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Abstract
We use microsimulation to forecast changes in coronary heart disease (CHD) among adults 45 or above over a 20-year 
time horizon in Los Angeles County (N = 3.4 million), a county with 12 635 CHD deaths in 2010. We simulate individuals’ 
life course and calibrate CHD trends to observed trends in the past. Using the Health Forecasting Community Health 
Simulation Model, we simulate CHD prevalence and CHD mortality in 2 CHD prevention scenarios: (1) “comprehensive 
hypertension intervention” and (2) “gradual reduction of the average adult body mass index back to the year 2000 level.” 
We use microsimulation methodology so that nonprofit hospitals can easily use our model to forecast intervention results in 
their specific hospital catchment area. Our baseline model (without intervention) forecasts an increase in CHD prevalence 
that will reach 13.01% among those 45+ in Los Angeles County in 2030. Under scenario 1, the increase in CHD prevalence is 
slower (12.47% in 2030), and the prevalence in scenario 2 reaches 12.83% in 2030. The baseline scenario projects a number 
of 21 300 CHD deaths in 2030, whereas there will be 20 070 CHD deaths under scenario 1 and 20 970 CHD deaths under 
scenario 2. At the population level, the CHD mortality outcome, as compared with the metric of CHD prevalence, might be 
more sensitive to preventive lifestyle interventions. Both CHD prevalence and CHD mortality might be more sensitive to 
the hypertension intervention than to the obesity reduction in the time horizon of 20 years.
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Introduction

Recent changes in United States federal law and health care 
guidelines have shifted the role of nonprofit hospitals from 
reactive clinical care management to proactive population 
health management for patients and residents living in the 
surrounding community.1 One of the possible desirable con-
sequences of this shift is the reduction of preventable health 
care costs through minimizing the burden of disease and 
improving health equity. Measures outlined in the federal 
Affordable Care Act require nonprofit hospitals to conduct a 
community health needs assessment and design an imple-
mentation plan to improve community health in their catch-
ment area.2 However, strategically identifying effective 
interventions for unique community-level populations and 
quantifying the impact of these program changes are inher-
ently complex, given the interplay of many different factors 
including demographics, health behavior, environment, and 
so forth. For example, a proven intervention among the gen-
eral population might not be effective in certain ethnic 
enclaves due to their unique risk profile, and an intervention 
that successfully slows down the increase in the prevalence 
of certain aging-related diseases might not be viewed as 

“successful” because the counterfactual scenario of a faster 
increase is not observable.

The emphasis on prevention through proactive hospital-
initiated community benefit activities has led to a need for 
local health data, standardization of measurement indicators/
benchmarks, as well as a mechanism or tool to inform prioriti-
zation and resource allocation decisions using evidence-based 
research. Simulation modeling, in particular, can be used here 
to “deal with detail complexity by simulating the life histories 
of individuals, and then estimating the population effect from 
the sum of the individual effects (p 61).”3 Among various sim-
ulation tools, microsimulation-based forecasting is one 
approach to systematically integrate disparate elements into a 
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simulated environment to compare baseline and alternative 
environments. The microsimulation approach is particularly 
suitable for demographically diverse areas like California4 
where heterogeneous groups are at different risk for subopti-
mal lifestyle because the modeler can assign different risk pro-
file for different demographic groups as observed from 
existing data.

In this study, we use a microsimulation model to forecast 
the prevalence of coronary heart disease (CHD) and associ-
ated deaths for nonprofit hospital service planning areas in 
Los Angeles County, and we simulate the impact of CHD 
prevention interventions over a 20-year time horizon to 
inform hospital population management strategies. We 
choose to model CHD prevalence and CHD mortality 
because CHD is the leading cause of death in Los Angeles 
County5 as well as in the United States.6 The advantage of 
our microsimulation approach is its ability to simultaneously 
include various disease risk functions on different subpopu-
lations by aggregating individual life course events, while 
accounting for the effects from each individual’s social 
determinants of health.7 This microsimulation model is a 
variant of our well-validated UCLA Health Forecasting 
Tool.8,9,17

One important feature of our model is its introduction of a 
time dimension into applied health policy simulation. The 
model output provides a detailed view of how changes in 
health unfold over time, year by year, due to duration of 
exposure (eg, the time between exposure to interventions and 
observable outcomes later in the life course) and age-depen-
dent processes. The time horizon in our forecasting model 
enables population health planners to more accurately assess 
their local health status and impact of interventions, which, 
according to our published modeling work on chronic dis-
eases and risk factor modifications,4-6,17 often take decades to 
manifest itself.

