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Chanodichthys erythropterus is a fierce carnivorous fish widely found in East Asian waters. It is not only 
a popular food fish in China, it is also a representative victim of overfishing. Genetic breeding programs 
launched to meet market demands urgently require high-quality genomes to facilitate genomic 
selection and genetic research. In this study, we constructed a chromosome-level reference genome of 
C. erythropterus by taking advantage of long-read single-molecule sequencing and de novo assembly 
by Oxford Nanopore Technology (ONT) and Hi-C. The 1.085 Gb C. erythropterus genome was assembled 
from 132 Gb of Nanopore sequence. The assembled genome represents 98.5% completeness (BUSCO) 
with a contig N50 length of 23.29 Mb. The contigs were clustered and ordered onto 24 chromosomes 
covering roughly 99.49% of the genome assembly with Hi-C data. Additionally, 33,041 (98.0%) genes 
were functionally annotated from a total of 33,706 predicted protein-coding sequences by combining 
transcriptome data from seven tissues. This high-quality assembled genome will be a precious resource 
for future molecular breeding and functional genomics research of C. erythropterus.

Background & Summary
Chanodichthys erythropterus (Basilewsky, 1855), which belongs to the family Cyprinidae, is widely spread in East 
Asia, inhabiting lakes or slow-moving rivers with rich vegetation1. Its juvenile fish feed on zooplankton, such 
as copepods, while adults mainly feed on small fish, a small and fierce carnivorous fish2. The C. erythropterus is 
highly adaptable to its natural environment and is not obviously affected even when living in alkaline lakes like 
Hulun Lake3,4.

Due to its delicious and delicate flesh, the C. erythropterus is so popular with consumers in the market and 
has a high commercial value5. Over the last decade, interest in the aquaculture of C. erythropterus has increased 
to meet market demand as wild stock is under threat due to overfishing and water pollution. Whole-genome 
sequencing of a given species is an important and essential tool to address important questions in both biological 
research and aquaculture. Former research on C. erythropterus has mostly focused on reproduction, age and 
growth6,7, feeding habits2, muscle composition8, and population genetics9. To date, no genomic resources are 
available for C. erythropterus, however, severely hampering research into its phylogeny, evolution and biology. 
Both genomic data and resources can provide a basis for our subsequent studies on the species diversity and 
population dynamics of C. erythropterus, and can provide a solid support for the proposal of logical conserva-
tion measures.

In the current study, the chromosome-level genome of Chanodichthys erythropterus was constructed using 
Nanopore sequencing and Hi-C technology. We have obtained a scaffold N50 of 42.39 Mb for the final genome 
assembly, which is approximately 1,085.51 Mb. Using Hi-C data, we identified that 99.49% of the assembled 
bases were associated with the 24 chromosomes. A valued resource for the conservation and breeding manage-
ment of C. erythropterus, this genome could serve as the genetic basis for future research into its evolution and 
biology.
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Methods
Sampling and sequencing. The C. erythropterus sample that was obtained in the Hulun Lake (Inner 
Mongolia, China) was used for genome sequencing and assembly. The muscle tissue was stored at −80 °C and 
used for DNA extraction, genomic DNA sequencing, and Hi-C library construction. We used a standard SDS 
extraction method to obtain high-molecular weight DNA.

Following the manufacturer’s recommendations, sequencing libraries were generated using the Truseq Nano 
DNA HT Sample Preparation Kit (Illumina, USA) and an index code was added to attribute sequences to each 
sample. These libraries constructed above were sequenced by the Illumina NovaSeq 6000 platform and yielded 
150 bp paired-end reads with an insert size of approximately 350 bp. We obtained 41 Gb of raw genomic data for 
C. erythropterus as a result of Illumina sequencing.

Sequencing was performed on flow cells on the PromethION sequencer according to the manufacturer’s 
instructions. The Nanopore technology yielded 132 Gb of high-quality data from the long-read library, which 
covered 117.86-fold of the genome assembly.

