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Abstract: Phosphatidic acid (PA) is a glycerophospholipid intermediate in the triglyceride synthesis
pathway that has incredibly important structural functions as a component of cell membranes
and dynamic effects on intracellular and intercellular signaling pathways. Although there are
many pathways to synthesize and degrade PA, a family of PA phosphohydrolases (lipin family
proteins) that generate diacylglycerol constitute the primary pathway for PA incorporation into
triglycerides. Previously, it was believed that the pool of PA used to synthesize triglyceride was
distinct, compartmentalized, and did not widely intersect with signaling pathways. However, we now
know that modulating the activity of lipin 1 has profound effects on signaling in a variety of cell types.
Indeed, in most tissues except adipose tissue, lipin-mediated PA phosphohydrolase activity is far
from limiting for normal rates of triglyceride synthesis, but rather impacts critical signaling cascades
that control cellular homeostasis. In this review, we will discuss how lipin-mediated control of PA
concentrations regulates metabolism and signaling in mammalian organisms.
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1. Introduction

Foundational work many decades ago by the laboratory of Dr. Eugene Kennedy defined
the four sequential enzymatic steps by which three fatty acyl groups were esterified onto the
glycerol-3-phosphate backbone to synthesize triglyceride [1]. The penultimate step in this pathway,
the dephosphorylation of phosphatidic acid (PA) to form diacylglycerol (DAG), is catalyzed by
Mg2+-dependent PA phosphohydrolase (PAP) enzymes; an enzymatic activity first quantified in
1957 [2]. This lipid had been measured in plants, but at that time, the existence of PA in Animalia was
controversial. It is now known that PA is maintained at picomolar concentrations in most cells and that
this glycerophospholipid constitutes a critical branching-point in the Kennedy Pathway (Figure 1). PA is
the precursor of cytidine diphosphate diacylglycerol (CDP-DAG) used to make several phospholipids
including phosphatidylglycerol and phosphatidylinositol, while DAG is the substrate for synthesis of
other abundant phospholipids like phosphatidylcholine and phosphatidylethanolamine. Although the
elegant studies of Kennedy described PAP activity in chicken liver at a biochemical level in 1957 [2],
the cloning of the genes that encode proteins with PAP catalytic activity would require almost 50 years
of additional study [3,4]

Convergent lines of research in multiple model organisms and serendipitous findings with
freezer-archived samples would eventually lead to the identification of the mammalian lipin family of
proteins as PAP enzymes [5]. In 2006, the lab of George Carman reported that the yeast Pah protein
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catalyzed the long sought Mg2+-dependent PAP activity in yeast [3]. This protein was the yeast
homolog of the mammalian lipin family of proteins that were identified by Dr. Karen Reue’s group in
2001 [4], but at that time they had no known molecular function. Han and colleagues demonstrated that,
like the yeast Pah protein, mammalian lipin proteins had intrinsic PAP activity, answering this enduring
biological question [3]. Given a number of differences in the regulation of yeast and mammalian lipin
proteins, we have elected to focus this review on the mammalian lipins.Biomolecules 2020, 10, x FOR PEER REVIEW 2 of 14 

 

Figure 1. Phosphatidic acid as a central component in the Kennedy Pathway of lipid synthesis. 
Phosphatidic acid (PA) can be synthesized from and converted to numerus glycerophospholipids 
involved in membrane formation, cell signaling, lipid storage, and many others. Enzyme 
abbreviations in blue: glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate O-
acyltransferase (AGPAT), phospholipase A (PLA), phospholipase D (PLD), cytidine diphosphate 
diacylglycerol Synthase (CDS), diacylglycerol kinase (DGK), phosphatidic acid phosphatase (PAP), 
diacylglycerol O-acyltransferase (DGAT). Glycerophospholipids and derivatives abbreviations in 
red: glycerol-3-phosphate (G3P), lysophosphatidic acid (LPA), phosphatidic acid (PA), 
phosphatidylcholine (PC), cytidine diphosphate diacylglycerol (CDP-DAG), phosphatidylinositol 
(PI), phosphatidylglycerol (PG), cardiolipin (CL), diacylglycerol (DAG), triacylglycerol (TAG), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS). 
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Figure 1. Phosphatidic acid as a central component in the Kennedy Pathway of lipid synthesis.
Phosphatidic acid (PA) can be synthesized from and converted to numerus glycerophospholipids involved
in membrane formation, cell signaling, lipid storage, and many others. Enzyme abbreviations in blue:
glycerol-3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT),
phospholipase A (PLA), phospholipase D (PLD), cytidine diphosphate diacylglycerol Synthase (CDS),
diacylglycerol kinase (DGK), phosphatidic acid phosphatase (PAP), diacylglycerol O-acyltransferase
(DGAT). Glycerophospholipids and derivatives abbreviations in red: glycerol-3-phosphate (G3P),
lysophosphatidic acid (LPA), phosphatidic acid (PA), phosphatidylcholine (PC), cytidine diphosphate
diacylglycerol (CDP-DAG), phosphatidylinositol (PI), phosphatidylglycerol (PG), cardiolipin (CL),
diacylglycerol (DAG), triacylglycerol (TAG), phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidylserine (PS).

