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Abstract: Polydopamine is a versatile and modifiable polymer, known for its excellent biocompatibility and adhesiveness. It can also 
be engineered into a variety of nanoparticles and biomaterials for drug delivery, functional modification, making it an excellent choice 
to enhance the prevention and treatment of orthopedic diseases. Currently, the application of polydopamine biomaterials in orthopedic 
disease prevention and treatment is in its early stages, despite some initial achievements. This article aims to review these applications 
to encourage further development of polydopamine for orthopedic therapeutic needs. We detail the properties of polydopamine and its 
biomaterial types, highlighting its superior performance in functional modification on nanoparticles and materials. Additionally, we 
also explore the challenges and future prospects in developing optimal polydopamine biomaterials for clinical use in orthopedic 
disease prevention and treatment. 
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Introduction
Polydopamine (PDA), a polymer synthesized from dopamine monomers, is a key component found in human melanin. It 
has demonstrated that PDA exhibits exceptional adhesiveness, numerous covalently modifiable functional groups, 
significant near-infrared (NIR) absorption capacity,1 and favorable biodegradability. Due to these advantages, PDA is 
commonly used for surface modification of materials, attracting interest from the scientific community. PDA has been 
thoroughly investigated across a spectrum of biomedical fields, including cell culture, drug delivery, biomaterial coatings, 
biomedical imaging, tissue engineering, and biosensing applications.2,3 PDA has emerged as a versatile biomaterial with 
immense potential in orthopedic therapeutics. Studies have demonstrated that PDA nanoparticles exhibit effective 
performance in the delivery and sustained release of anti-osteoarthritis (OA) drugs. Additionally, applying PDA 
nanoparticle coatings to biomaterial surfaces enhances their adhesiveness and antibacterial properties,4 while PDA’s 
antioxidative properties provide protection to biomaterials within tissues. Research on bone reconstruction and osteo-
genic differentiation has shown that PDA nanoparticles are capable of downregulating pro-inflammatory factors in 
chondrocytes, creating a favorable microenvironment, regulating cell behavior, and promoting the vitality, adhesion, 
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migration, and osteogenic differentiation of mesenchymal stem cells (MSCs).5 Polydopamine-based biomaterials, despite 
being at a rapid development stage, offer promising avenues for the prevention and treatment of orthopedic diseases. This 
review aims to comprehensively explore the current state of polydopamine-based orthopedic therapeutics, highlighting its 
properties, applications, achievements, challenges, and future directions.

Synthesis and Properties of Polydopamine: Methods and Applications
PDA forms from dopamine (DA) under alkaline conditions through oxidation, cyclization, and rearrangement to form 
indolequinone, followed by further reactions with DA molecules,6 as illustrated in Figure 1. The polymerization of PDA 
is typically achieved through three methods, including solution oxidation, enzyme oxidation, or electro-polymerization.7 

Among these methods, solution oxidation remains the most widely used due to its simplicity. Although this method 
functions under mild conditions and does not necessitate complex equipment, it exhibits sensitivity to various factors, 
including DA concentration,8 oxidant content, temperature, pH, and stirring speed. PDA is usually polymerized at room 
temperature (20–25°C). Although higher temperatures, up to 60°C, can accelerate dopamine polymerization, they may 
also lead to non-specific aggregation.9 Oxygen plays a vital role and is sufficient for PDA polymerization. The addition 
of ozone accelerates the dopamine polymerization process within the pH range of 4.0 to 10.0 and extends the temperature 
range, allowing polymerization even at low temperatures, such as 5°C.10 The optimal pH range for dopamine (DA) 
polymerization is between 8.5 and 9.5. Previous study revealed that DA molecules first undergo a pH-induced auto- 
oxidation reaction to form dopamine quinone (DAQ).11 DAQ molecules then crosslink through the formation of biphenyl 
bonds, leading to the formation of polycatecholamine intermediates, which further grow into the PDA film. During the 
polymerization of PDA, π-π interactions and hydrogen bonding play crucial roles. Dopamine (DA) oxidizes to quinone, 
which can cyclize into 5,6-dihydroxyindole (DHI). These three monomers can coexist in solution, each contributing to 
stacking and polymerization. Between monomer layers, π-π stacking and hydrogen bonding occur, while covalent bonds 
form between monomers at multiple sites.11 Monomers bond through benzene rings to form lengthy polymer backbone 
chains, with the PDA backbone containing multiple types of constructing monomers. Indole groups may crosslink, 
lengthening the side chain or stretching the backbone. Studies show that two cross-plane dopamine monomers physically 
interact during polymerization, clasping one DHI and generating a physical trimer.12,13 DA forms hydrogen bonds with 
molecules and other functional groups, contributing to its high adhesion strength to both organic and inorganic 
surfaces.14–16 In conclusion, π-π interactions and hydrogen bonding are fundamental to the properties and applications 
of PDA materials, significantly influencing their structural integrity and adhesion capabilities.

On the other hand, the laccase-catalyzed method is suitable for alkaline-sensitive materials, as it allows PDA 
polymerization to be completed at a pH of 5.517 Usually, the polymerization reaction can take several hours or even 
a day.18 During the polymerization process, dopamine molecules gradually polymerize and deposit on surfaces or form 
nanoparticles. Ultrasound can increase the deposition rate of PDA coatings as polymer films.19 Additionally, adding a Fe 
catalyst can accelerate PDA polymerization at pH 7.0 and even facilitate it at lower pH levels down to 4.0.20 Typically, 
the rate of PDA polymerization of this method is notably slow, and the resulting PDA often settles at the bottom of the 
container, posing challenges for researchers. Enzyme oxidation, while more complex than solution oxidation, is 
considered relatively environmentally friendly and typically involves enzymes such as tyrosinase, polyphenol oxidase 
(also known as laccase), and urase.21 Electro-polymerization can produce PDA more rapidly than solution/enzyme 

