease inhibitor cocktail per 15 ml of buffer
(Roche)). Protein concentration was measured using the
Bradford assay (Bio-Rad). To measure the GUS enzym-
atic activity, 100 μg of each protein extract in GUS
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extraction buffer was incubated with GUS assay solution
(2 mM 4-Methylumbelliferyl β-D-Glucuronide (Gold
Biotechnology) in GUS extraction buffer) in a 1 ml reac-
tion at 37 °C; and 100 ul (of this 1 ml reaction) were
transferred to 1.9 ml of 0.2 M carbonate (Na2CO3) stop
solution at the following time points: 0, 30, 60, 90, and
120 min. The GUS activity was measured using the
Dyna Quant 200 fluorometer (Hoefer), which was
blanked with 2 ml of 0.2 M carbonate solution and cali-
brated with 50 nM 4-MU (7-hydroxy-4-methylcoumarin,
Sigma-Aldrich) solution in 0.2 M carbonate solution.
The GUS activity values were calculated following the
mathematical formula from the Technical Bulletin MB-
470 associated with the β-glucuronidase (GUS) fluores-
cent reporter gene activity detection kit (Sigma-Aldrich).
The effector protein concentration was measured using
ELISA assays (Abcam). All effector proteins were fused
to the FLAG tag (as the effector vector contains a FLAG
tag in frame at the C-terminal), which enabled the use of
anti-FLAG antibodies. ELISA assays were performed as
follows: 20 μg of total protein was diluted in 50 mM bi-
carbonate/carbonate buffer (Sigma-Aldrich) and incu-
bated overnight on a Microcolon high-binding 96-well
plate (Greiner) at 4 °C, the plate was blocked with
200 ul of Immunoassay blocking (BSA free) solution
(Abcam) for ~4 h at room temperature, incubated with
100 ul of 1:3000 anti-FLAG antibody (F3165, Sigma-
Aldrich) overnight at 4 °C, and finally incubated with
100 ul of 1:5000 anti-mouse antibody (Santa Cruz) for
~2 h at room temperature. To read the plate: 75ul of
1-Step TM ultra TBS-ELISA substrate (Thermo Scien-
tific) was added to each well and incubated for
30 min at room temperature, the reaction was stopped
with 75 ul of stop solution (Thermo Scientific), and
measured at 450 nm using a plate reader. To calculate
the absolute values of concentration, we included a
standard curve using FLAG peptide (Sigma-Aldrich) at
the following concentrations: 0, 50, 100, 200, 300, 500,
1000, 2000, 3000, 4000, and 5000 ng/ml. All standards
and samples were analyzed in triplicates (ELISA assay).
The normalized GUS enzymatic activity was calculated
by dividing the GUS activity (nmol of 4MU/min/mg
total protein) by the concentration of effector protein
(ng/ml).

Histochemical analysis of Arabidopsis transgenic lines
Expression of the CHIQ1-GUS transgene driven by its
native promoter was analyzed in 2 and 14 day-old seed-
lings grown in MS agar media. Seedlings were stained in
GUS staining solution [118] at 37 °C overnight, and were
destained in 70% ethanol at room temperature for 24 h.
Pictures were taken with the Nikon Eclipse microscope
and Leica MZ6 stereo microscope.