Methods

Research Questions

Our research questions are given as follows:

Research Question 1: Which interventions will be effec-
tive in reducing CHD prevalence among people aged 45 
and above in Los Angeles County by 2030?
Research Question 2: Which interventions will be effec-
tive in reducing CHD mortality cases among people aged 
45 and above in Los Angeles County by 2030?

Model Platform

To answer these 2 research questions, we use our Health 
Forecasting Community Health Simulation Model 
(CHeSMo) to project the long-term outcomes of 2 hypotheti-
cal interventions. This model was developed on the platform 

of a C++ superscript (“ModGen”; a tool developed by 
Statistics Canada, Canada’s national statistical agency). 
ModGen is a general simulation platform and has been used 
to generate population models in labor, migration, and public 
health.10-12 Our simulation model follows a systems approach 
that incorporates evidence-based causal mechanisms to link 
individual-level demographic and behavioral factors to 
health outcomes (Figure 1). By simulating the trends in 
chronic health risks and conditions over the life course, we 
use our model to forecast changes in Los Angeles County 
over a 20-year time horizon for the costly yet preventable 
health condition: CHD (Figure 2).

CHeSMo is comprised of 4 main modules:

1.	 Demographic module: We simulate the births, deaths, 
and migration of different ethnic groups to reflect the 
age, gender, and ethnicity breakdown of Los Angeles 
County as well as its past demographic trends. One’s 
risk for CHD at 45 and above could have developed 
during his or her earlier years, and that is why we 

Figure 1.  Components of Health Forecasting Community 
Health Simulation Model.

Figure 2.  Inputs and outputs of the Health Forecasting 
Community Health Simulation Model.



Orenstein and Shi	 3

simulate the individual’s life from birth. We did not 
simulate any intervention for people below 45, but 
we still simulate the entire life course of the individu-
als, expecting to simulate the link between early-life 
interventions and CHD in future studies.

2.	 Risk factor/disease prevalence module: We simulate 
risk factor trends and disease trends in the popula-
tion based upon data from the Los Angeles County 
Health Survey13 and the California Health Interview 
Survey.14

3.	 Forecasting module: We simulate the ethnicity-spe-
cific population growth trends based on projections 
made by California Department of Finance and fore-
cast future health trends based upon the growth pat-
tern observed in the past.

4.	 Intervention module: Evidenced-based health inter-
ventions with their intervention effect estimates were 
drawn from the documented literature.

Input and Output Parameters and Variables

The demographic foundation of the model’s forecasting 
module is based on the California Department of Finance’s 
population projections and methodology.15 We obtained 
demographic and epidemiological parameters from data 
sources, such as the United States Census,16 Los Angeles 
County Health Survey,17 California Health Interview 
Survey,14 and the Behavioral Risk Factor Surveillance 
System,18 as well as published risk factors and effect esti-
mates from existing literature. Table 1 lays out the parame-
ters used in this study and their sources. The output 
parameters are CHD prevalence and CHD mortality in a 
simulated calendar year.

The input variables simulated in this model include hyper-
tension status and the body mass index (BMI) of individuals, 
whereas the output variables in this model are (1) whether an 
individual has been diagnosed as having CHD and (2) 
whether an individual dies of CHD.

Simulation Process

Our baseline population forecasting is based upon California 
Department of Finance’s county-level projections of future 
population trends. We use these parameters to simulate indi-
viduals’ life course from childhood to death and validated 
our simulation approach based upon the fitting to observed 
CHD trends in the past (“backcasting”). Each individual 
“actor” is assigned a gender, race/ethnic, and year of birth 
based upon these variables’ frequency distribution in the Los 
Angeles County population, and then his or her health behav-
ior (eg, the probability of initiating cigarette smoking at a 
certain age) is conditional on these demographic features. 
Details about our simulation flow in CHD modeling have 
been documented in an earlier publication4 and its technical 
working document (http://www.health-forecasting.org/
images/pdf/Technical%20Document%20November%20
14%202008%20-%20Draft.pdf).

States denoting health outcomes (hypertension incidence, 
CHD incidence, CHD mortality, etc) are then updated each 
year for the individual, based upon the individual’s health 
behavior and demographic characteristics in a specific year. In 
this study, hypertension status of an individual is modeled both 
as a function of health behaviors (including age, gender, race/
ethnicity, obesity status, and physical activity) and a determi-
nant of CHD incidence and mortality. CHD incidence and mor-
tality are modeled as functions of age, gender, race/ethnicity, 
obesity status, physical activity, and hypertension status.