Figure 1 The Self-Polymerization Process of Polydopamine.
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oxidation and avoids employing environmentally unfriendly chemical oxidants. This method can be readily applied to 
various metal substrates, rendering PDA suitable for surface modification of metal implants.22 Structurally, PDA 
resembles the adhesive proteins secreted by invertebrate mussels (3, 4-dihydroxyphenylalanine). It is broadly recognized 
that multiple functional groups in PDA, comprising catechol groups, amino groups, carboxyl groups, indole units, and 
quinone functionalities, play a key role in its multifunctionality, resembling the adhesive properties of mussels. The 
abundance of primary and secondary amines and ortho-quinones in PDA’s structure is instrumental in its strong adhesion, 
enabling it to adhere to nearly any material surface. The thickness and stability of the PDA adhesive film depend on the 
concentration of monomeric dopamine during self-polymerization. Prior research indicated that the elongation of the 
alkyl chain connecting the ortho-quinone and amine groups in PDA does not impact its adhesion strength.23 Primary 
amines of PDA can be readily covalently modified, its excellent modifiability allows for tailored designs to suit specific 
therapeutic needs. Consequently, PDA represents an ideal adhesive material capable of modifying nearly all material 
surfaces and offers biocompatibility, presenting significant safety advantages.

Polydopamine Biomaterials: Properties and Types
PDA is derived from the polymerization of dopamine (DA), a critical neurotransmitter exist in the human body. DA plays 
a significant role in motor control, emotion regulation, endocrine regulation, cognitive function, and reward pathways. 
Consequently, polydopamine (PDA) degrades into DA, which contributes to its excellent biocompatibility and low 
cytotoxicity. Furthermore, PDA does not provoke significant immune responses, making it ideal for implant fabrication 
and drug delivery systems. Inspired by the adhesive proteins found in mussels, PDA exhibits strong adhesive properties. 
It contains a high density of primary amines, secondary amines, and catechol groups, which allow it to adhere to nearly 
any material surface. This versatility makes PDA suitable for coating a wide variety of substrates. PDA contains 
numerous functional groups that facilitate chemical modifications. This allows for the easy conjugation of various 
molecules, including drugs, proteins, and other biomolecules, enabling PDA to serve as a versatile platform for targeted 
drug delivery and other therapeutic applications. PDA’s unique molecular structure and specific functional groups enable 
it to absorb light and convert it into heat, imparting special photothermal properties. The catechol groups in PDA contain 
aromatic rings with hydroxyl groups that can absorb light, particularly in the near-infrared (NIR) region. When exposed 
to NIR light, these groups undergo electronic transitions, generating heat. The π-conjugated system within the PDA 
polymer further enhances light absorption across a wide range of wavelengths, including the NIR region, allowing for 
efficient conversion of absorbed light into thermal energy. This makes PDA suitable for photothermal therapy 
applications.24–26 Polydopamine can be engineered into various biomaterial forms, including nanospheres, nanocapsules, 
nanofilms, and nanocomposites. Some representative electron microscope images of the PDA biomaterials are shown in 
Figure 2, including PDA porous particles, PDA/Cu2O coating, Ag/TiO2/PDA-bamboo, and PU-PDA, among others. 
These forms offer distinct advantages in terms of drug loading and release kinetics, providing precise control over 
therapeutic interventions. PDA has been successfully applied in coating or modifying various nanostructures, enhancing 
their specific surface areas and increasing the surface available for cell and biomolecular interactions. Based on existing 
studies, PDA nanostructures can be classified into several categories, as illustrated in Figure 3. These include: (1) organic 
PDA nanoparticles formed by self-oxidation and polymerization in alkaline solutions without templates; (2) hollow PDA 
nanoparticles, nanocapsules, nanotubes (NTs), and nanorods, which result from deposition on movable templates; and (3) 
PDA nanoparticles co-assembled with other biologically active components, such as PDA core/shell nanoparticles and 
PDA nanofilms that adhere to the surface of other nanostructures.25,27,28 During the preparation and application of PDA 
nanoparticles (PDA NPs), an increase in the pH of the alkali solution may reduce the diameter of the nanoparticles.29

Application of Polydopamine Biomaterials in Orthopedic Disease Prevention and 
Treatment
Currently, extensive research has led to the development of various organic and inorganic nano-drug delivery systems, 
including silica nanoparticles, titanium nanotubes, gold nanoparticles, calcium phosphate nanoparticles, chitosan nano-
particles, liposomal nanoparticles, and polymer nanoparticles, along with micelles, and dendritic macromolecules, aimed 
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at treating bone diseases. However, these systems encounter limitations such as low loading capacity, limited physiolo-
gical compatibility, degradability, and the propensity for rapid drug release by the systems. In recent years, numerous 
investigations have incorporated PDA as a composite component in biomaterials/drug delivery vehicles to augment drug 
loading capacities, bolster the trapping efficiency of cells in vivo, and address pathogen resistance. PDA-modified 
biomaterials have developed into various forms of applications, including nanotubes, nanospheres, and nanofilms, etc. 
(Table 1). Within the realm of orthopedic disease management, PDA-modified biomaterials are gradually becoming 
a major focus of research and application due to their multifunctionality and biocompatibility. The involvement of PDA 
can significantly enhance the anti-inflammatory, antibacterial, and antioxidant capabilities of orthopedic treatment 
strategies, and they notably improve the effectiveness of these strategies in promoting osteogenic differentiation and 
enhancing the activity of bone cells (Figure 4). The research and application of PDA span a diverse array of conditions, 
including bone injury repair,40 bone regeneration,41 osteoporosis,42 and osteoarthritis.43 Irrespective of the type of 
orthopedic condition, the onset age for bone diseases is increasingly younger,44–46 with a concurrently diversifying 
patient demographic. The development of innovative drug systems utilizing PDA is poised to significantly enhance 
personalized treatment approaches for orthopedic diseases due to their high loading capacity and controlled release 
mechanisms. In the application of PDA coatings on implants for bone injury repair, the self-healing property is crucial. 
PDA holds significant promise in the field of self-healing materials due to its exceptional adhesion and intrinsic chemical 
structure, which enables the automatic formation of new cross-links. PDA can be combined with polymer matrices to 
create self-healing polymer materials used in various applications, such as electronic equipment and automotive parts. 
For instance, PDA particles and hindered urea bonds can be utilized as functional nanofillers and dynamic motifs, 
respectively, to produce dynamic cross-linked polyurea/PDA(DCPU/PDA) nanocomposites via facile in situ 

