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THE BIGGER PICTURE Identifying which genomic regions of the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus are pathogenic remains a major challenge in COVID-19 research. How-
ever, there is currently a lack of systematic and unbiased methods for such functional characterization.
In this study, we set up a machine learning-based approach to identify which genomic regions distinguish
SARS-CoV-2 and other high case fatality rate coronaviruses from other coronaviruses. Discriminative
scores were obtained for every nucleotide in the SARS-CoV-2 genome. We then performed a series of
evolutionary and structural analyses of candidate hotspots, as well as integrative analyses with predicted
B cell and T cell epitopes and emerging variants of concern. Our approach can be extended to other viral
genomes or microbial pathogens to gain insights on which sequence features are pathogenic or immu-
nogenic.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we
developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We
trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-
CoV, and other coronaviruses of human and animal origins to return quantitative and biologically interpret-
able signatures at nucleotide and amino acid resolutions. We identified hotspots across the SARS-CoV-2
genome, including previously unappreciated features in spike, RdRp, and other proteins. Finally, we inte-
grated pathogenicity genomic profiles with B cell and T cell epitope predictions for enrichment of sequence
targets to help guide vaccine development. These results provide a systematic map of predicted pathoge-
nicity in SARS-CoV-2 that incorporates sequence, structural, and immunologic features, providing an unbi-
ased collection of genetic elements for functional studies. This metavirome-based framework can also be
applied for rapid characterization of new coronavirus strains or emerging pathogenic viruses.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has become an unprecedented and ongoing global pub-

lic health and economic crisis since its emergence at the end of

2019.1,2 The SARS-CoV-2 virus has infected more than 180

million people and caused more than 3.9 million deaths globally

as of July 1, 2021.3 Although pathogenic coronaviruses have

repeatedly emerged from the wild to become infectious to hu-

man populations, the common genetic and molecular features

that drive the disease-causing potential of these viruses remain

unclear. Identifying genetic elements and specific regions of

the SARS-CoV-2 genome that make it dangerous is critical for

public health prevention and disease mitigation, as well as the

development of vaccines and therapeutics.

Machine learning (ML) methods have become important for

the interpretation of large and complex genomic datasets,4

and have been used in a variety classification tasks including

transcription start site recognition,5 gene expression prediction,6

or complex disease phenotype prediction,7 Given the large scale

of viral genome datasets and the potential for ML methods to

recognize patterns in DNA sequences, such methods are well-

suited for the classification task of identifying pathogenicity-

associated genomic features in coronaviruses. We, therefore,

developed a set of ML approaches focused on unbiased scan-

ning and scoring of key pathogenicity-linked regions in the ge-

nomes of SARS-CoV-2 and other high case fatality rate (CFR) co-

ronaviruses8 that distinguish them from other coronaviruses

strains.

There are a number of challenges when setting up ML models

for sequence-based classification tasks as performed in this

study. First, because we were comparing genomes from

different coronavirus species that have different lengths (Fig-

ure S1A), there must be a way to standardize sequence inputs

in a way that conserves information on the evolutionary relation-

ship between species. The comparative genomics approach for

doing so is by multiple sequence alignment. Second, because

ML methods typically require numerical inputs, we encoded

the categorical alignment data into integer representation using

one-hot encoding. Third, because we were interested in identi-

fying specific local genomic regions that were predictive for co-

ronavirus pathogenicity, we partitioned the alignment into

smaller sliding windows for training and evaluation of the ML

models. Fourth, there is the limited experimental data available

on characterizing the pathogenicity of genomic sequences for

coronaviruses. For example, our group and collaborators have

identified nonstructural protein 1 (Nsp1) through an ORF mini-

screen as a key protein that causes reduction of host cell

viability9 and Gordon et al.10 mapped physical interactions be-

tween human host proteins and SARS-CoV-2 proteins; however,

these studies are limited to the scale of whole open reading

frames. To address the challenge of defining labels, we use evo-

lution and species-based annotations comparable with the

approach of other groups.11 Fifth, many ML techniques applied

to genomic sequencing data use an arbitrary accuracy threshold

for determining significance. We utilized ML-derived accuracy

scores as a proxy for ‘‘learned, predictive information content’’

and developed a statistically rigorous meta-model based on
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the hypothesis that highly gapped alignment regions should

not be predictive of coronavirus pathogenicity. Sixth, to demon-

strate the biological significance and utility of the scores

obtained by our pipeline, we performed comprehensive evolu-

tionary, structural, immunologic, and emerging variant of

concern analyses.

These methods provided us with highly quantitative, and bio-

logically interpretable, coronavirus pathogenicity (COPA) scores

for every nucleotide in the SARS-CoV-2 genome.We believe that

the ML-based approach developed here can be generally

applied for functional genomic characterization of novel viruses

across the metavirome, such as new coronavirus strains, new

emerging pathogenic viruses, or other pathogenic microbials,

where traditional analytic methods are limited.