The aggregated outcome of all simulated individuals then 
constitutes the population-level health outcomes such as life 
expectancy and disease prevalence. The CHD model uses 
continuous-time modeling to simplify the simulation of mul-
tiple processes with myriad events, because in a discrete-
time model this large number of events would result in an 
explosion of all possible state transitions and render the cali-
bration work difficult.19

For the intervention module, we model 2 intervention sce-
narios that had been identified by our partner hospitals and the 
Community Preventive Services Task Force recommendations 
(“the Community Guide”).20 The scenarios are as follows:

1.	 “Comprehensive hypertension intervention among 
hypertensive and prehypertensive adults”: A hypo-
thetical intervention was modeled after the “Dietary 
Approaches to Stop Hypertension” (DASH) inter-
vention, whereby we assume that hypertensive par-
ticipants receiving the intervention will have 30% 
probability of becoming prehypertensive and those 
prehypertensive participants receiving the interven-
tion will have 15% probability of becoming nonhy-
pertensive).21 We choose the DASH intervention 
because a meta-analysis of observational prospective 
studies has shown its prevention benefits against 
CHD incidence.22

Table 1.  Data Sources of Parameters Used in Health Forecasting 
Community Health Simulation Model.

Data source Parameters

United States Census Demographic makeup of 
birth cohorts

Los Angeles County Health 
Survey

Disease prevalence 
(hypertension and 
coronary heart disease)

California Health Interview 
Survey (the Los Angeles 
County subsample)

Health behavior and health 
conditions

The Compressed Mortality File 
1997-Current

All-cause mortality and 
disease-specific mortality 
statistics by year
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Figure 4.  Difference in number of coronary heart disease deaths between baseline scenario and intervention scenarios in Los Angeles 
County (2010-2030).
Note. BMI = body mass index.

2.	 “Gradual reduction of the average adult BMI back to 
the year 2000 level”:23 an intervention goal that aims 
at the risk factor of obesity instead of hypertension. 
This is a simulation scenario we have implemented in 
modeling the CHD trends in California4 when explor-
ing the prevention potential of a state-wide BMI 
decrease on CHD outcomes.

For each scenario, 10 million repetitions were run to gener-
ate the aggregate output parameters of CHD prevalence and 
mortality in every simulated calendar. We then provide an 
online interface for our partner hospitals where they can assess 
the long-term effectiveness of these interventions on CHD inci-
dence, prevalence, and mortality within their catchment area, 
as a subset of the model outputs for the Los Angeles County.

Results

Our model forecasts that by 2030, the CHD prevalence among 
adults aged 45 and older in Los Angeles County will reach 
13.01% (95% confidence interval = [12.81%, 13.21%]; the 
baseline scenario where no population-wide prevention 

is simulated). The prevalence in 2030 will be 12.47% (95% 
confidence interval = [12.27%, 12.67%]) under the “compre-
hensive hypertension intervention” scenario and 12.83% (95% 
confidence interval = [12.63%, 13.03%]) under the “adult 
BMI decrease to the year 2000 level” scenario. Figure 3 graphs 
the difference in CHD prevalent cases between the baseline 
scenario and the 2 prevention intervention scenarios in Los 
Angeles County among the population aged 45 and above.

For the CHD mortality outcome, the baseline scenario 
projects a total number of 21 300 CHD deaths in 2030, and in 
2030, there will be 20 070 CHD deaths under the “compre-
hensive hypertension intervention” scenario and 20 970 
CHD deaths under the “adult BMI decrease to the year 2000 
level” scenario. Figure 4 illustrates the temporal pattern of 
these CHD mortality reductions.

Discussion

As noted by one of our earlier publications,17 a common pat-
tern in long-term effectiveness of these prevention programs 
is that the prevalence level of chronic diseases does not 
decrease immediately after the intervention. One important 

Figure 3.  Difference in CHD prevalent cases between baseline scenario and intervention scenarios in Los Angeles County among the 
population aged 45 and older (2010-2030).
Note. CHD = coronary heart disease; BMI = body mass index.
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reason why the prevalence does not quickly decrease is that 
major lifestyle-based prevention interventions usually func-
tion as a “treatment” for those who have already developed 
this chronic disease, thereby increasing their survival time 
living with that disease. Longer survival with a certain 
chronic disease, everything else being equal, means a higher 
prevalence level of the particular disease as fewer patients 
“exit” the pool of patients living with that disease.

Reducing obesity or hypertension among people in the 
hospital’s catchment area has this de facto impact of making 
those CHD patients live longer, and this mechanism might 
have offset the impact of CHD incidence reduction in terms 
of decreasing CHD prevalence. In this case, measuring CHD 
mortality as an outcome might better reflect the benefit of 
these lifestyle interventions in the community because it cap-
tures both the benefit in primary prevention (keeping people 
from developing CHD) and the benefit in secondary preven-
tion (improving the survival of CHD patients). In this sense, 
our study could inform hospitals in picking good metrics in 
measuring their intervention outcomes in their community.