Figure 2 Overview of different SEM structures of polydopamine materials. (a) SEM images of the PDA porous particles. Adapted from Mei S, Kochovski Z, Roa R, et al. 
Enhanced catalytic activity of Gold@Polydopamine nanoreactors with multi-compartment structure under NIR irradiation. Nanomicro Lett. 2019;11(1):83. Creative 
Commons.30 (b) SEM images of the PDA@SiO2. Adapted from Khan MZH, Daizy M, Tarafder C, Liu X. Au-PDA@SiO(2) core-shell nanospheres decorated rGO modified 
electrode for electrochemical sensing of cefotaxime. Sci Rep. 2019;9(1):19041. Creative Commons.31 (c) SEM images of cotton/pDA/MnO2. Adapted with permission from 
Zhang Y, Zhao Z, Li D, et al. In situ growth of MnO2 on pDA-templated cotton fabric for degradation of formaldehyde. Cellulose. 2022;29(13):7353–7363.32 (d) SEM images 
of the PDA/Cu2O coating. Adapted from Behzadinasab S, Williams MD, Hosseini M, et al. Transparent and sprayable surface coatings that kill drug-resistant bacteria within 
minutes and inactivate SARS-CoV-2 virus. ACS Appl Mater Interfaces. 2021;13(46):54706–54714. Copyright © 2021 American Chemical Society.33 (e) SEM images of the 
non-woven polydopamine (NW@PDA) fabrics. Adapted from Zhang Z, Si T, Liu J, Zhou G. In-situ grown silver nanoparticles on nonwoven fabrics based on mussel-inspired 
polydopamine for highly sensitive SERS carbaryl pesticides detection. Nanomaterials. 2019;9(3). Creative Commons.34 (f) SEM images of the Ag/TiO2/PDA-bamboo surface. 
Adapted from Liu G, Lu Z, Zhu X, et al. Facile in-situ growth of Ag/TiO(2) nanoparticles on polydopamine modified bamboo with excellent mildew-proofing. Sci Rep. 2019;9 
(1):16496. Creative Commons.35 (g) SPS-MS with PDA-PPy coatings. Adapted from Xie C, Li P, Han L, et al. Electroresponsive and cell-affinitive polydopamine/polypyrrole 
composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Materials. 2017;9(3):e358–e358. Creative 
Commons.36 (h) TEM images of MSN@PDA. Adapted from Tran HQ, Bhave M, Xu G, Sun C, Yu A. Synthesis of polydopamine hollow capsules via a polydopamine mediated 
silica water dissolution process and its application for enzyme encapsulation. Front Chem. 2019;7:468. Creative Commons.37 (i) SEM images of C-PDA coated carbon fiber 
reinforced high-temperature composite. Adapted from Liu Y, Su C, Zu Y, Chen X, Sha J, Dai J. Ultrafast deposition of polydopamine for high-performance fiber-reinforced 
high-temperature ceramic composites. Sci Rep. 2022;12(1):20489. Creative Commons.38 (j) SEM images of the PU-PDA. Adapted from Wang P, Zhang Y-L, K-L F, et al. Zinc- 
coordinated polydopamine surface with a nanostructure and superhydrophilicity for antibiofouling and antibacterial applications. 10.1039/D2MA00482H. Mater Adv. 2022;3 
(13):5476–5487. Creative Commons.39
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photoinitiated copolymerization.47 These nanocomposites exhibit higher toughness and stretchability compared to pure 
DCPU. They self-heal rapidly and effectively in response to near-infrared light. Traditional thermo-responsive self- 
healing elastomers face challenges, including long repair times and limited self-healing sites. To address these issues, fast 
NIR light photo-responsive self-healing nanocomposites were fabricated by blending PDA particles into cross-linked 
polyurea containing sextuple H-bonds (SHBs) and hindered urea bonds (HUBs).48 These composites show enhanced 

Table 1 Advantages of Different Polydopamine-Based Applications for Orthopedic Diseases

Types Advantages

PDA nanosphere shell Characteristics of High-Loading, Sustained-Release Drug Carriers

PDA nanocapsules The thickness of the material is controllable, enabling regulated drug release. Upon conjugation with branched 
chains, the system acquires enhanced bone-targeting capabilities, alongside notable antibacterial and antioxidant 

properties

PDA carbon/titanium 
nanotubes/nanorods

Regulates cell behavior to enhance osteogenic activity, thereby promoting the viability, adhesion, migration, and 
osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro

PDA nanohydrogel Enhances the mechanical properties, antibacterial activity, tissue adhesion, and osteogenic differentiation 

capabilities of hydrogels
PDA nanofilm coating The microenvironment enhances MSCs’ adhesion, proliferation, and osteogenesis, while concurrently 

downregulating pro-inflammatory cytokines in chondrocytes

Figure 3 Classification of Polydopamine Nanoparticles. The diagram categorizes the various forms of polydopamine nanoparticles, including: organic PDA nanoparticles, 
PDA nanocapsules, PDA nanotubes, PDA core/shell nanoparticles and PDA nanofilms.
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mechanical properties and rapid photoresponsive self-healing capabilities due to the extensive H-bonds between PDA 
and polyurea fragments. In orthopedic applications, self-healing coating can alleviate corrosion, excessive degradation, 
and accidental scratching of metal-based implants. A previous study demonstrated the construction of a self-healing 
polymeric coating on Mg alloy, incorporating a stimuli-responsive drug delivery nanoplatform via spin-spray layer-by- 
layer (SSLbL) assembly. This nanocontainer system, based on simvastatin (SIM)-encapsulated hollow mesoporous silica 
nanoparticles (S@HMSs) modified with PDA and polycaprolactone diacrylate (PCL-DA) bilayer,49 exhibited dynamic 
reversible reactions, fast and stable self-healing capacity, and excellent antibacterial properties under NIR irradiation. 
Additionally, it promoted cytocompatibility, osteogenesis, and angiogenesis. Collectively, PDA-based materials exhibit 
significant potential as self-healing materials and can play crucial roles across various fields. With technological 
advancements and increasing application demands, the prospects for PDA-based self-healing materials will continue to 
expand and deepen.