The cloning of mammalian lipin genes resulted from another longstanding project to identify the
spontaneous mutation leading to the phenotype of fatty liver dystrophic (fld) mice [6]. In mammals,
three genes (Lpin1, Lpin2, Lpin3) encode lipin proteins (lipin 1, lipin 2, and lipin 3) [4,7]. Lipin family
proteins exhibit distinct tissue-specific expression patterns [7]. Lipin 1 protein is enriched in adipocytes,
striated muscle, and liver. Lipin 2 protein is liver-enriched and also expressed well in the intestine and
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central nervous system whereas lipin 3 is expressed in intestine and fat. Predictably, fld mice exhibit
very low levels of PAP activity in most tissues where only lipin 1 is highly expressed (adipose tissue
and striated muscle), but have significant PAP activity in liver, intestine, and other organs where lipin
2 is present [7–9]. While germline double deletion of lipin 1 and 3 or lipin 2 and 3 is tolerated in mice,
the loss of lipin 1 and 2 is embryonic lethal [10], which is also consistent with functional redundancy of
lipin 1 and 2, at least in mice. The importance of lipin 2 in human physiology is also demonstrated
by the observation that mutations in lipin 2 cause Majeed’s syndrome, an inflammatory syndrome of
osteomyelitis [11]; the mechanistic basis for which is poorly understood.

2. Lipin Protein Structure and Regulation

Lipins are soluble proteins with conserved N- and C-terminal domains. A canonical haloacid
dehalogenase catalytic site is contained in the C-terminal domain and N-terminal amphipathic helices
and a polybasic domain facilitate membrane interaction [4,9] (Figure 2A). Recent crystallization studies
have suggested that these conserved termini interact to form an immunoglobulin-like domain that is
enabled by the variable regions in the middle of the protein [12] (Figure 2B). There is also evidence that
lipin proteins form hetero- and homo-oligomers in their native state [13], although the importance
of oligomer formation is still unclear. Atomic force microscopy imaging also suggested that lipin
multimers may form circular structures or larger symmetrical particles [14]. Lipin proteins contain
long stretches of basic amino acids (polybasic domain) that may be involved in promoting membrane
localization by electrostatic interaction and also serve as a nuclear localization sequence [15,16]
(Figure 2A). In the nucleus, lipin 1 interacts with DNA bound transcription factors to regulate their
activity [17]. Lipin 1 has been shown to coactivate a number of nuclear receptors that regulate fatty acid
metabolism [17], but can also act in a repressive manner on other transcription factors [18]. Since this
activity is independent of PAP activity, the transcription regulatory function of lipin proteins will not
be discussed in this review.
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 Figure 2. Lipin 1 structure and posttranslational modifications. (A) The lipin 1 protein contains several
serine and threonine phosphorylation sites (P). Additionally, lipin 1 is acetylated (AC), sumoylated (SU),
and ubiquitinated (Ub). Lipin 1 contains highly conserved N-terminal lipin (N-LIP) and C-terminal
lipin (C-LIP) domains. The nuclear localization signal (NLS) is within the poly basic domain (PBD).
The haloacid dehalogenase domain (DxDxT) is the catalytic motif and the LxxIL motif are contained
within the C-LIP domain. (B) Recent crystal structure data suggests the N-LIP and C-LIP domains,
which are separated by a linker region, interact to form an immunoglobulin-like domain in the
native state.
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Lipin activity seems to be controlled at several regulatory levels, though the control of the lipin 1
isoform is best understood compared to lipin 2 and 3. Transcription of the Lpin1 gene is dynamically
regulated in response to a variety of metabolic stimuli and disease states [17], but a great deal of lipin 1
activity is regulated post-translationally. Lipin 1 is a phospho-protein that is a target of the mechanistic
target of rapamycin complex 1 (mTORC1) signaling pathway [9,19] (Figure 2A). Hyper-phosphorylation
of serine/threonine residues of lipin 1 by mTORC1 drives its localization to the cytosol and away
from the membrane and nuclear compartments [9,20]. Since PA is an insoluble lipid and embedded
in cellular membranes, lipin 1 phosphorylation likely has the effect of reducing conversion of PA to
DAG without affecting intrinsic PAP activity. mTORC1 is an important nutrient-sensing kinase and
is downstream of the insulin receptor signaling cascade; thus, linking nutritional status to lipin 1
activity. In addition, the modification of lysine residues in lipin 1 by sumoylation [21], acetylation [22],
and ubiquitination [23] can regulate lipin 1 localization and degradation, though it is unknown
whether there is interplay among these various lysine modifications to modulate lipin 1 stability
and activity (Figure 2A). Although less is known about the regulation of lipin 2, some studies have
shown it is regulated both transcriptionally and translationally [24] and also post-translationally via
phosphorylation [25]. Very little is known about the regulated expression and control of lipin 3 activity.
The modulation of lipin expression and activity at multiple regulatory levels allows the cell to tightly
control the activity of this enzyme.