In both CHD prevalence and CHD mortality, the scenario 
of “comprehensive hypertension intervention” compares 
favorably with the BMI reduction scenario, even if the goal of 
decreasing average BMI back to the 2000 level is an ambitious 
goal in obesity prevention. This “advantage” of hypertension 
intervention in terms of CHD prevention is not surprising as 
hypertension is already a cardiovascular condition while the 
body weight status is still a lifestyle-related risk factor. Even 
though obesity reduction itself could prevent hypertension and 
its associated harms, it could take longer for this kind of ben-
efit to show up in outcomes related with CHD,24 whereas 
decreasing blood pressure could deliver a more immediate 
benefit in reducing deaths from cardiovascular causes.25 Our 
study results, however, should not discourage any obesity 
intervention among the adult population, because our results 
only show that at the population level a comprehensive hyper-
tension intervention might reduce the CHD burden faster than 
an obesity reduction program does.

Combined with graphic illustrations and training semi-
nars for our partnering hospitals, microsimulating health out-
comes for individual life courses to generate population-level 
health forecasts has the potential of providing nonprofit hos-
pitals with a forward-looking time dimension to effectively 
anticipate, prepare, and plan for healthier communities. As 
an early attempt to assist nonprofit hospitals strategize their 
community intervention, we used localized demographic 
data and a population microsimulation model to compare the 
long-term effectiveness of various CHD prevention pro-
grams. Hospitals can use our simulated results to optimize 
the impact of intervention investments by identifying high-
risk subpopulations and projecting the long-term effective-
ness of interventions within their service planning areas. We 
look to evaluate the user feedback from our partnering hospi-
tals, before expanding our efforts to nonprofit hospitals 
beyond the Los Angeles County.

The systems approach to population health management 
is a nascent field. Although microsimulation modeling has 
been used extensively in engineering,26 economics,27 and 
other fields,28,29 its use in health services research is not yet 
very common and has been limited primarily to epidemio-
logical studies,30,31 not community-based prevention 
research. We expect that the resultant knowledge from our 
simulation will facilitate hospitals’ optimization of their 
community service programs, that is, to produce maximum 
health benefit for the community within their resource con-
straints. By better understanding these time-dependent 
effects at both the individual and population level, expecta-
tions of community service programs can be more realistic 
and can be fine-tuned to particular subpopulations where 
needs and potential impact are highest.

Our microsimulation approach is limited in that it does 
not incorporate the agent interaction between individuals in a 
society. In other words, in DASH intervention among hyper-
tensive and prehypertensive patients, their behavioral change 
after the intervention could have spillover peer influence on 
the dietary behavior of those who are still normotensive (nei-
ther hypertensive nor prehypertensive) and thus lowers the 
transition probability from normotension to prehypertension. 
Moreover, patients in the United States change insurance or 
move out of the catchment area, which complicates plans to 
reap the benefits of investments in prevention years later. 
Agent-based modeling captures these kinds of peer influ-
ence32,33 and patient-hospital interaction34 and thus needs to 
be used for future modeling of cardiovascular outcomes at 
the population level.

It remains uncertain whether these primordial preventions 
can be delivered by nonprofit hospitals with the effect sizes 
we draw from the randomized controlled trial of DASH, 
which is an assumption our study has made. Further evidence 
from the DASH implementation under different contexts 
will be helpful in informing future simulations involving the 
DASH intervention. However, by focusing solely on the 
CHD outcomes, we might also have underestimated  
the potential of these simulated interventions, because both 
obesity reduction and DASH could prevent other chronic 
diseases such as stroke22 and diabetes.35

Finally, we are aware that the use of microsimulation 
raises concerns related to lack of transparency and efficiency 
compared with cohort simulation.36 However, we chose to 
use microsimulation given its capability in handling many 
variables simultaneously (from risk factors of hypertension 
to different disease states of hypertension and CHD). 
Moreover, one very important feature of microsimulation is 
that for the same intervention, it can show potentially differ-
ent levels of influence among different racial–ethnic groups, 
making it an important advantage in planning to reduce 
health disparities.37 A key strength of our model is its ability 
to account for epidemiologic dynamics (eg, prevalence-
affecting incidence) and demographic changes, as shown in 
our simulation of diabetes trends in California.17 Our 
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simulation in this study has not yet explored the potentially 
differential patterns among different demographic groups, 
which will be the focus of our future efforts in model 
development.
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