Polydopamine Core/Shell Drug Delivery Systems for Bone Disease Treatment
PDA can encapsulate a diverse range of drugs, enabling therapeutic efficacy at lower doses and minimizing side effects. 
The PDA spherical shell exhibits a porous structure, extensive specific surface area, and compact volume. Its inter-
connected pore architecture not only mimics bone composition but also aligns with the microscopic size and shape 
requisites for bone repair. Recent study demonstrated the Chitosan/Polydopamine/Octacalcium Phosphate (CS/PDA/ 
OCP) microcarrier, which combines porous chitosan for cell adhesion and proliferation with octacalcium phosphate to 
mimic natural bone components.24 Enhanced with PDA for superior adhesion, this microcarrier facilitates the formation 
of microstructures conducive to bone repair, establishing a three-dimensional microenvironment aimed at precisely 
repairing irregular bone defects. The PDA shell surface offers numerous active sites for additional modification,50 This 
affects the mechanical properties, stability, and even optical properties of the material. In PDA-NPs, π-π interactions 
contribute to the formation of hierarchical structures and affect the ability of the material to adhere to various surfaces.51 

Thus this π interaction anchors the peptide or protein to the nanoparticle.52 Zhang et al encapsulates the NO precursor N, 
N’-disec-butyl-N,N’- dinitroso-1, 4- phenylenediamine (BNN6) within a β-CD hydrophobic cavity on PDA-coated BG 
NPs.53 This setup is designed to enable NIR-triggered NO release, promoting antibacterial effects and osteogenic 
differentiation of MSCs. PDA-coated inorganic nanoparticles, including gold nanoparticles, magnetic iron oxide, and 
non-metallic nanoparticles, can be tailored for sustained and controlled release by incorporating active ingredients. PDA 
itself is not a therapeutic agent but must be conjugated with drugs, photosensitizers, metals, or metallic nanoparticles to 

Figure 4 Application Spectrum of Polydopamine (PDA) in Orthopedic Disease Management: Material-Specific Utilizations and Therapeutic Directions.
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enhance their functionality. The combination of PDA with metallic nanoparticles, such as gold, platinum, silver, iron 
oxide, and zinc oxide, synergizes cancer treatment and imaging of cancer cells, which are valued for their magnetic 
properties, chemical stability, tunable morphology, and ease of surface functionalization.54 The functional groups on 
PDA’s surface (catechol, carboxylic, amine, and imine) enable the binding of specific molecules or the loading of 
transition metal ions. For example, iron oxide nanoparticles can serve as contrast agents in magnetic resonance imaging 
(MRI), while zinc oxide enhances cancer cell killing, and gold nanoparticles improve cancer cell death.54–57 Numerous 
in vitro studies have demonstrated that iron oxide nanoparticles promote osteoblast differentiation and inhibit osteoclast 
formation, while in vivo studies show that they accelerate bone defect repair and prevent bone loss.55 For instance, 
previous studies reported that iron oxide nanoparticles coated with a PDA film acquire superior biocompatibility and 
multifunctionality.56 A magnetic iron oxide/polydopamine coating significantly improves osteogenesis in 3D-printed 
porous titanium scaffolds under a static magnetic field.57 Moreover, PDA combined with iron oxide nanoparticles can 
provide precise targeting to specific areas under the influence of a magnetic field. Researchers used Fe3O4@PDA to label 
MSCs, guiding them to pain-related response sites in spinal cord segments under magnetic control, thereby enhancing 
MSC homing and gathering for effective repair.58 Most applications of PDA-coated iron-oxide NPs focus on cancer 
treatment, also for bone tumor diseases. For instance, to improve the efficacy of cisplatin in treating cisplatin-insensitive 
osteosarcoma, a study reported using iron-polydopamine coated multifunctional nanoparticles (SiO2@PDA/Fe3+-FA).59 

These PDA-modified NPs have demonstrated high drug delivery efficiency, precise pH-responsive drug release, good 
biocompatibility, effective tumor targeting, and satisfactory photothermal efficiency, making them an effective tool for 
synergistic therapy in combination with NIR irradiation for drug-resistant tumors.

On the other hand, near-infrared (NIR) light-triggered shape memory materials show significant potential in 
biomedical applications compared to traditional heat-triggered shape memory polymers. For instance, a study reported 
the synthesis of polycaprolactone (PCL)–PDA polyurethanes using PCL, PDA nanoparticles (PDA NPs), hexamethylene 
diisocyanate (HDI), and 1,4-butanediol (BDO). These polyurethanes exhibited rapid shape recovery under NIR light due 
to the photothermal effect of PDA. The PCL–PDA polyurethanes demonstrated excellent in vivo NIR light-triggered 
shape memory performance under an 808 nm laser with low intensity, highlighting their potential for biomedical implant 
applications.60 Another study reported the preparation of HNTs@PDA through in-situ free radical polymerization of 
acrylamide in a mixture of Laponite-RD, HNTs@PDA, and gelatin. HNTs@PDA, synthesized via oxidative polymer-
ization of DA on the surfaces of HNTs, served as a superior photothermal agent for light-responsive hydrogels. The NIR- 
triggered shape recovery process of the HNTs@PDA hydrogel was notably rapid. These reinforced hydrogels, with 
superior mechanical properties, NIR-triggered shape memory, and self-healing ability, exhibit promising applications in 
biomedical materials.61 Smart self-healing coatings have also garnered significant interest due to their switchable and 
desirable functionalities in response to external environmental changes. An eco-friendly smart self-healing coating with 
NIR and pH dual-responsive superhydrophobic and anti-biofouling properties was fabricated by mixing biomimetic 
stimuli-responsive mesoporous PDA microspheres (polydimethylsiloxane-loaded mesoporous polydopamine micro-
spheres, abbreviated as P-PDMS@MPDA MSPs) with waterborne resin and hydrophobic nanoparticles.62 This coating 
demonstrated self-healing of its superhydrophobicity and active anti-biofouling properties under NIR or pH stimuli due 
to the release of low-surface-energy PDMS from the P-PDMS@MPDA MSPs, showing excellent self-healing and 
biological properties. By adjusting the NIR light intensity, PDA microspheres can achieve precise temperature control 
of shape memory materials, enabling the material to undergo shape changes within the desired temperature range.63,64 