3. Phosphatidic Acid and Diacylglycerol as Regulators of Signaling Pathways

For many years now, PA and DAG have been recognized as important regulators of intracellular
signaling pathways and membrane biophysical properties as recently reviewed [26,27]. There are
several enzymatic reactions that synthesize or catabolize these intermediates. For example, like PAP
proteins, Mg2+-independent lipid phosphate phosphohydrolases (LPPs) dephosphorylate PA into
DAG [28]. While LPP activity is important in controlling PA- and DAG-mediated signaling, LPP activity
occurs primarily at the plasma membrane. LPPs also dephosphorylate LPA, ceramide-1-phosphate,
and sphingosine-1-phosphate [28]. Although many of these signaling pathways are parallel to those
affected by lipin expression [29], we focus our attention to DAG- and PA-responsive pathways shown
to be specifically regulated by lipin-mediated PAP activity.

Many of the effects ascribed to PA or DAG have been mechanistically demonstrated. However,
it is important to note the near impossibility of modulating the abundance of one lipid without affecting
levels of other related lipids. For example, PA can be rapidly converted to lysophosphatidic acid (LPA)
by phospholipase A family lipases and the addition of high amounts of PA to cells in culture will likely
alter abundance of LPA as well (Figure 1). Thus, caution should be taken in interpreting such results.

The mTOR signaling cascade is one of the most prominent kinases regulated by PA abundance [30,31]
(Figure 3). As discussed above, mTOR is a nutrient responsive kinase that forms at least two distinct
complexes of accessory proteins that regulate a multitude of downstream targets [32]. mTORC1
regulates protein synthesis, autophagy, mitochondrial metabolism and transcription of enzymes
involved in lipid synthesis, whereas mTOR complex 2 (mTORC2) negatively regulates insulin signaling,
controls cell stress response, apoptosis and cytoskeleton organization [32]. mTORC1 directly interacts
with PA and this interaction allosterically activates mTORC1 to initiate a mitogenic response [33].
PA activation of mTOR, appears to have similar effects as insulin stimulation in myocytes [34];
yet, PA has also been shown to inhibit insulin signaling and is anti-mitogenic in adipocytes [35].
Work in lipin 1-deficient mice has demonstrated that mTORC1 activity is chronically elevated in some
tissues [36]. mTORC1 has important negative regulatory effects on autophagy and mice or cells lacking
lipin proteins exhibit general defects in autophagy [37,38]. Interestingly, PA accumulation seems to
inhibit the activity of the mTORC2 signaling cascade [39]. In hepatocytes, lipin 1 knockdown leading
to PA accumulation was associated with reduced mTORC2 activity and insulin resistance [39].
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and diacylglycerol (DAG) synthesized from PAP activity effects several signaling modules involved
in metabolism, autophagy, and differentiation. Enzyme abbreviations not listed in Figure 1 in blue:
Mitogen Activated Protein Kinase (MAPK), Extracellular Regulated Kinase (ERK), phosphodiesterase
(PDE), mechanistic Target of Rapamycin Complex 1 & 2 (mTORC1, mTORC2), Protein Kinase C (PKC),
Protein Kinase D (PKD).

mTOR signaling also enhances the activity of phosphodiesterase (PDE) enzymes that degrade
cAMP to control the activity of cAMP-responsive Protein Kinase A [40,41]. Additionally, PA directly
activates PDE4 via allosteric interaction [42]. These dual mechanisms have been linked to impaired
PKA signaling in lipin 1-deficient tissues including adipose tissue [43] and heart [36,44].