RESULTS

High CFR coronavirus strains have shared genomic
features that distinguish them from other coronaviruses
We hypothesized that the increased pathogenicity of high CFR

coronavirus strains is due in part to shared genomic features

that distinguish them from other coronaviruses. To test this hy-

pothesis, we performed principal component analyses (PCA)

on encoded representations of the coronavirus genomes used

in the study. We aligned 3,665 Coronaviridae family genomes

obtained from the Virus Pathogen Database and Analysis

Resource (ViPR) database12 with diverse taxonomic and host

features (Figure 1B), then performed one-hot encoding of the

entire genomes, followed by PCA. Alphacoronaviruses and beta-

coronaviruses typically cause respiratory illness in humans or

gastroenteritis in birds, while gammacoronaviruses and delta-

coronaviruses typically infect birds. Although low CFR coronavi-

ruses that infect humans (e.g., HCoV-NL63, HCoV-229E, HCoV-

OC43, and HKU1) span both alpha- and betacoronaviruses, the

highly pathogenic, high CFR strains that infect humans (e.g.,

MERS-CoV, SARS-CoV, and SARS-CoV-2) are betacoronavi-

ruses.8 Of note, some low CFR strains can still cause severe in-

fections in children, the elderly, or immunocompromised pa-

tients.13 Visualizations from our PCA analyses revealed that

coronavirus genomes can cluster by genus, host, and species

(Figure S1G). Specifically, alpha-, beta-, and gammacoronavi-

ruses were clearly segregated in the first 4 principal compo-

nents, and genomes further clustered by host (e.g., human hosts

in betacoronaviruses for PC1 and PC2) and species (e.g., avian

coronavirus in gammacoronaviruses for PC3 and PC4). To see

if high CFR virus genomes (MERS-CoV, SARS-CoV, and

SARS-CoV-2) also cluster after dimensionality reduction, we

labeled the genomes accordingly (1 representing high CFR ge-

nomes, 0 representing all other genomes, Figure S1H) and

observed that the high CFR genomes clustered together along

with associated features such as betacoronaviruses or their

respective species.

MLand statisticalmeta-model identifies high-resolution
discriminative features in coronavirus genomes
We then developed a rigorous, integrative ML-based approach

to identify regions that contribute to COPA, incorporating

random forests, support vectormachines, Bernoulli naı̈ve Bayes,

gradient boosting classifiers, and multi-layer perceptron
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Figure 1. ML and statistical meta-model identifies high-resolution discriminative features in coronavirus genomes

(A) Schematic detailingML-based strategy to learn discriminative genomic features of coronaviruses. Complete genome sequences of the Coronaviridae family in

the ViPR database (n = 3665) were obtained, aligned, and encoded into binary vector representations. Base ML models with different classification strategies

(legend continued on next page)
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classifiers (experimental procedures) (Figure 1A). We chose a set

of 5 different supervised learning algorithms that have robust

performance and represent methodological diversity including

ensembles of decision trees, Bayes’ theorem, and neural net-

works. We then trained and evaluated 7,562,625 advanced ML

models (see experimental procedures for further details) on six

bp-wide sliding windows with stratified 5-fold cross-validation

across the aligned coronavirus genomes for different predictors

based on the classification strategy. To set up our predictor clas-

ses, we established several classification strategies to capture

signatures associated with pathogenicity (Figure 1C). We

considered that sequence features that enable coronaviruses

to jump from animal populations to humans (strategy A) and

that distinguish SARS-CoV, MERS-CoV, and SARS-CoV-2

from other coronaviruses (strategy B) to likely be important con-

tributors to pathogenicity. We also considered features that spe-

cifically distinguish SARS-CoV, MERS-CoV, and SARS-CoV-2

that infect human hosts (strategy C) from all other coronaviruses.

To highlight the evolutionary relationship between the samples in

relation to our classification strategies, we have run a set of

phylogenetic analyses on the genomes used for training our

ML models (Figures 1E and S1I). Consistent with our PCA ana-

lyses, we observe that the predictor class genomes across the

different strategies have evolutionary proximity, and have over-

lap with Sarbecoviruses and Merbecoviruses. After training

and evaluating our base ML models on windows tiled across

the alignment (100,835 windows), we integrated performance

accuracy scores into a statistically rigorous meta-model based

on minimum entropy windows (see experimental procedures,

Figures S1B–S1F) to obtain biologically interpretable nucleo-

tide-level COPA (NT-COPA) scores for every nucleotide in the

SARS-CoV-2 genome (Figure 1D). To be specific, for a givenwin-

dow, each of the individual classifiers were trained and tested for

each fold permutation (using 4-folds for training and 1-fold for

testing), yielding 5 accuracy scores for each classifier. These

scores were used as a surrogate for how well the high-CFR

genomes can be differentiated from other genomes at that

particular position. That is, the higher the score, the better the

predictive performance of the classifier, the better that particular

genomic region can distinguish high CFR genomes. All of these

scores are then tested against scores from the minimal entropy

control group using the 2-sided Wilcoxon rank-sum test,

adjusted for false discovery rate, and then negative log10 trans-

formed to obtain NT-COPA score.