Not only the toughness and strength of PDA particle-filled polyurethane composites (SMPU-PDAPs) have been 
significantly improved with the addition of PDAPs.65 The tensile stress of damaged nanocomposites can also be 
recovered using the heat energy generated by near-infrared lasers.66 This capability holds significant promise for 
biomedical applications necessitating precise manipulation, such as minimally invasive surgical instruments and implan-
table medical devices. For instance, strontium ions, which promote osteogenesis and angiogenesis, are stably incorpo-
rated into PDA microspheres due to PDA’s coordination reaction,40 optimizing the osteogenic potential of strontium ions 
while mitigating the adverse effects of high concentrations. Xiong Wei et al introduced a composite microsphere that can 
release both the antibacterial agent berberine (BBR) and the bone-strengthening drug naringin (NG), utilizing the simple 
synthesis of PDA coatings.41 This microsphere demonstrates excellent biocompatibility and degradability, making it 
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a promising option for treating bone defects at infected sites. Additionally, Leveraging the photothermal conversion 
capabilities of PDA particles and the concurrent release of adjuvants from mesoporous silica shells, researchers have 
developed PDA (core)-mesoporous silica (shell) nanocapsules aimed at tumor photothermal therapy.67 PDA serves as 
a biodegradable photothermal agent with excellent biocompatibility, playing a key role in anti-tumor activity. PDA is 
renowned for its exceptional near-infrared (NIR) absorption properties, which are crucial for biomedical applications 
involving irradiation-sensitive materials. Here are the fundamental reasons for its effectiveness. PDA possesses a high 
concentration of aromatic rings, creating an extensive π-π conjugated system. This conjugation enables the material to 
absorb light energy across a broad wavelength range, including the NIR region.11 The π-π system facilitates electron 
delocalization within the molecule, resulting in more efficient light absorption and energy transfer. PDA is abundant in 
radicals and semiquinone structures, which exhibit strong NIR absorption. These structures provide additional energy 
levels and electron transition pathways, significantly enhancing PDA’s NIR absorption capabilities. The high degree of 
polymerization and tight molecular packing in PDA amplify intermolecular interactions. This packing not only supports 
efficient light absorption and conduction, but also enhances the material’s stability and thermodynamic properties, 
thereby improving NIR absorption efficiency. The electronic structure of PDA can be optimized by adjusting synthesis 
conditions such as pH, temperature, and reaction time. For instance, doping PDA with metal ions or other functional 
groups can modify its electronic energy levels and optical properties, optimizing NIR absorption.68 Conjugated π- 
electronic systems in PDA molecule-coated gold nanoparticles exemplify how such modifications can effectively 
enhance NIR light absorption.

PDA is highly multifunctional and tunable. Chemical modifications can introduce various functional groups, altering 
its optical properties. This tunability ensures that PDA performs exceptionally well in diverse NIR applications. As 
a biomimetic material, PDA offers excellent biocompatibility and environmental friendliness. Its safety and effectiveness 
in NIR absorption make PDA an ideal choice for biomedical applications involving irradiation-sensitive materials.

PDA Nanocapsules
PDA-based nanocapsules represent a prevalent form of drug delivery system. Previous report demonstrated PDA 
nanocapsules exhibit a high loading capacity, leveraging curcumin (CCM) and monoconcosaccharide interactions to 
create supramolecular structures. Upon modification with polydopamine and incorporation of drugs similar in polarity to 
CCM, the capsules maintain integrity while facilitating the formation of dual-drug nanoparticles for bidirectional drug 
delivery.69 The capsule’s drug release rate can be precisely adjusted through the manipulation of PDA thickness, enabling 
controlled drug delivery. This feature is particularly useful for administering anti-inflammatory agents like curcumin in 
the treatment of osteoarthritis.70 Furthermore, the synthesis of PDA nanocapsules were through ammonia- induced PDA 
polymerization for coating silica mesoporous nanoparticles, as well as the formation of PDA nanocapsules by template 
removal following water dispersion,71 have been effectively employed as nanoparticles in drug delivery. Several studies 
have coated Gd2(CO3)3 cores with PDA to create nanoparticles, to which a cartilage-targeting peptide was modified, and 
hesperetin was incorporated to establish a cartilage-specific functional drug delivery system. Experimental results have 
shown high affinity of this system for cartilage and its potential applications in magnetic resonance imaging (MRI).72 

Research has shown that folic acid (FA) is an effective targeting agent for arthritis. By conjugating FA to PDA, a targeted 
nanodrug delivery system can be developed to target the arthritis site. Utilizing the pH-responsive mechanism, the NH2- 
PEG-FA ligand is synthesized to actively target OA, with size optimization ensuring full utilization of the EPR effect 
instigated by inflammation, thereby facilitating both effective passive accumulation and active targeting in OA 
treatment.73 Yun Wang et al developed a mesopore-based microsphere encapsulating a drug clearance delay system 
(RCGD423@MPDA), employing MPDA) loaded with the small molecule RCGD423 for modulating the inflammatory 
response. This system demonstrates superior drug loading capacity, exhibiting longer drug retention and more stable, 
prolonged drug release compared to traditional poly (lactate-co-glycolic acid).74 In a rat model of osteoarthritis, 
administration of this system proved more effective in inhibiting cartilage damage and proteoglycan loss compared to 
treatments without the drug delivery system, suggesting its potential in mitigating the degenerative changes associated 
with arthritic cartilage. Mesoporous polydopamine nanoparticles are capable of extending the drug release cycle, thereby 
diminishing the need for frequent intra-articular injections. This presents significant benefits compared to the regular 
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administration of short-acting hyaluronic acid. Moreover, the ability to control drug release minimizes adverse drug 
reactions and mitigates the potential for drug resistance.