PA has also been shown to activate the extracellular signal-regulated kinase (ERK)
Mitogen-Activated Protein Kinase (MAPK) signaling cascades [45–47] (Figure 3). This was first
demonstrated in Schwann cells and is involved in the peripheral nerve demyelination that occurs in fld
mice [46]. Regulation of ERK signaling may also be involved in the effects of lipin 1 on myocyte and
adipocyte differentiation [45,47].

PA has also been shown to have effects on gene transcription by multiple mechanisms in cultured
cells. Accumulation of some species of PA is linked to inhibition of peroxisome proliferator-activated
receptor (PPAR) activity likely by effects on signaling pathways as well as cyclic phosphatidic acid
possibly acting as an antagonistic ligand for this nuclear receptor [48]. It is possible that this plays
a role in the regulation of adipocyte differentiation by this transcription factor and explains why
nuclear-localized PAP activity is required for the induction of the adipogenic program in these cells [16].
Other work has suggested that the lipin-mediated remodeling of PA to DAG in the nuclear membrane
by lipin 1 may also regulate gene expression by affecting chromatin structure and function [20].

In addition, the product of lipin 1 PAP activity, DAG, is also a significant regulator of signaling
cascades including Protein Kinase C (PKC) and Protein Kinase D (PKD) (Figure 3). Activation of
PKC isoforms by DAG accumulation in insulin-sensitive tissues has been linked to insulin resistance
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in obesity [49], and in mouse liver, lipin 1 mediated DAG production led to insulin resistance via
activation of PKCε [50]. Additionally, in keratinocytes, lipin deficiency led to reduced activation
of PKCα and affected the differentiation program of these cells [51]. Moreover, loss of lipin 1 and
subsequent reductions in DAG levels in skeletal myocytes have been linked to inhibition of PKD
activity, which led to impairments in autophagic flux and skeletal myopathy in fld mice [38].

Below we will detail the known connections between lipin and PA and its impact on signaling and
metabolism in four tissue types. In order to focus this review, we will not discuss important findings in
other types of cells and apologize for any oversights or unintentional exclusions.

4. Adipose Tissue

Mutations in lipin 1 lead to the marked lipodystrophic phenotype of fld mice [4], which is consistent
with the effects of mutation or knockout of other enzymes involved in triglyceride synthesis also
resulting in lipodystrophy [52]. This is somewhat predictable given that lipin 1 is highly expressed
in adipocytes and the role of its enzymatic activity in triglyceride storage. However, in addition to
an inability to store fat, lipin 1-deficient adipocytes also fail to induce the expression of canonical
genes of the adipogenic program in vitro in response to a differentiation cocktail of hormones [53,54].
Accumulation of PA may explain this observation as this lipid has been shown to activate anti-adipogenic
signaling, such as the ERK-MAPK pathway [53,55], and PA inhibition of differentiation is rescued by
blocking ERK signaling in 3T3-L1 cells [56]. Complementation studies have also shown that both PAP
activity and nuclear localization of lipin 1 are required for adipogenesis to occur in vitro, raising the
possibility that this activity is required in the nucleus to induce adipogenesis [16]. This could also fit
with lipin 1 transcriptional regulatory function enhancing activity of PPARγ [57], a crucial regulator
of adipogenesis. In mice, knockout of lipin 3 slightly reduces PAP activity in white adipose tissue,
but does not seem to affect adiposity and lipin 3 seems insufficient to compensate when lipin 1 is
absent [58]. On the other hand, humans with mutations in the gene encoding lipin 1 (LPIN1) exhibit no
defects in adipogenesis or reduction in adiposity [26,59], likely suggesting that other members of the
lipin family or other PA phosphohydrolases can compensate [60].