Because the samples in the standard dataset are ordered by

alignment, individual models for different cross-validation folds

may have dissimilar training compositions and therefore accu-
were trained on sliding windows tiled across the alignment. A statistical hypoth

discriminative hotspot regions in the SARS-CoV-2 genome.

(B) (Left) Donut chart showing distribution of host species for coronavirus genom

(Right) Donut chart showing the distribution of virus species.

(C) Pie charts showing class membership proportions for different classification s

that infect human hosts. (Middle) Strategy B defines the predictor class as all S

human or animal hosts. (Right) Strategy C defines the predictor class as specific

man hosts.

(D) NT-COPA scores (negative log base 10 of adjusted p values obtained frommet

reference SARS-CoV-2 genome. Larger NT-COPA scores represent stronger dis

(E) Circular phylogenetic trees built from all Coronaviridae genome sequences u

See also Figures S1 and S2.

4 Patterns 3, 100407, February 11, 2022
racy scores (Figures S2A–S2D); however, this tradeoff may

come with a greater diversity of biologically meaningful learned

features. Since we pool together all cross-validation scores

with training coverage of all samples, no genomic information

is lost for our statistical meta-model analyses. We focused our

subsequent analyses on the results obtained from this pipeline

for biological interpretability, and provide the NT-COPA scores

as a resource.

Identification of local discriminative hotspots in SARS-
CoV-2 proteins
Next, we looked at NT-COPA score distributions intersected

with the annotated SARS-CoV-2 genome to see if they can be

used to identify potential discriminative hotspots. We found

that the NT-COPA scores reflected quantitative and high-resolu-

tion signatures for characterizing individual base pairs and amino

acids within SARS-CoV-2 features (Figure 2A). To compare the

NT-COPA scores with more naive methods, we obtained the

consensus score for each position in the multiple sequence

alignment, with values corresponding the percentage identity

with the consensus sequence. A score of 100 would therefore

correspond with 100% identity to the consensus sequence,

which in turn means there is no sequencing variation across all

viruses at that position.We plotted the consensus scores against

the NT-COPA score, performed linear regression analyses, and

found there to be a negative linear relationship with a significant

model p value (Figure S2E). We expect our NT-COPA scores to

be higher with increased diversity at a given position, since this in

turn corresponds with increased information for better MLmodel

performance. Therefore, a negative relationship between the

consensus and NT-COPA scores are in line with our expecta-

tions, as increased consensus scores correspond with

decreased diversity at a given position.

To address the challenge of systematically defining hotspot

regions from such high-resolution data, we considered that

scores for a given base pair should reflect local genomic infor-

mation capture due to our sliding window based approach for

training the base ML models. Therefore, we considered kernel

smoothing to be an appropriate nonparametric curve estimation

method for a region-based approach to identify hotspots (see

experimental procedures). We calculated the kernel regression

estimate at each base pair using the NT-COPA scores, and

used the estimates to determine local signal maxima (peaks)

within SARS-CoV-2 features (Figures 2A and S3). This approach

yielded 2,473 peaks across the SARS-CoV-2 genome, which

mark local discriminative hotspots (Figure 2B). Limitations to

the kernel smoothing–based approach include that identified
esis test-based meta-model integrated signals into a COPA score to identify

es used in study. (Middle) Donut chart showing the distribution of virus genus.

trategies. (Left) Strategy A defines the predictor class as coronavirus samples

ARS-CoV-2, SARS-CoV, and MERS-CoV samples, including those that infect

ally those SARS-CoV-2, SARS-CoV, and MERS-CoV samples that infect hu-

a-model, see experimental procedures) for every nucleotide position across the

criminative signals learned from our models.

sed for training ML models labeled by genus, host, or species.



Figure 2. Identification of local discrimina-

tive hotspots in SARS-CoV-2 proteins

(A) High-resolution NT-COPA score distributions

shown for spike protein, membrane protein, ORF8,

NSP1, NSP5 (3C-like protease), and NSP12 (RdRp).

Scores at each nucleotide position are shown as

pink dots. Smoothed kernel regression estimates

are shown a blue line graph, with select local peaks

circled and labeled in red.

(B) NT-COPA scores for local highly discriminative

peaks identified across SARS-CoV-2 genome

shown plotted against rank by kernel regression

estimate. Smoothing and peak identification were

used as an unbiased strategy to identify hotspots.

See also Figure S3.
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peaks may have relatively low NT-COPA scores as they only

reflect local maxima (which may be addressed by using score

thresholds), and that high signal density regions may only return

a single peak. The advantage of the approach is that it is unbi-

ased and systematic. Both systematic and customized strate-

gies can be applied to generate biologically meaningful insights

from these pathogenicity-associated scores.