In order to obtain chromosome-level assembly of the genome, a high-throughput chromatin conformation 
capture (Hi-C) library was built for sequencing10. We built the Hi-C library, which used original samples as 
input. Following grinding with liquid nitrogen, crosslinking was carried out with a 4% formaldehyde solution 
under vacuum for 30 minutes at room temperature. Add 2.5 M glycine to quench the cross-linking reaction 
for 5 minutes. Nuclei were digested with 100 units of MboI, tagged with biotin-14-dCTP and subsequently 
ligated with T4 DNA Ligase. The following incubation overnight to reverse cross-linking, the ligated DNA was 
segments sheared into 200 to 600 bp fragments. Blunt-end repair and A-tailing of DNA fragments followed by 
purification through biotin-streptavidin-mediated pulldown. The Hi-C libraries were eventually quantified and 
sequenced on Illumina PE150.

RNA was also extracted from seven tissues of the C. erythropterus, including intestine, liver, muscle, spleen, 
heart, gallbladder and kidney, transcriptome sequencing was performed on the Illumina NovaSeq 6000 platform 
and the resulting reads were used for gene prediction.

Genome size estimation and contig assembly. The Illumina data were analysed for k-mer depth fre-
quency distribution to estimate the genome size, heterozygosity and the amount of repetitive sequences in C. 
erythropterus. The genome size (G) was estimated according to the following formula: G = k-mer number/k-mer 
depth, in which the k-mer number and k-mer depth are the total number and average depth of the 17 mers, 
respectively11. Using 41 Gb of clean Illumina data, the k-mer depth frequency distribution analysis was used for 
the genome of C. erythropterus (Fig. 1). On the basis of a total of 30,891,679,507 17-mer and a peak 17-mer depth 
of 27, the estimated genome size was 1120.68 Mb, the heterozygosity was 0.31%, and the amounts of repetitive 
sequences and guanine-cytosine were roughly 57.05% and 37.95%, respectively (Table 1).

Using all Nanopore sequencing data, a preliminary assembly of the C. erythropterus genome was performed 
using NextDenovo assembler (v2.3.1) (https://github.com/Nextomics/NextDenovo) with the following param-
eters: “read_ cutoff = 1k, pa_correction = 20, sort_options = -m 20 g -t 10, correction_options = -p 10”. Finally, 
the contigs sequences were corrected by NextPolish (v1.3.1)12 using Illumina raw data as well as Nanopore 

Fig. 1 17-mer frequency distribution in C. erythropterus genome. The X-axis is the k-mer depth, and Y-axis 
represents the frequency of the k-mer for a given depth.

Kmer Depth N Kmer Genomesize (M) Heterozygousrate (%) Repeatrate (%)

17 27 30,891,679,507 1,120.68 0.31 57.05

Table 1. The result of k-mer analysis.
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sequencing data. Assembly of these data was then performed with NextDenovo, yielding a genome assembly of 
1,085.49 Mb with a contig N50 of 23.28 Mb (Table 2). For this assembly, the length is the same as the genome size 
estimated by k-mer analysis.

Chromosomal-level genome assembly using Hi-C data. Through the use of the Hi-C scaffolding 
method13, the contigs in the initial assembly are anchored and oriented to the chromosomal scale of the assembly. 
The Hi-C library generated 86 Gb clean data. After the Hi-C corrected contigs were placed in the ALLhic pipe-
line14 for segmentation, orientation and sequencing, the final 99.49% of the assembled sequences were anchored 
to 24 pseudochromosomes with chromosome lengths that ranged from 31.72 Mb to 73.07 Mb (Table 3). This 
result is in agreement with the karyotype results which are based on cytological observations15, as many cypri-
nid fish such as Ctenopharyngodon idellus16, Ancherythroculter nigrocauda17, Hypophthalmichthys molitrix and 
Hypophthalmichthys nobilis18 with chromosome numbers of 2n = 48. Further we manually curated the Hi-C 
scaffolding from the chromatin contact matrix in Juicebox (Fig. 2). The 24 pseudochromosomes are easily dis-
tinguishable on the basis of the heatmap, and the strength of the interaction signal around the diagonal is fairly 
strong, indicating the high quality of this genome assembly. Following Hi-C correction, the final assembled 
genome was 1,085.51 Mb while the scaffold N50 was 42.39 Mb (Table 2). The genome size of C. erythropterus was 
similar to those of some cyprinid fishes such as the Ctenopharyngodon idellus (1.07 Gb), Megalobrama amblyceph-
ala (1.09 Gb)19, Culter alburnus (1.02 Gb)19, and Ancherythroculter nigrocauda (1.04 Gb), but much lower than 
that of the Cyprinus carpio (1.69 Gb)20.