Conditional knockout of lipin 1 after adipocyte differentiation has begun in mice has very mild
effects on adiposity on a standard diet [53,61]. Fat-specific lipin 1 knockout mice have somewhat
smaller fat pads on a standard diet, but a high fat diet produces a robust phenotype and fat-specific
lipin 1 knockouts are highly resistant to diet-induced obesity [53]. Despite a lean phenotype, these mice
are more susceptible to insulin resistance on a high fat diet likely due to accumulation of ectopic lipid in
other tissues [53]. This observation is interesting in light of translational studies showing that adipose
tissue lipin 1 expression in humans with obesity correlates well with insulin sensitivity. Specifically,
patients with high adipose lipin 1 expression exhibit greater insulin sensitivity in skeletal muscle and
liver [62,63]. Consistent with this, lipin 1 overexpression in mouse adipose tissue promotes an obese,
but insulin sensitive phenotype [54]. Though PA has not been linked to this systemic effect on insulin
sensitivity per se, it is possible that this lipid or other related lipids may be involved in inter-organ
communication that leads to insulin resistance and that appropriate sequestration of these lipids in
adipocytes protects other tissues from lipotoxicity.

Fat-specific lipin 1 knockout mice also exhibit marked reductions in Protein Kinase A (PKA)
signaling that result in impaired basal and stimulated lipolysis [43]. This was due to accumulation
of PA, since other methods to increase PA abundance also impaired PKA activity. Mechanistically,
PA suppressed PKA activity by a two pronged mechanism involving a direct interaction with
phosphodiesterase 4 (PDE4) and by activating mTOR signaling to enhance PDE activity and reduce
cAMP [43]. Interestingly, it has long been known that β-adrenergic agonists increase PAP activity [64]
and stimulate lipin 1 trafficking to its active site at the membrane [9]. While counterintuitive, given the
role of lipin 1 in fat storage, it is possible that this effect is a mechanism to amplify PKA signaling
in response to β-agonists in adipocytes. Conversely, when PA is abundant, triglyceride synthesis is
favored and lipolysis is inhibited. Though first observed in mouse adipocytes, this effect on PKA
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activity is also observed in lipin 1-deficient mouse liver [43] and heart [36,44] and lipin 1 abundance
in adipose tissue of humans with obesity is inversely correlated with basal lipolytic rates [43]. Thus,
in adipose tissue, lipin 1 plays important roles in regulating fat storage and retention by regulating
both triglyceride synthesis and lipolysis.

5. Skeletal Muscle

Rare mutations in the LPIN1 gene in humans are associated with a syndrome of acute,
recurrent rhabdomyolysis that usually manifests in early childhood [59,65–68]. Rhabdomyolysis
is an acute syndrome of skeletal muscle injury resulting in the release of intracellular metabolites and
proteins, including creatine kinase and myoglobin, into the systemic circulation that can result in death
from renal, cardiac, or hematologic dysfunction. Although there are many common acquired causes of
acute rhabdomyolysis in children and adults, inborn errors in intermediary metabolism are often to
blame in idiopathic cases, especially in children.

To decipher the mechanisms by which loss of PAP activity leads to myocyte injury, investigators
have used a variety of mouse and cell culture models. It should be noted that fld mice [38] or mice
with muscle-specific lipin 1 deletion [37,69] exhibit a chronic and active myopathic phenotype that
is not a phenocopy of the acute syndrome in humans. The myopathy is characterized by myocyte
necrosis, myofibrils with central nuclei indicative of regeneration, and eventually development of
fibrotic lesions. Damaged mitochondria with impaired oxidative capacity accumulate in skeletal
myocytes from lipin 1-deficient mice due to impaired mitochondrial turnover through the process of
mitochondrial autophagy (mitophagy) [37,38]. The phenotype of fld mice can be rescued by transgenic
muscle specific overexpression of lipin 1 [38], which together with the skeletal muscle-specific knockout
models indicate a myocyte intrinsic effect.