Spike protein hotspots reveal a furin cleavage site and
contact sites with angiotensin-converting enzyme 2
To biologically validate the significance of our candidate hot-

spots, we performed a series of in-depth evolutionary and struc-

tural analyses. There has been considerable focus on the spike

protein as it facilitates coronavirus entry into target cells.14,15

For SARS-CoV-2, the interaction between the trimeric spike

glycoprotein and the human host angiotensin-converting

enzyme 2 (ACE2) receptor triggers a cascade of events that

leads to the fusion between cell and viral membranes.16 We

examined the NT-COPA score distributions and peaks for the

spike protein and found the strongest signal to be peak
S-2044, corresponding with amino acid

position 682 (Figure 2A). To determine the

evolutionary significance of this hotspot,

we aligned the spike protein amino acid

sequences for Coronaviridae family vi-

ruses across various species and hosts

and compared the alignment with the NT-

COPA score density for peak S-2044 and

nearby residues (Figure 3B).

We find that this peak corresponds with

a functional polybasic furin cleavage site

(RRAR) at the junction between the S1/S2

subunits, which has been reported to

expand SARS-CoV-2 tropism and/or

enhance its infectivity.17 The leading pro-

line that is also inserted at the site for

SARS-CoV-2 (for PRRA insertion) has

been shown to result in the addition of O-

linked glycans to S673, T678, and S686,

which flank the cleavage site by structural

analysis.18 Nucleotides for the T678 codon

and the first nucleotide for the S686 codon

(corresponding with position S-2056) all
have high NT-COPA scores and are included as part of the

peak S-2044–associated hotspot. More generally, this hotspot,

which spans nucleotide positions 2,021–2,056 (amino acid posi-

tions 674–686, all with NT-COPA scores of >40), corresponds

with amino acid insertions that contribute to distinguishing beta-

coronaviruses from alpha- and gammacoronaviruses (Figures

3A and 3B). The functional consequence of the polybasic cleav-

age site and the predicted O-linked glycans in SARS-CoV-2 re-

mains unclear, although possibilities for the latter include the cre-

ation of mucin-like glycan shields involved in immune evasion.18

These analyses showed that the ML-based approach indepen-

dently learned pathogenicity signals that correspond with impor-

tant features of the SARS-CoV-2 genome, several of which have

been previously validated or are under active investigation.

To see if ML-scored discriminative hotspots can offer func-

tionally significant structural insights, we examined the spike

protein receptor-binding domain (RBD) interface with ACE2.

We calculated the amino acid resolution COPA scores (AA-

COPA, or COPA for short) by averaging the NT-COPA scores

for codons. We then examined the high AA-COPA regions in
Patterns 3, 100407, February 11, 2022 5
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Figure 3. Spike protein hotspots reveal a furin cleavage site and contact sites with ACE2

(A) Phylogeny tree for spike protein sequences of coronaviruses across species and hosts. Sequences for alphacoronavirus are labeled in green, betacor-

onaviruses labeled in purple, gammacoronaviruses labeled in brown, and the reference SARS-CoV-2 labeled in red.

(B) NT-COPA score signal density near peak S-2044 (amino acid position 682) in spike protein compared with alignment. Peak S-2044 corresponds with a furin-

like cleavage site.

(C) AA-COPA score, i.e., COPA score signal density in RBD in spike protein reveals 2 primary discriminative hotspot regions.

(D) COPA scores mapped onto structure of SARS-CoV-2 RBD complexed with ACE2 receptor reveal that the NCYF hotspot contains residues that mediate viral

binding to host receptor.

(E) Protein alignment reveals an NCYF hotspot for SARS-CoV-2 (NCYW hotspot for SARS-CoV) has high sequence divergence from other coronaviruses across

species and hosts. Residues are colored using the Clustal X color scheme. Hotspot residues for SARS-CoV-2 labeled in red, with corresponding residues for

SARS-CoV labeled in blue.

See also Figure S4.

ll
OPEN ACCESS Article
the spike protein RBD, and identified 2 hotspot regions

comprising residues NNL at positions 439–441 and residues

NCYF at positions 487–490 (Figure 3C). We then mapped the
6 Patterns 3, 100407, February 11, 2022
COPA scores onto a recently solved crystal structure of the

wild-type SARS-CoV-2 RBD bound to human ACE216 and found

that the NCYF hotspot included contact site residues at the
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Figure 4. RdRp hotspots reveal RNA contact

sites and codon composition biases

(A) COPA score signal density across the NSP12/

RdRp amino acid sequence. Select hotspot resi-

dues marked in red and directed toward their loca-

tion on structure in (B).