Assessment of the genome assemblies. For evaluating the accuracy and completeness of the genome 
assembly, we first compared Illumina reads to the assembly of C. erythropterus with the BWA (v0.7.8)21 in which 
98.71% of the reads were able to be mapped to contigs. Additionally, we have assessed the integrity of the genome 
assembly with Benchmarking Universal Single-Copy Orthologs (BUSCO v5.2.1)22 with the vertebrata_odb10 
database and CEGMA (v2.5)23. The final results of both showed that the assembly contained 98.5% of complete 
genes and 0.4% of fragmentarily conserved single-copy orthologs (Table 4), as well as 97.98% of the 248 core 
eukaryotic genes. All in all, the results of these assessments indicate to us that the C. erythropterus genome assem-
bly is complete and of high quality.

Type Contig length (bp) Scaffold length (bp) Contig number Scaffold number

Total 1,085,492,200 1,085,510,300 231 50

Max 46,701,910 73,070,995 — —

Number 
> = 2000 — — 231 50

N50 23,286,394 42,399,299 18 11

N60 20,193,970 41,239,264 23 13

N70 13,953,221 39,512,133 29 16

N80 8,516,902 39,089,359 39 19

N90 3,227,172 37,095,974 60 21

Table 2. Assembly statistics of C. erythropterus.

Sequeues ID Sequeues Length Sequeues ID Sequeues Length

Chr1 38,364,365 Chr13 54,232,047

Chr2 41,374,698 Chr14 47,491,587

Chr3 73,070,995 Chr15 42,777,030

Chr4 39,512,133 Chr16 48,609,862

Chr5 39,089,359 Chr17 42,399,299

Chr6 35,868,044 Chr18 39,783,364

Chr7 45,130,715 Chr19 39,191,619

Chr8 47,279,267 Chr20 39,167,548

Chr9 39,627,888 Chr21 41,239,264

Chr10 61,666,924 Chr22 37,095,974

Chr11 59,924,899 Chr23 33,623,848

Chr12 61,677,361 Chr24 31,722,787

Place 1,079,920,877

Unplace 5,589,423

Total 1,085,510,300

Percentage 99.49%

Table 3. Summary of assembled 24 chromosomes of C. erythropterus.
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repeat annotation. Aiming to annotate repetitive elements in the C. erythropterus genome, methods com-
bining homologous comparison and ab initio prediction were used. For ab initio repeat annotation, in which a 
de novo repetitive element database is constructed using LTR_FINDER (v1.0.7)24, RepeatScout (v1.0.5)25 and 
RepeatModeler (v1.0.8)26, the RepeatMasker (v4.0.5)26 was used to annotate the repeat elements in the database. 
The RepeatMasker and RepeatProteinMask (v4.0.5) were then used for known repeat element types via a search 
of the Repbase database27. Furthermore, TRF (v4.07b)28 can be used to annotate the tandem repeat. Ultimately, 
we identified 557 Mb of repetitive sequences, accounting for 51.34% of the assembled genome. These figures are 
higher than in Ctenopharyngodon idellus genome (38.06%) and Megalobrama amblycephala genome (38.68%), 
but slightly lower than that in Danio rerio genome (52.2%). Within this, we identified 469 Mb of LTR which dom-
inated the assembled genome (43.23%) (Table 5).