Loss of lipin 1 in skeletal muscle leads to very low PAP activity in muscle and both the constitutive
and muscle-specific knockout of lipin 1 models all exhibit accumulation of PA and impairments in
autophagy. However, the mechanistic explanations for impaired autophagy and muscle pathologic
remodeling may vary upon the model used. For instance, whereas muscle-specific lipin knockouts
actually exhibit increased muscle DAG content [37,69], fld mice exhibit depletion of DAG [38], suggesting
that lipodystrophy of fld mice affects muscle lipid content. In fld mice and cells, DAG depletion leads
to impaired PKD activation, which leads to defective autophagy [38] and may also affect myocyte
differentiation via regulation of transcription factors that regulate developmental processes [70].
Since DAG actually accumulates in muscle of mice with conditional deletion of lipin 1 the PKD
mechanism does not seem to apply to this model. Indeed, muscle-specific LPIN1 knockout mice exhibit
signs of lipotoxic and sarcoplasmic reticular stress and treatment with agents that enhance fat oxidation
or chemical chaperones to alleviate stress can attenuate myopathy in these mice [69]. The mechanistic
basis for myopathic remodeling in these mice and human patients with LPIN1 mutations and optimal
treatment approaches will require further study.

6. Cardiac Muscle

Much of the literature regarding patients with LPIN1 mutations has focused on the skeletal
muscle manifestation of the disease and less is known about the effects on cardiac myocytes, despite
abundant expression of lipin 1 in the myocardium. Recently, it was shown that patients with LPIN1
mutations have increased cardiac triglyceride accumulation and some patients exhibited a defects in
cardiac function when challenged with exercise [71]. This may suggest that diminished mitochondrial
oxidative capacity under exercise conditions impairs cardiac function with energetic challenge.

The role of lipins in regulating cardiac metabolism and function has been more extensively
studied in mice. Lipin 1 and 3 seem to be expressed in the myocardium, but lipin 2 is not [8].
Despite expressing lipin 3 in heart, fld mice exhibit very little cardiac PAP activity and increased cardiac
PA [8]. When isolated hearts from fld mice were perfused with 3H-oleate, the radiolabeled fatty acid
was more enriched in glycerophospholipids (PA, PI, PS, etc.), but cardiac triglyceride levels were
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not affected [36]. Hearts from fld mice actually exhibited cardiac triglyceride accumulation during
prolonged fasting despite decreased PAP activity [72]. Fld hearts also exhibit mild cardiac dysfunction,
but do not exhibit cardiac myocyte death or signs of fibrosis. The reasons for the different outcomes in
lipin 1-deficient skeletal and cardiac myocytes is not yet clear. We have recently developed mice with
cardiac-specific LPIN1 deficiency (manuscript submitted) and like fld mice, cardiac-specific deletion of
lipin 1 does not lead to myocyte dropout or development of myopathic remodeling [44]. However,
the cardiac lipin 1 knockouts also exhibit accumulation of PA, diminished mitochondrial respiration
potentially due to reduced cardiolipin content, and mild contractile dysfunction when challenged with
dobutamine. Interestingly, lipin 1 expression and PAP activity are diminished and PA abundance is
increased in acquired forms of heart failure in mice [8]. It is unknown whether loss of lipin 1 and the
accumulation of PA may contribute to the impairments in contractile dysfunction in these models.

Loss of lipin 1 in myocardium has been shown to have several signaling effects, including
activation of mTOR signaling [36]. Whereas mTOR activation is usually linked to cardiac hypertrophy,
hearts from fld mice are actually smaller than control hearts. It is possible that the activation of
mTOR is an adaptation to regulate cardiac energy metabolism. Kok and colleagues also noted
reduced phosphorylation of hormone sensitive lipase [36] in fld mouse hearts, which is consistent
with impairments in PKA activity. Indeed, cardiac-specific lipin 1 knockout also leads to impairments
in PKA activity, especially in the context of β-adrenergic stimulation [44]. This likely explains the
impairment in contractility observed in response to dobutamine. Further work to investigate whether
these observations translate to humans and to better characterize the cardiac phenotype of patients
with LPIN1 mutations is needed.

7. Liver

Unlike striated muscle and adipose tissue, the liver highly expresses both lipin 1 and lipin 2.
Although lipin 2 is more abundant than lipin 1 in normal mouse liver [7], hepatic lipin 1 expression is
highly induced by fasting, diabetes, glucocorticoid administration [17], and experimental alcoholic
fatty liver disease [73,74]. Lipin 2 mRNA is also induced in liver by fasting and diabetes, but lipin 1
and lipin 2 are under the control of different regulatory pathways [24]. These physiologic contexts
with increased lipin expression were shown many years ago to be associated with increased hepatic
PAP activity [75].