(B) COPA scoresmapped onto the RdRp in structure

of the SARS-CoV-2–RdRp-NSP7-NSP8 complex

bound to the template-primer RNA and RTP. (Left)

Spatial region in RdRp with a high density of hot-

spots. (Right) Discriminative hotspot residues

correspond with contact sites in RdRp that directly

participate in the binding of RNA.

(C) Protein alignment reveals discriminative hotspot

residues in SARS-CoV-2 RdRp has high sequence

divergence from other coronaviruses across spe-

cies and hosts, with exceptions as noted in (D). For

the ERVRQ hotspot region (amino acid positions

180–184), residues are colored according to

hydrophobicity (where most hydrophobic residues

are colored red and the most hydrophilic ones are

colored blue). For other regions, residues are

colored according to their Blosum62 score (where

residues matching the consensus sequence residue

at that position are colored dark blue).

(D) Sequence logos for codons from the genome

alignment used for ML training associated with the

ERVRQ hotspot region and KS hotspot contact

sites. Logos were generated separately for MERS-

CoV, SARS-CoV, and SARS-CoV-2 infecting human

hosts, and nonpathogenic coronaviruses.

See also Figure S5.
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RBD–ACE2 interface (Figure 3D). Of the 13 hydrogen bonds at

the SARS-CoV-2 RBD–ACE2 interface identified from the wild-

type structure (Figure S4B), 3 hydrogen bonds are included in

the NCYF hotspot: N487-Q24, N487-Y83, and Y489-Y83.

Notably, all 3 of these SARS-CoV-2–ACE2 hydrogen bonds are

conserved for the SARS-CoV RBD–ACE2 interface, as N473-

Q24, N473-Q24, and Y475-Y8316 Both of the coronavirus con-

tact site residues in the SARS-CoV-2 NCYF hotspot (N487 and

Y489) are relatively conserved among proximal strains, but differ

in less proximal strains (Figures 3A and 3E), suggesting that the

acquisition of these sites were important evolutionary events in

the development of high-affinity coronavirus binding to the hu-

man ACE2 receptor. Interestingly, an alternative, chimeric

RBD-engineered structure of the SARS-CoV-2 spike protein–

ACE2 complex demonstrated that structural changes in one of

the ridge loops that differentiate SARS-CoV-2 from SARS-CoV

introduces an additional main-chain hydrogen bond between

residues N487 and A475 in the SARS-CoV-2 receptor binding

motif, causing the ridge to form more contacts with the N-termi-
nal helix of ACE2.19 The COPA–structural

joint analysis suggested that the ML

models automatically learned the SARS-

CoV-2 NCYF hotspot as a proximally

conserved contributor to COPA.

We then examined the other hotspot re-

gion identified in the SARS-CoV-2 RBD,

comprising residues N439, N440, and

L441. Residue N439 was not identified to
be involved in contacts between SARS-CoV-2 RBD and ACE2

receptor in the wild-type structure (Figure S4C). However, its

associated residue in the SARS-CoV RBD, R426, forms a strong

salt bridge with E329 on ACE2 and a hydrogen bond with

Q32516,19,20 (Figure S4D). Evolutionary analysis reveals that the

NNL (SARS-CoV-2 coordinates) or RNI (SARS-CoV coordinates)

hotspot has substantial sequence divergence from other coro-

naviruses across species and hosts (Figure S4A). While the sig-

nificance of the NNL hotspot for SARS-CoV-2 is unclear, R426 is

a functionally important residue for ACE2 receptor binding in

SARS-CoV and scored highly in the classification strategies

focused on learning sequence determinants of pathogenicity

that are generalizable across respiratory disease-causing

coronaviruses.

RdRp hotspots reveal RNA contact sites and codon
composition biases
Another key component of the SARS-CoV-2 virus is the RNA-

dependent RNA polymerase (RdRp), also known as NSP12.
Patterns 3, 100407, February 11, 2022 7
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RdRp/NSP12 forms a complex with accessory factors including

NSP7 and NSP8, which increase template binding and proces-

sivity, to catalyze the synthesis of viral RNA.21,22 As this complex

plays an important role in the viral replication and transcription

cycle, RdRp is currently being investigated as a target of nucle-

otide analog antiviral drugs such as remdesivir for COVID-19

treatment.23,24 To identify discriminative hotspot regions in

RdRp potentially associated with pathogenicity, we intersected

its sequence with the ML-generated COPA scores (Figure 4A).

We then mapped the COPA scores onto a recently solved

cryo-electron microscopy (EM) structure of the SARS-CoV-2–

NSP12-NSP7-NSP8 complex bound to template-primer RNA

and the triphosphate form of remdesivir (RTP)22 (Figure 4B).