PDA Nanotubes
Recently, nanotubes formed by PDA coating (PDA@CNTs) have garnered considerable interest. Studies have demon-
strated that PDA coating on carbon nanotubes significantly enhances cytocompatibility.75 These PDA-coated carbon 
nanotubes have shown promise in various applications such as drug delivery, antimicrobial and antioxidant agents, and 
biological drugs.76 Their porous and adjustable interfaces make PDA@CNTs a promising biocomposite with extensive 
biological, diagnostic, and therapeutic potential. For example, the integration of osteogenic growth peptide (OGP) with 
TiO2 nanotubes via PDA has been found to promote cell proliferation and differentiation.77 Moreover, PDA-coated TiO2 

nanotubes-MoS2/PDA-LL-37 demonstrate potent antimicrobial activity and enhance bone regeneration when exposed to 
near-infrared irradiation.78 PDA-modified titanium (Ti) substrates enhance the viability, adhesion, migration, and 
osteogenic differentiation of MSCs.79 Additionally, biofunctionalized TiO2/MoS2/PDA nanotube coatings on Ti implants 
have been developed to stimulate osteogenic activity, notably through the simulation of MC3T3-E1 osteoblasts’ 
differentiation and the upregulation of Runx2.80 Recent clinical studies indicate that the majority of Ti implant failures 
are due to bacterial adhesion. Introducing a PDA bioactive coating on nanotubes can significantly mitigate implant 
infection issues associated with Ti implantation, due to the inherent antibacterial properties of PDA. Furthermore, PDA is 
capable of immobilizing growth factor proteins, for example vascular endothelial growth factor (VEGF),81 a property 
utilized in the PDA coating of TiO/MoS/PDA nanotubes to augment osteoinductivity.82 Strontium nanotubes/PDA 
arginine-glycine-aspartic acid coatings have also been employed on Ti6Al4V materials, significantly enhancing MSC 
adhesion and promoting MSC differentiation, thereby demonstrating outstanding bone-regeneration potential.83 The 
recent proposition of composite artificial periosteum offers an innovative solution to the significant clinical challenge 
posed by periosteal defects.84 Leveraging PDA’s high tissue adhesion properties, the composite artificial periosteum 
features ends cross-linked with a PDA hydrogel layer of carbon nanotubes (CNTs), embodying a design that mimics the 
directional arrangement of periosteal collagen fibers. This construction ensures adequate mechanical strength and the 
desired directional nanotopological surface. Highlighting the potential of PDA nanotubes in orthopedic applications, their 
role in promoting bone regeneration demonstrates promising prospects.

Advancements in PDA Nanoparticles Crosslinked / Integrated with Other Materials
PDA nanoparticles can be cross-linked with acrylamide and additional polymers to fabricate hydrogels,85 PDA nanoparticles 
crosslinked with acrylamide and other polymers leverage the high adhesion properties of polydopamine to enhance mechanical 
properties and biocompatibility. One notable example is the PAM/BA-Ag@PDA hydrogel, created by in situ polymerizing 
acrylamide (AM) with N,N′-bis(acryloyl)cystamine (BA), dynamically crosslinked with silver-modified polydopamine (PDA) 
nanoparticles.86 This multi-functional hydrogel sensor exhibits significantly enhanced tensile and compressive strength, reduced 
hysteresis, improved conductivity, and excellent near-infrared (NIR) light-triggered self-healing abilities compared to traditional 
polyacrylamide (PAM) hydrogels. As a strain sensor, PAM/BA-Ag@PDA hydrogel demonstrates good sensitivity, rapid response 
time, and high stability. Previous studies have reported the fabrication of self-healing and adhesive, electrically conductive, and 
biocompatible PAM nanocomposite hydrogels. These are produced via in situ polymerization of acrylamide in the presence of 
polydopamine-modified carbon nanotubes (PDA@CNTs). Such hydrogels function as flexible strain or pressure sensors, 
effectively detecting human motions, identifying materials and their shapes, and transmitting health information,87,88 This 
strategy was also been extensively explored in the development of conductive hydrogels for biosensors. Additionally, PDA’s 
photothermal effect significantly improves antimicrobial applications. One study demonstrated that PDA’s photothermal proper-
ties can induce heat production to cause bacterial death under near-infrared light radiation. This research involved the uniform 
coating of PDA and polypyrrole (PPy) onto poly(l-lactide) (PLLA) nanofibers via in situ polymerization, resulting in a novel PPy/ 
PDA/PLLA three-layer core-shell structure. The homogeneously coated PPy and PDA layers significantly increased hydro-
philicity, conductivity, and near-infrared photothermal antibacterial properties, while also providing antioxidant capacity and 
reactive oxygen species (ROS) scavenging ability.89 Given their high biosafety, numerous covalent modification sites, and 
superior adhesion, hydrogels derived from cross-linked PDAs are ideally suited for biomedical applications. Hydroxyapatite 
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(HAP), a critical component of human bone, significantly affects cell behavior, including adhesion, proliferation, and differentia-
tion, and is commonly employed in tissue regeneration. However, HAP fragments may trigger inflammation, impeding osteoblast 
growth.26 PDA-modified HAP nanoparticles can surmount the inherent limitations of HAP-based materials in tissue repair. 
Specifically, PDA-mediated incorporation of bioactive peptides or proteins (such as bone morphogenetic protein-2) onto HAP 
nanoparticles has been shown to enhance their biocompatibility and promote osteogenic differentiation.90

Numerous studies have utilized PDA NPs in combination with various active compounds to promote osteogenic 
differentiation,91–95 and exhibit antimicrobial properties.96,97 Additionally, PDA can produce diverse effects in the prevention 
and treatment of orthopedic diseases when combined with other materials. (Table 2). In clinical surgery, researchers have 
developed a multifunctional material, Ti-PDA@SNP-OGP, to address the antimicrobial deficiencies of titanium implants.94 