The high expression of both proteins in liver often leads to a great deal of compensation and there
are limited effects of deleting only one lipin family member. For instance, neonatal fld mice exhibit an
overt fatty liver phenotype [6,76], which is at odds with the role of lipin 1 as a PAP enzyme involved in
triglyceride synthesis. However, we now know that lipin 2 protein abundance is markedly increased
in fld liver [24] and that the fatty liver in this model is largely driven by loss of lipin 1 in adipose tissue
driving a lipodystrophic phenotype [43,68]. Conversely, knockout of lipin 2 leads to increased lipin 1
protein abundance in liver and does not affect hepatic triglyceride levels [77]. Acute knockdown of
lipin proteins circumvents some of these compensatory effects and has revealed pathophysiological
roles for lipin 1 and 2 in mouse models of fatty liver disease.

In many models of obesity-related related fatty liver disease, lipin 1 expression is increased [17,50].
However, not all obese mouse models exhibit an induction in lipin 1 [78] and lipin 1 seems to be
decreased in human subjects with obesity and hepatic steatosis [62]. Interestingly, liver-specific deletion
of lipin 1 does not prevent hepatic TAG accumulation in fasted mice. Liver lipin 1 knockout mice fed
a diet enriched in fat, fructose, and cholesterol were also not protected from triglyceride and DAG
accumulation or insulin resistance [77], suggesting that lipin 2 may be able to compensate for loss of
lipin 1. On the other hand, Ryu et al. showed that acute RNAi-mediated lipin 1 knockdown attenuated
hepatic steatosis and improved insulin-stimulated AKT activation in mouse liver and primary mouse
hepatocytes [50]. Mechanistically, activation of lipin 1 can increase cellular DAG; thereby activating
PKCε and driving insulin resistance [50]. Similarly, activation of lipin 2 in fatty liver or by ER stress was
also shown to cause insulin resistance by this mechanism [79]. However, other work in hepatocytes has
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suggested that PA induces insulin resistance by suppressing mTORC2 and that lipin 1 overexpression
actually attenuated insulin resistance [39]. Furthermore, in a genetic model of obesity, the UCP-DTA
mouse, lipin 1 expression was decreased and lipin 1 overexpression improved insulin signaling and
glucose tolerance [78]. Thus, the role of lipin 1 in hepatic insulin resistance remains controversial.

It has long been known that PAP activity is induced in rodent models of alcoholic fatty liver
disease (AFLD) [80] and that this coincides with a marked induction in lipin [73,74]. Surprisingly,
liver-specific lipin1-KO did not attenuate, but actually exacerbated triglyceride accumulation and
liver injury in a model of alcohol feeding, likely due to reduced fatty acid oxidation and triglyceride
secretion [73]. This suggests that the induction of lipin 1 in hepatocytes in AFLD may actually play an
adaptive or protective role by mechanisms that are still not completely clear. Interestingly, deletion of
lipin 1 in myeloid cells markedly attenuated hepatic inflammation while concomitantly exacerbating
hepatic steatosis in another model of AFLD [81]. This effect was attributable to altered secretion of
adipokines like fibroblast growth factor 15 and adiponectin. Thus, the effects of lipin 1 PAP activity in
myeloid cells may impact systemic inflammation and metabolism by altering interorgan endocrine
signaling pathways.

Recently, it was demonstrated that lipin 1 and 2 expression is decreased after experimental
overdose with acetaminophen (APAP) in mice coincident with a marked increase in liver and plasma
PA concentrations [82]. It is possible that lipin deactivation and PA accumulation after APAP overdose
is an adaptive mechanism to stimulate the hepatocyte proliferative response to regenerate liver tissue.
The mechanisms by which this occurs are still emerging. However, activation of mTOR signaling after
APAP treatment seems to precede the accumulation of PA, suggesting that PA is not the trigger for this
response. It is possible that PA is activating other mitogenic signaling pathways.

8. Summary

In conclusion, lipin-mediated PAP activity plays important and pleiotropic roles in regulating
lipid metabolism and cellular homeostasis via the metabolism of PA concentrations. Indeed, it may be
that limiting the accumulation of this unabundant lipid to modulate signaling pathways and limit PA
toxicity could be considered the primary function of this family of phosphohydrolases. The robust
phenotypes of mice and humans with lipin deficiency underscores the important roles that lipin 1
and 2 play in regulating adipocyte differentiation, myocyte homeostasis, and whole-body metabolism.
Future work will almost certainly define more important physiologic and pathophysiologic roles for
lipin proteins in modulating metabolism and signaling.
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