Gene prediction and annotation. We detected protein-coding genes in the C. erythropterus genome 
assembly by a combination of three methods: Ab initio prediction, homology-based prediction and RNA-Seq 
prediction. As for ab initio prediction, Augustus (v3.2.3)29, GlimmerHMM (v3.04)30, SNAP (2013-11-
29)31, Geneid (v1.4)32, and Genescan (v1.0)33 were used in our automated gene prediction pipeline. As 
for homology-based predictions, we downloaded the protein sequences of Ancherythroculter nigrocauda 
(GWHAAZV00000000), Cyprinus carpio (GCF_000951615.1), Danio rerio (GCF_000002035.6), Sinocyclocheilus 
anshuiensis (GCF_001515605.1), Sinocyclocheilus grahami (GCF_001515645.1), Sinocyclocheilus rhinocerous 
(GCF_001515625.1) from the NCBI database and used TblastN (v2.2.26)34 to match with the C. erythropterus 
genome with an e-value cutoff of 1E-5, and then the matched proteins were accurately spliced against the homol-
ogous genomic sequences using GeneWise (v2.4.1)35 software. As for RNA-Seq prediction, RNA-Seq data from 
seven tissues (including intestine, liver, muscle, spleen, heart, gallbladder and kidney) were aligned with genomic 
fasta using TopHat (v2.0.11)36 and gene structures were predicted using Cufflinks (v2.2.1)37. The non-redundant 

Fig. 2 Hi-C chromosome contact map.

Type Number

Complete BUSCOs (C) 3,304 (98.5%)

Complete and single-copy BUSCOs (S) 3,275 (97.6%)

Complete and duplicated BUSCOs (D) 29 (0.9%)

Fragmented BUSCOs (F) 14 (0.4%)

Missing BUSCOs (M) 36 (1.1%)

Total BUSCO groups searched 3,354

Table 4. Results of the BUSCO assessment of C. erythropterus.
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reference gene set was generated by combining genes predicted from three methods using EvidenceModeler 
(EVM, v1.1.1), using PASA (Program to Assemble Spliced Alignment) terminal exon support38, as well as includ-
ing masked transposable elements as input to the gene predictions. Overall, a total of 33,706 protein-coding 
genes were predicted and annotated, with an average exon number per gene of 7.77 and an average CDS length 
of 1,363.50 bp (Table 6). In the final analysis, we compared the distribution of gene number, gene length, coding 
DNA sequence (CDS) length, exon length and intron length with that of other stiff bony fishes (Table 7 and 
Fig. 3).

The predicted genes of C. erythropterus were functionally annotated by using BLAST39 against SwissProt40, 
Nr from NCBI, KEGG41, InterPro42, GO43, and Pfam44 databases with an e-value cutoff of 1E-5. The InterproScan 
(v4.8)45 tool is used to predict protein function based on conserved protein structural domains using the 
InterPro database. The result was that 33,041 genes were successfully annotated for C. erythropterus, represent-
ing 98.0% of all predicted genes (Table 8 and Fig. 4).

Eventually, miRNAs and snRNAs were identified via a search of the Rfam database using the default param-
eters of INFERNAL46. We chose the human rRNA sequences as a reference and used BLAST39 to predict the 

Type

Denovo + Repbase TE Proteins Combined TEs

Length (bp) % in Genome Length (bp) % in Genome Length (bp) % in Genome

DNA 58,226,942 5.36 7,413,708 0.68 62,122,195 5.72

LINE 7,641,127 0.70 16,986,628 1.56 20,557,781 1.89

SINE 1,634,833 0.15 0 0 1,634,833 0.15

LTR 467,225,494 43.04 32,239,687 2.97 469,221,600 43.23

Unknown 21,969,188 2.02 0 0 21,969,188 2.02

Total 551,340,511 50.79 56,626,202 5.22 557,279,616 51.34

Table 5. Classification of repeat elements in C. erythropterus genome.

Gene set Number
Average transcript 
length (bp)

Average CDS 
length (bp)

Average exons 
per gene

Average exon 
length (bp)

Average intron 
length (bp)