This composite integrates mesoporous polydopamine nanoparticles, the nitric oxide-releasing donor sodium nitroprusside 
(SNP), and osteogenic growth peptide (OGP) onto titanium implants. The goal is to effectively combat methicillin-resistant 
Staphylococcus aureus (MRSA) infections during implant replacement procedures. Furthermore, PDA acts as a functional 
modifier for cell-loaded hydrogels, enhancing the properties of the base materials. Pure hyaluronic acid (HA) hydrogels 
exhibit suboptimal mechanical properties. However, when HA hydrogels are modified by cross-linking with PDA, their 
mechanical properties are enhanced, and the critical gelation concentration is lowered.98 This modification improves cellular 
affinity and tissue adhesion, while also imparting free radical scavenging and antibacterial capabilities to the hydrogel. 
Additionally, incorporating HAP into PDA-HA further boosts the hydrogels’ osteogenic differentiation capabilities and 
exhibits significant antimicrobial potential.99,100 Synthetic polymers, such as polylactic acid (PLLA), polyglycolic acid 
(PGA), and polycaprolactone (PCL), serve as versatile substitutes for natural bone. These polymers exhibit notable biocom-
patibility, flexibility, and stability within the human body. However, these materials face challenges, including biologically 
inert surfaces and insufficient mechanical strength. To address these issues, recent studies have focused on functionalizing 
synthetic polymers notably through employing PDA as a nanoparticle coating.101,102 This approach leverages PDA’s excellent 
adhesion and biocompatibility to enhance the surface activity of polymers and improve their mechanical strength, including 
tensile properties. Nanoparticles, integrated with PDA to create “building blocks” are rapidly advancing across various 
domains, including pharmaceuticals, inorganic compounds, proteins, and metal-organic frameworks (MOFs).103

Evaluating the Impact of PDA Nanofilm Coatings on the Bone 
Reconstruction and Regeneration Microenvironment
The significant adhesive properties of PDA allow it to be applied to a wide range of material surfaces. To date, utilizing PDA 
has been recognized as a straightforward and efficacious strategy for modulating interfaces in biological tissue engineering. 
This coating can directly transmit biological signals to cells,114,115 enhance the hydrophilicity of the interface, and promote cell 
diffusion and attachment.116,117 Moreover, a specific surface roughness of the coating augments protein absorption, conse-
quently enhancing cell adhesion.118 Furthermore, early studies have demonstrated that surface roughness at the micron and 
submicron levels significantly facilitates osteoblast differentiation.119 PDA nanofilm coatings have been extensively studied in 

Table 2 Effects of PDA Combined with Other Materials in Preventing and Treating Orthopedic Diseases

PDA+Other Materials Effect

PDA+NO Precursors Enhance antibacterial, promote the osteogenic differentiation of mesenchymal stem cells (MSCs).53

PDA+Mesoporous silica (shell) Sustained-release drug carriers.67,71

PDA+PEG-FA Target osteoarthritis.73

PDA+TiO2 Promote new bone formation.35,77,78,80

PDA+Ti6AI4V Enhance the attachment and differentiation of MSCs, and promote bone reconstruction and regeneration.83,104,105

PDA+CNTs Enhance mechanicality, fix the artificial periosteum, and promote bone regeneration.75,88

PDA+Hap Increase biocompatibility and promote osteogenic differentiation,26,90,99,100,106–108