Co-immunoprecipitation and mass spectrometry analysis
(co-IP/MS)
Seedlings overexpressing GFP or the translational fusion
CHIQ1-GFP were grown for 2 days in 0.5X MS agar
media. A total of 20 g of tissue per genotype was frozen
in liquid nitrogen. Tissue was ground using liquid nitro-
gen, and total protein content was extracted using a na-
tive buffer (100 mM sodium phosphate, pH 8.0 (Sigma-
Aldrich), 150 mM sodium chloride (EMD Chemicals
Inc), 5 mM EDTA (Sigma-Aldrich), 5 mM EGTA, 0.05%
Triton X-100 (Sigma-Aldrich), and one tablet of
cOmplete ULTRA protease inhibitor cocktail per 10 ml
buffer (Roche)). Protein concentration of each extract
was measured using the Bradford assay (Bio-Rad).
Twenty micrograms of the polyclonal anti-GFP antibody
(donated by Dr. Z. Wang, Carnegie Institution for Sci-
ence, USA) were coupled to 40 μl of protein A/G mag-
netic beads (Thermo Scientific) following the
manufacturer’s instructions. 110 mg of total protein was
incubated with the antibody-coupled beads for 1.5 h at
4 °C with gentle rotation. Beads were washed four times
with the extraction buffer and the protein complexes
were eluted with 2X Laemmli buffer (Bio-Rad). The im-
munoprecipitation was verified by Western blot analysis.
The eluate was run in a 4–20% gradient SDS-PAGE gel
(Bio-Rad) and stained with Coomassie Brilliant Blue
(Bio-Rad). Each lane in the gel was cut into seven pieces
and each piece was analyzed individually using Mass
Spectrometry. Samples were sent to the Vincent Coates
Foundation Mass Spectrometry Laboratory (Stanford
University Mass Spectrometry), where they digested the
proteins with trypsin, separated the peptides using Li-
quid Chromatography (Waters Nano Acquity), and iden-
tified the peptides using Mass Spectrometry (LTQ-
Orbitrap Velos). Data was acquired in a data dependent
acquisition (DDA) mode where the top 12 most intense
precursor ions were isolated and fragmented using the
ion trap. Raw data was analyzed against Arabidopsis
proteome extracted from NCBI (ftp://ftp.ncbi.nlm.nih.-
gov/genomes/refseq/plant/Arabidopsis_thaliana/, down-
loaded on 05/20/2014) using Sequest (Thermo Finnigan)
and visualized using Scaffold (Proteome Software, Inc.).
Based on decoy analysis, the false discovery rate for pro-
tein identification was set to 1% and only the proteins
with a minimum of three peptides were considered in
the analysis. Proteins pulled down in the negative con-
trol samples (i.e. GFP overexpressing plants) and CHIQ1
overexpressing plants were compared, and only the pro-
teins present in the samples from CHIQ1 overexpressing
plants were considered as possible interactors of CHIQ1
(Additional file 1: Table S8). We selected candidate
interactors for further testing if they belonged to the
CHIQ1 family or had a transcription-related GO
annotation.
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Yeast two-hybrid assays
PRC2 components (AT3g20740 (FIE), AT5G58230
(MSI1), AT5G51230 (EMF2), AT4G16845 (VRN2),
AT2G23380 (CLF), and AT4G02020 (SWN)) in
pDEST32 were transformed into yeast strain AH109
using the Frozen-EZ yeast transformation II kit accord-
ing to the manual (ZYMO research). Nine proteins from
CHIQ1’s family (AT4G33320, AT4G34080, AT2G45260,
AT3G60680, AT3G14870, AT1G29300, AT1G53380,
AT2G32130, and AT5G58960) in pDEST22 were trans-
formed into yeast strain Y187. To obtain double trans-
formants, single haploid colonies from each
transformation were grown overnight, each pair mixed,
and incubated for one day at 28 °C. To select for the col-
onies that contain both pDEST22 and pDEST32 con-
structs, the resulting diploid cells were plated onto
selective media without leucine and tryptophan. To
screen for interacting pairs, three colonies of each com-
bination were streaked onto selective media without leu-
cine, tryptophan, and histidine (SC-Leu-Trp-His)
supplemented with or without 3-amino-1,2,4-triazole. As
a background control, empty pDEST22 was paired with
all histone modifiers and chromatin remodelers in
pDEST32 and empty pDEST32 was paired with all can-
didate genes in pDEST22. Interaction pairs that grew
better or faster in all three colonies compared with the
background controls were considered as positive.
We further used the ortho-nitrophenyl-β-D-galacto-

pyranoside (ONPG) assay to quantify their interaction.
To perform the ONPG assay of β-galactosidase activity
in yeast, we grew nine independent colonies of each
positive pair in pools of three (i.e. three colonies per
sample) overnight in 2 ml of selective media without
leucine and tryptophan at 28–30 °C. Yeast cells were
precipitated and resuspended in Z buffer (40 mM so-
dium phosphate monobasic monohydrate, 60 mM so-
dium phosphate dibasic heptahydrate, 10 mM potassium
chloride, and 1 mM magnesium sulfate heptahydrate).
Enzymatic reaction was performed in 500 μl of Z-buffer
plus 50 μl of 0.1% SDS, 50 μl of chloroform, and 100 μl
ONPG (4 mg/ml) at 37 °C for 2–30 min. The reaction
was stopped with 1 M sodium carbonate. The enzymatic
activity was measured at OD420, and the units of β-
galactosidase activity were calculated using the following
formula: units of β-galactosidase activity = (1000 x
OD420) / (V x t x OD600), where V = the volume of cells
(ml); t = the incubation time (min); OD600 = optical
density at the beginning of the experiment.