De novo

Augustus 41,060 10,388.42 1,140.26 6.27 181.73 1,753.44

GlimmerHMM 108,494 8,823.60 566.91 3.86 146.98 2,889.85

SNAP 63,613 17,053.13 684.81 5.08 134.69 4,007.40

Geneid 31,402 20,537.73 1,833.65 6.23 294.09 3,572.90

Genscan 32,242 23,196.75 1,545.59 8.10 190.80 3,049.14

Homolog

A. nigrocauda 77,362 5,250.48 793.11 3.88 204.37 1,547.29

C. carpio 32,561 11,939.92 1,570.24 6.95 225.83 1,741.90

D. rerio 34,130 10,738.32 1,553.64 6.48 239.75 1,675.95

S. anshuiensis 40,317 9,754.61 1,366.59 5.83 234.28 1,735.50

S. grahami 41,063 8,962.70 1,270.36 5.57 228.06 1,683.09

S. rhinocerous 34,358 11,162.86 1,430.97 6.45 222.02 1,787.22

RNAseq
PASA 116,439 12,899.85 1,279.78 7.79 164.34 1,711.96

Cufflinks 80,918 18,982.81 3,213.28 8.52 376.93 2,095.63

EVM 37,168 14,243.82 1,274.10 7.17 177.66 2,101.51

PASA-update 36,819 14,260.02 1,288.94 7.22 178.52 2,085.34

Final set 33,706 15,469.83 1,363.50 7.77 175.58 2,085.05

Table 6. The statistics of gene models of protein-coding genes annotated in C. erythropterus genome.

Species Number
Average transcript 
length (bp)

Average CDS 
length (bp)

Average exons per 
gene

Average exon 
length (bp)

Average intron 
length (bp)

C. erythropterus 33,706 15,469.83 1,363.50 7.77 175.58 2,085.05

S. anshuiensis 42,645 17,491.76 1,690.94 9.95 169.90 1,765.00

S. grahami 45,899 16,217.28 1,585.31 9.23 171.79 1,778.31

S. rhinocerous 44,351 16,478.32 1,645.32 9.64 170.66 1,716.65

A. nigrocauda 34,414 15,105.52 1,309.42 7.86 166.68 2,012.35

C. arpio 43,518 15,745.34 1,727.67 9.94 173.73 1,567.13

D. erio 32,715 26,262.69 1,703.09 9.44 180.32 2,908.24

Table 7. The comparison of the gene models annotated from C. erythropterus genome and other teleosts.
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rRNA sequences of C. erythropterus. The tRNAs were predicted using the program tRNASCAN-SE47. As a result, 
we annotated 1,609 miRNA, 8,135 tRNA, 1,251 rRNA and 1,060 snRNA genes (Table 9).

Data records
The genomic Illumina sequencing data were deposited in the Sequence Read Archive at NCBI SRR1869180448 
-SRR1869180549.

The genomic Nanopore sequencing data were deposited in the Sequence Read Archive at NCBI 
SRR1882894250.

The transcriptome Illumina sequencing data were deposited in the Sequence Read Archive at NCBI 
SRR1869729251-SRR18697298.

The Hi-C sequencing data were were deposited in the Sequence Read Archive at NCBI SRR1869693552.
The final chromosome assembly were deposited in the GenBank at NCBI JALPSW00000000053.
The annotation results of repeated sequences, gene structure and functional prediction were deposited in the 

Figshare database54.

technical Validation
The concentration of DNA was determined using Qubit Fluorometer and agarose gel electrophoresis, and the 
absorbance was approximately 1.8 at 260/280.

Fig. 3 Comparisons of the prediction gene models in C. erythropterus genome to other species. (a) CDS length 
distribution and comparison with other species. (b) Exon length distribution and comparison with other 
species. (c) Exon number distribution and comparison with other species. (d) Gene length distribution and 
comparison with other species. (e) Intron length distribution and comparison with other species.

Type Number Percent (%)

Total 33,706 —

SwissProt 22,560 66.9

Nr 27,865 82.7

KEGG 23,194 68.8

InterPro 32,791 97.3

GO 29,853 88.6

Pfam 21,159 62.8

Annotated 33,041 98.0

Unannotated 665 2.0

Table 8. The number of genes with homology or functional classification for C. erythropterus.
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For the SNP discovery, Samtools (v0.1.19)55 was applied, resulting in the identification of 950,346 SNPs, 
including 947,721 heterozygous SNPs and 2,625 homozygous SNPs. The proportion of homozygous SNPs was 
extremely low, indicating the high accuracy of this assembly.

Code availability
No specific code or script was used in this work. The commands used in the processing were all executed 
according to the manuals and protocols of the corresponding bioinformatics software.
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