We focus on 2 structural regions of interest in SARS-CoV-2

RdRp with high COPA score signal density. Region (1), which

comprises residues ERVRQ (positions 180–184) and DRY (posi-

tions 284–286), reflects a previously uncharacterized feature of

RdRp with a high density of hydrophobic and hydrophilic amino

acid residues. Whether the hotspot residues in region (1) create

networks of hydrophilic interactions that contribute to pathoge-

nicity require further experimental study; nevertheless, this re-

gion highlights discriminative features that were learned from

the ML models in an unbiased manner. Region (2), which

comprise residues K500, S501, W509, and I847, includes key

residues involved in direct RdRp protein–RNA interactions. We

observed that the identified COPA hotspot residues generally

exhibit high amino acid conservation among proximal strains

and differentiation in less proximal strains (Figures 4C and

S5B), with a notable exception of residues K500 and S501.

We were surprised at this exception; initially, it was unclear

why our ML approach would assign residues K500 and S501

high COPA scores if these positions exhibit such strong evolu-

tionary conservation across species and hosts, as these

positions should then not be able to distinguish pathogenic co-

ronaviruses. To examine these regions at the nucleotide resolu-

tion, we returned to our aligned genome used for training the

base ML models, and generated nucleotide composition fre-

quencies (presented as motifs of sequence logos) for codons

associated with the hotspot residues (Figures 4D and S5A).

The ERVRQ motif reveals conservation among the pathogenic

coronaviruses that differentiate them from the high diversity of

nonpathogenic coronaviruses in this region. These results are

expected, given the goals of our methods. The KS motif, howev-

er, reveals codon composition bias that differentiate SARS-CoV-

2 and SARS-CoV at the nucleotide level from MERS-CoV and

nonpathogenic coronaviruses. This bias is particularly striking

for residue S501, where all 3 nucleotides differentiate the

SARS strains from other coronaviruses, despite conserving a

serine residue. Whether these codon composition biases reflect

selection, recombination, or more generalized codon usage

biases require further study. Nevertheless, these results highlight

the learned evolution signatures of critical features in the SARS-

CoV-2 genome at different levels.

Integration of genomic discriminative profileswith B cell
and T cell immunogenic features
Although a few vaccine candidates have been approved for

SARS-CoV-2 (e.g., Moderna, Pfizer/BioNtech), most of the cur-

rent approaches use the spike glycoprotein as a target and pri-
8 Patterns 3, 100407, February 11, 2022
marily use full-length or simple partial ORFs.25 It is still unclear

if this single target will prove to be sufficient for mounting long-

termprotective immunity for humans, andwhether novel variants

of concerns will lead to decreased efficacy. More generally,

limited information on which parts of the virus are recognized

by human immune responses is a major knowledge gap

impeding novel vaccine design and surveillance, although efforts

are currently underway to study patterns of immunodomi-

nance26 and to identify conserved epitopes for cross-reactive

antibody binding.27 While current vaccine strategies focus on

inducing B cell humoral responses, T cell immunity comprises

another dominant domain of immune responses essential for

viral vaccines28–30 and may play an important role in eliminating

SARS-CoV-2.26,31 Therefore, it is important to examine both B

cell and T cell epitopes and consider more precise pathogenic

and immunogenic regions that could potentially induce a stron-

ger immune response.

We thus set out to identify those regions by intersecting both

discriminative NT-COPA score hotspots and immunogenic hot-

spots. To identify regions in the SARS-CoV-2 proteome that

are predicted to be both pathogenic and immunologically rele-

vant, we ran a B cell epitope analysis (Figure 5A) as well as

T cell major histocompatibility complex (MHC)-I and MHC-II

binder predictions, and then integrated themwith the ML-gener-

ated COPA scores (Figures 5B, 6B, and S6A). Surprisingly, we

found that, for spike and nucleocapsid proteins, high COPA

pathogenic regions significantly overlap with potential B cell epi-

topes (hypergeometric test, p < 0.008 for spike, and p < 0.0012

for nucleocapsid) (Figures 5A and 6A). For T cell epitopes, we

prioritize peptides by counts of discriminative hotspot peaks ob-

tained from the kernel smoothing analysis. These convergent re-

gions may help to prioritize epitopes that overlap with potentially

functionally important regions of SARS-CoV-2 (Figures 5B, 6B,

and S6A). For example, incorporating these discriminative sig-

nals may help for developing vaccines that generate immune re-

sponses enriched in neutralization of the more dangerous viral

elements. We join other efforts for systematic characterization

of SARS-CoV-2 features10 and provide in this study all the

regional hotspots as consensus regions for next-generation pre-

cision vaccine development.