Bimolecular fluorescence complementation (BiFC) assays
The PRC2 components (AT5G51230 (EMF2) and
AT5G58230 (MSI1)), the candidate transcriptional regula-
tors AT1G29300 (CHIQL6), AT2G45260 (CHIQ1), and
AT1G53380 (CHIQL5), and a pulled-down transcription

factor AT3G23690 (bHLH077) in pUC-SPV-NEGW and
pUC-SPV-CEGW vectors (described in “Construction of
plasmids”) were used for BiFC assays in Arabidopsis pro-
toplasts as previously described [119, 120]. For each ex-
periment, the Venus signal was compared only within the
protoplast populations prepared and transformed at the
same time. Images were taken with a confocal microscope
with the same gain (Leica, LCS SL). Multiple images were
taken for each biological replicate. The interaction fre-
quency was calculated by counting the number of Venus
positive nuclei among all protoplasts under an epifluores-
cence microscope (Olympus, MVX100). At least 250 pro-
toplasts were counted for each sample in each experiment
and three independent experiments were performed for
each combination tested.

Pull-down assays
Fully expanded 3rd, 4th, or 5th tobacco leaves from 5 to
6 week-old plants were co-infiltrated with the following
combinations: GFP-tagged CHIQ1 plus FLAG-tagged
CHIQL6; GFP-tagged CHIQ1 plus FLAG-tagged
CHIQL5; GFP tagged CHIQ1 plus FLAG-tagged EMF2;
and FLAG-tagged CHIQL6 plus GST-tagged EMF2.
Three days after infiltration, the leaves were collected,
frozen in liquid nitrogen, and kept at −80 °C.
For the pull-down assays, each tobacco leaf was

ground using liquid nitrogen, and total protein content
was extracted using a native buffer (100 mM sodium
phosphate, pH 8.0 (Sigma-Aldrich), 150 mM sodium
chloride (EMD), 5 mM EDTA (Sigma-Aldrich), 5 mM
EGTA, 0.05% Triton X-100 (Sigma-Aldrich), and one
tablet of cOmplete ULTRA protease inhibitor cocktail
per 10 ml buffer (Roche)). Protein concentration of each
extract was measured using Bradford assay (Bio-Rad).
Ten micrograms of the anti-FLAG antibody (F3165,
Sigma-Aldrich) were coupled to 50 μl of protein A/G
magnetic beads (Thermo Scientific) following the manu-
facturer’s instructions.
Approximately 1 mg of total protein was incubated

with the antibody-coupled beads for 1.5 h at 4 °C with
gentle rotation. The beads were washed four times with
the extraction buffer and the protein complexes were
eluted with Laemmli buffer (Bio-Rad). The eluate was
run in a 7.5% SDS-PAGE gel (Bio-Rad) and the IP was
verified by Western blot using anti-FLAG HFR-coupled
antibodies (Sigma-Aldrich), anti-GFP (Clontech), or
anti-GST antibodies (donated by Dr. Z. Wang (Carnegie
Institution for Science, USA)).

Additional file

Additional file 1: Tables S1, S3 and S4 list the candidate
transcriptional regulators predicted in Arabidopsis, fruit fly, and human,
respectively. Table S2 shows the number of families predicted from the
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genome by each criterion and the enrichment fold yield by each criteria
towards the identification of regulators in Arabidopsis, fruit fly and
human. Table S5 lists the physical interactions between predicted
regulators and proteins involved in transcription available in the BioGRID
database [108] and determined in this study. Table S6 shows the results
of the segregation analysis of chiq1–1 phenotype (dwarfism) in the F2
populations of chiq1–1 x Col-0 (wild type) crosses. Table S7 shows the
results of the linkage analysis of chiq1–1 phenotype (dwarfism) and geno-
type in the F2 populations of chiq1–1 x Col-0 (wild type) crosses. Table
S8 lists the proteins that co-immunoprecipitated (Co-IP/MS) with CHIQ1-
GFP in vivo. Table S9 lists the physical interactions among nine CHIQ
proteins. Figure S1 illustrates the pipeline workflow and the number of
predictions in yeast, fruit fly and human. Figure S2 shows the proportion
of unknown genes in families with less than three or more than two
members in Arabidopsis, yeast, fruit fly and human and the proportion of
the predictions among the unknown families with more than two members.
Figure S3 shows the precision, recall and F1 score of TF predictions in
Arabidopsis. Figure S4 shows the maximum number of aspartic acid,
glutamic acid, asparagine, glutamine, serine, proline and acidic amino acids in
all proteins, TFs and the predicted regulators in Arabidopsis, fruit fly and
human. Figure S5 shows the GUS activity of the negative controls for the in
planta transactivation assay. Figure S6 shows the number of leaves at
different ages and the age of bolting in wild type (Col-0), chiq1–1 and B12
(complemented line). (DOCX 1780 kb)
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