PDA+Ti Enhance resistance to MRSA infection,79,94

PDA+HA Enhance mechanical properties, cell affinity, tissue viscosity.98–100

PDA+PVDF+BaTiO3 Promote pre-osteoblast viability.109

PDA+mPEG-NH2 Down-regulation of cartilage pro-inflammatory factor.110

PDA+PCL Promote stem cell osteogenic differentiation.60,111–113
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the treatment of orthopedic diseases,49,120–124 and for antimicrobial purposes,125–128 with strategies being progressively 
refined. The surface hydrophilicity of bone repair materials is closely related to their biocompatibility and cell adhesion. 
PDA contains substantial numbers of hydrophilic groups, such as amino and hydroxyl groups, which can be bound to 
hydrophobic surfaces, thereby effectively improving the hydrophilic properties of bone repair materials.129 For example, 
polycaprolactone (PCL) is a commonly investigated material in the field of bone tissue engineering; however, its application is 
limited by its bioactivity. Numerous studies have reported using PDA to coat PCL surfaces, either in powder form or on 
scaffolds. PDA-coated PCL powder used for scaffold fabrication provides more hydrophilic surfaces for cell adhesion and 
growth than pure PCL scaffolds due to the presence of amino and hydroxyl functional groups.130 A study demonstrated the 
effects of PDA coating under different conditions, including titanium (Ti), PDA-coated Ti samples, and PDA-coated Ti 
samples either stored for up to two weeks at room temperature or heated at 121 °C for 24 hours. The results emphasized that 
PDA coating heated at 121 °C for 24 hours did not impair the water contact angle and increased cell proliferation for both 
hDFs, HaCaTs, and MC3T3-E1 cells compared to pristine PDA. This underscores the importance of post-treatment and shelf- 
time for PDA coatings.131 Additionally, moderately hydrophilic materials can adsorb an optimal layer of proteins, fostering 
a conducive microenvironment for cell adhesion at the cell-material interface. Based on the rapid formation and accumulation 
of PDA nanoparticles, some researchers have used superhydrophilic PDA coatings synthesized in situ by Ag NPs in the 
presence of sodium periodate, which effectively reduced the non-specific adsorption of proteins.132 By using PDA materials, 
can regulate cell behavior at the interface of biomaterials, which can be better used for wound healing, including bone trauma 
treatment.133 A novel Mn3O4@PDA@Pd-SS31 nanozyme targeting mitochondria was designed to reverse mitochondrial 
dysfunction and inhibit inflammation.134 PDA has the ability to bind to various serum proteins, resulting in substrates that 
enhance cell attachment. On this hydrophilic matrix, cells exhibit excellent attachment, expansion, proliferation, and 
differentiation properties.135 This is especially important in tissue engineering, regenerative medicine, and biosensor applica-
tions. Polydopamine nanopreparations when coated with polyvinylidene fluoride (PVDF) and integrated into nanocomposites 
with BaTiO, have been found to significantly promote cell viability and pre-osteoblast migration in vitro, as well as accelerate 
the formation of biomineralized apatite layers.109 The study demonstrated that mPVDF-BT coatings, leveraging the adhesion 
and biocompatibility of PDA, were applied to rough Ti6Al4V biomaterial surfaces. PDA addresses the bio-inertness and 
enhances the long-term stability of Ti6Al4V, with the coated biomaterial showing potential in promoting bone reconstruction 
and regeneration. Ko et al developed a functional electrospun silk fibroin (SF) nanofiber scaffold that underwent conversion 
into two-stage HAP particles through PDA coating. Subsequent studies validated that HAP coated with PDA facilitates 
osteogenic differentiation and boosts bone formation both in vivo and in vitro.106,107 Furthermore, a coating on Hap/ 
polyamide-66 (HA/P66) substrates was devised through a PDA-assisted biomimetic process, enhancing HAP dispersion 
and accelerating osseointegration.108 The surface roughness and bioactive properties of the HAP coating are likely con-
tributors to the osteogenic differentiation supported by Hap-PDA-HA/P66 substrates in mouse MSCs. Numerous studies have 
highlighted the ability of PDA to enhance cell adhesion and osteocyte differentiation.136–138 The primary mechanism 
underlying osteogenesis promotion by PDA is attributed to its enhancement of the material’s hydrophilicity and surface 
roughness, thereby improving cellular access to the biomaterial surface. Moreover, PDA facilitates the integration of bioactive 
factors, including bone morphogenesis protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), into its multilayer 
coatings.139 This approach enhances osteoconductivity for cellular protein binding, further encouraging osteoblast adhesion, 
proliferation, and differentiation.140 Research has revealed that PDA nanocoatings on biomaterials not only facilitate 
mesenchymal stem cell attachment but also trigger human cell reprogramming and sustain the long-term self-renewal of 
human pluripotent stem cells (hPSCs).141 Investigations have demonstrated that methoxypolyethyleneamine (mPEG-NH2)- 
modified PDA NPs effectively downregulate pro-inflammatory cytokines in chondrocytes, thereby mitigating cartilage and 
subchondral bone inflammation in rat OA models.110 Moreover, the PDA NPs coating has been optimized for application on 
electrospun PCL fiber membranes, creating an optimal microenvironment for directing local stem cells towards osteoblast 
differentiation. Additionally, this fiber membrane acquires degradability from PDA NPs,111 enhancing hydrophilicity and 
cytocompatibility alongside its inherent biodegradability. The findings indicate that PDA/PCL fiber membranes facilitate the 
diffusion, proliferation, and osteogenic activity of human mesenchymal stem cells (hMSCs) in vitro, exhibiting dose- 
dependent effectiveness. Significantly, in a mouse model presenting a critical-sized skull defect, the osteogenic differentiation 
of hMSCs was notably enhanced by PDA-modified biomaterials. PDA-based materials have demonstrated the capability to 
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eliminate reactive oxygen species (ROS) both in vitro and in vivo,5 with prior research delving into the mechanism of PDA 
NPs as ROS scavengers in dental applications, yielding promising outcomes. In vitro experiments revealed that PDA NPs act 
as scavengers for hydroxyl (HO) and superoxide radicals, achieving a scavenging rate of up to 90% for HO at a concentration 
of 0.1 mg/mL, with superoxide· being entirely eliminated from the system as anticipated. Fluorescence imaging and 
antioxidant therapy experiments for in vivo ROS clearance showed that PDA NPs, at a dosage of 0.2 mg/site through 
subgingival injection, could efficiently eradicate local ROS and significantly mitigate periodontal inflammation. Furthermore, 
spectroscopy and additional in vitro experimental findings offer robust evidence that PDA NPs can eliminate various ROS and 
suppress ROS-induced inflammatory reactions,142 suggesting that PDA-NPs create an anti-inflammatory milieu conducive to 
bone reconstruction and regeneration.

Summary and Outlook
Bone, a critical tissue and organ for normal motor function in humans, has made the treatment of bone diseases 
a significant focus in medical field. Currently, biomaterials for bone disease treatment face challenges such as instability 
of drug-loaded materials, insufficient cell adhesion, reduced biocompatibility, and potential human toxicity from 
degradation products. Extensive research has demonstrated that biomaterials those modified with PDA surface engineer-
ing, possess antibacterial, anti-inflammatory, and antioxidant properties, can induce osteogenesis, enhance hMSC bone 
differentiation, promote osseointegration, and accelerate new bone formation. Since 2009, polydopamine nanoparticles 
have gained popularity among orthopedic treatment researches, with 52% of studies concentrating on osteogenic 
differentiation. This is followed by 18% on antimicrobial effects, 15% on enhancing cell activity, 13% on anti- 
inflammatory effects, and the rest on antioxidant properties (Figure 5). Research publications involved PDA on bone 
diseases treatment have significantly increased post-2017, peaking in 2022 with the highest number in recent years, 
predominantly focusing on promoting osteogenic differentiation (Table 3 and Figure 5). Polydopamine nanopreparations 
are becoming one of the key biomaterials for the treatment of bone diseases. As a drug delivery system, nanopreparations 

Figure 5 Distribution of PDA Applications and Research Trends. (a) Proportional representation of PDA application directions. (b) Annual distribution of orthopedic- 
related publications of PDA, including a total of 4 articles in 2024 currently.

Table 3 Summary of Research Publication on the Application of Polydopamine (PDA)

PDA Applications Total Publications

Enhances Osteogenic Differentiation5,24,26,40–42,49,57,72,77,78,80,82–84,90–95,99,100,104–106,108,112,119–124,126,129,138,140,143–292 188

Enhances Antimicrobial Activity53,76,80,81,90,96,97,99,100,112,113,125–128,211,223,278,293–340 66

Stimulates Relevant Cellular Functions24,79,106,136–141,146,160,169,183,188,189,193,210,215,221,222,226,227,240,264,265,285,287,341–370 57
Enhances Anti-inflammatory Properties43,70,72,73,94,97,110,146,228,249,269,371–406 47

Enhances Antioxidant Activity76,407,408 3
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incorporating PDA exhibit high drug loading capacity, effective sustained-release properties, and delayed drug clearance, 
offering significant potential to address current challenges in the clinical treatment of bone diseases. Furthermore, PDA 
can functionalize a diverse array of nanomaterials, facilitating the development of a PDA-based multifunctional platform 
for targeted or synergistic therapy. Despite the limited clinical translation of many biomaterials in the realm of bone 
disease treatment, PDA preparations, whether employed as biologically functional additives or drug carriers, are expected 
to play a more significant role in managing and preventing orthopedic disorders.
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