Integrative analyses of discriminative profiles with
mutations associated with SARS-CoV-2 variants of
concern
Due to the urgency of the pandemic, SARS-CoV-2 genomes

have been sequenced at an unprecedented rate, with more

than 1 million sequences available through the Global Initiative

on Sharing All Influenza Data (GISAID).32,33 Other resources

such as the Nextstrain project provide genomic epidemiology

analyses on the number of accumulated mutational events

across the SARS-CoV-2 genome (Figure S7D).34 Although

most mutations are expected to be neutral or mildly deleterious,

a small proportion of mutations can also be expected to confer

some fitness advantage; and indeed, several ‘‘variants of

concern’’ have emerged for SARS-CoV-2 with altered viral char-

acteristics. We performed a set of analyses intersecting high

COPA score residues with mutations from UK variant

B.1.1.7,35 SA variant B.1.351,36 and Brazil variant P.1,37 and sur-

prisingly found that a number of high score residues and
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Figure 5. Integration of genomic discriminative profiles with B cell and T cell immunogenic features

(A) B cell epitope integrative analyses for spike protein, membrane protein, envelope protein, and nucleocapsid protein. (Upper) COPA scores and B cell epitope

prediction scores plotted across the amino acid sequences. Thresholds used for identifying key residues (COPA score of >8 and epitope score of >0.5) marked

with a horizontal line. Statistical significance of overlap of key residues was determined by hypergeometric test (see Figure 6A). (Lower) Residues marked for

COPA score of greater than 8 and an epitope score of greater than 0.5, consensus regions, and compound regions.

(legend continued on next page)
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mutations overlapped (including positions 681 in spike protein,

position 183 in NSP3, and position 3 in N protein for UK variant

B.1.1.7), as shown in Figures 7 and S7A–S7C. For further com-

parison with emergingmutations, we extracted the variant emer-

gence rankings and cumulative number of locations for spike

mutation combinations from the GISAID database38,39 and

found 452R_478K_681R_1263L to be the top ranked variant

combination (Figures S7E and S7F). The COPA scores for the

corresponding mutations are 4.7, 6.76, 66.09, and 23.65, sug-

gesting that our study has identified 2 of the 4 top Spike muta-

tions that are currently in circulation. We anticipate that the

NT-COPA scores from this study can be used together with

emerging data on SARS-CoV-2 evolution and transmission for

prioritizing which mutations may potentially contribute to variant

fitness advantage and warrant further study through feasible

reverse genetics experiments.

DISCUSSION

This study developed a rigorous framework that integrates base

ML models and a statistical meta-model to distinguish patho-

genic sequence features of coronaviruses down to base pair

and amino acid resolutions with quantitative and biologically

interpretable COPA scores. By training and evaluating a high

number of diverse ML models on a large collection of coronavi-

rus genomes of human and animal origins, we identified discrim-

inative hotspots across the SARS-CoV-2 viral genome with

potential significance for viral fitness. Comparative validation

with previous work through in-depth, biologically motivated

investigation showed various intersections of common key fea-

tures, while the ML approach itself is fully unbiased in terms of

scoring and generation of a large number of previously unidenti-

fied candidate hotspots. For example, the significance of these

hotspots was shown with in-depth evolutionary and structural

analyses of the spike protein and RdRp, which are important

SARS-CoV-2 genetic elements under active investigation. The

integrative analysis of pathogenicity-associated genomic pro-

files with B cell and T cell epitopes converged on regions of

the SARS-CoV-2 proteome that are predicted to be both patho-

genic and immunologically relevant, which provides a collection

of feature-rich elements that potentially serve as candidates for

the prioritization and enrichment of key sequence targets to

guide vaccine development.

While we focused our downstream analysis here on spike pro-

teins and RdRp to demonstrate the interpretability and functional

significance of the COPA scores learned from our framework, we

emphasize that the learned features from this study are genome

wide and may provide insights into less characterized SARS-

CoV-2 structural and nonstructural proteins. For example, we

noticed that our framework identified a high density of patho-

genic peaks in ORF8 (Figure 2B), a protein whose function

remains mysterious.40 A recent study has identified a 382-nt

deletion variant that covers nearly the entirety of ORF8 from

strains isolated from hospitalized patients in Singapore,41 which

were implied to lead to reduced virulence of SARS-CoV-2 based
(B) T cell epitope integrative analyses for spike protein and RdRp for MHC-I and M

were mapped onto predicted MHC-I and MHC-II binders. Peptides with high pe

See also Figure S6.
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on experimental data from SARS-CoV OFR8 deletion variants.42

Whether ORF8 is in fact an important driver of SARS-CoV-2

pathogenicity will require further study, and it should be noted

that the low sequence identity across species for ORF8 may

lead to increases in NT-COPA scores of unclear significance.

However, the discriminative signatures identified here may

constitute an unbiased collection for regional dissection through

viral experiments.

Although the application of ML methods for identifying patho-

genic sequence elements in viral genomes at scale has been

limited to date, the ongoing COVID-19 pandemic has highlighted

the importance of this field. Recently, another group has used

comparative genomics andMLmethods to identify determinants

of pathogenicity in SARS-CoV-2.11 Though there are some sim-

ilarities in goals, this study has several differentiating factors: (1)

we trained on 3,665 genomes including both human and animal

coronaviruses compared with 944 human coronavirus genomes

only, and should be able to capture host-based or evolutionary

signals; (2) we encoded our alignments to include both nucleo-

tide type as well as gaps, as opposed to only encoding gaps,

and should therefore capture information on indels and substitu-

tions rather than indels only; (3) we developed a statistical meta-

model that integrates signals to provide COPA scores that are

unbiased, nucleotide resolution, and quantitative, rather than us-

ing predefined thresholds to identify regions of interest; (4) we

use multiple classifiers and classification strategies rather than

one; and (5) we have performed both immune epitope and

variant of concern analyses. We anticipate that both the integra-

tive analytical methods and results described here will provide

substantial value to the COVID-19 research community in

conjunction with other studies.

Given the ongoing nature of the COVID-19 pandemic, there is

an urgent need to identify functionally important features of

SARS-CoV-2.Whilemuch effort is currently underway to charac-

terize the spike protein, RdRp, and other proteins suggested to

be important from prior studies on coronaviruses, there has

been limited information on sequence determinants of pathoge-

nicity at the global, metavirome-wide scale. We demonstrate

here how harnessing the predictive power of ML or other artificial

intelligence algorithms may be used to identify such features in a

systematic manner. While our ML strategies are based on pri-

mary sequences, future ML algorithms that incorporate 3-

dimensional structures may generate additional insights that

cannot be obtained from linear sequence analysis alone, and

further enhance the prediction of pathogenicity, immunogenicity,

or other important elements of viral proteins. This study demon-

strates the development and application of ML to coronavirus

genomes with integrative analyses, which is not limited to coro-

naviruses but can be broadly applied to other viral genomes or

microbial pathogens to gain insights on pathogenicity and

immunogenicity.

Limitations of the study
The primary limitation to this study is that, although the identified

featuresarepotentially related toCOPAbydesignof theML-based
HC-II. Highly discriminative peaks identified from kernel regression estimates

ak counts are highlighted.
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Figure 6. Additional integrative analyses of discriminative profiles with B cell and T cell epitopes for SARS-CoV-2 structural proteins

(A) Venn diagrams showing overlap of key residues in spike protein, membrane protein, envelope protein, and nucleocapsid protein identified with thresholds of a

COPA score of greater than 8 and an epitope score of greater than 0.5. Statistical significance of overlap of key residues was determined by the hypergeo-

metric test.

(legend continued on next page)
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approach, genomic regions may be substantially different without

necessarily contributing to increasedpathogenicity.Moreover, the

resulting scores do not add information on the functional nature of

the hotspots. Therefore, further experimental studies are neces-

sary to determine the functional significance of these discrimina-

tive genomic features.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for resources and code used throughout the study should be

directed to and will be fulfilled by the lead contact Sidi Chen (sidi.chen@

yale.edu).

Materials availability

No new biological materials were generated by this study.

Data and code availability

The authors are committed to freely share all COVID-19–related data, knowl-

edge, and resources with the community to facilitate the development of

new treatment or prevention approaches against SARS-CoV-2/COVID-19 as

soon as possible. All relevant processed data generated during this study

are included in this article and its supplemental information files. Raw data

are from various sources as described below. Data and resources related to

this study have been deposited at Zenodo under the DOI https://doi.org/10.

5281/zenodo.5652344 and are freely available upon request to the corre-

sponding author. Additional supplemental items are available from Mendeley

Data: https://doi.org/10.17632/tfmzjdkxh6.1.
Sequence data collection

A total of 3,665 complete nucleotide genomes of the Coronaviridae family were

downloaded from the ViPR database12 to be used for ML algorithm training.

GenBank: MN908947 was used as the reference SARS-CoV-2 sequence for

downstream analyses. Coronavirus protein sequences for spike proteins

(YP_009755834, ACN89696, ABD75577, QIQ54048, QHR63300, QHD43416,

QDF43825, ATO98157, AAP13441, ASO66810, ALD51904, AYF53093,

AKG92640, ALA50214, AFD98757, AJP67426, AHX26163, AVM80492) and

ORF1ab (QIT08254, QJE38280, QJD07686, QHR63299, QIA48640,

QDF43824, AAP13442, QCC20711, AJD81438, AHE78095, ATP66760,

ABD75543, YP_009019180, AVM80693, AFU92121, AFD98805, APZ73768,

ATP66783, and YP_002308496) used for evolutionary analyses were obtained

from the NCBI Virus community portal. Amino acid sequences for SARS-CoV-

2 were obtained from translations from reference sequence NC_045512

(equivalent to MN908947). FASTA sequences for S protein (YP_009724390),

E protein (YP_009724392), M protein (YP_009724393), N protein

(YP_009724397), NSP3 (YP_009742610), NSP5 (YP_009742612), NSP8

(YP_009742615), NSP9 (YP_009742616), and NSP12 (YP_009725307) were

obtained from the NCBI Protein database and used for downstream evolu-

tionary and immune epitope analyses.
Preprocessing

Sequences were aligned with MAFFT43 version 7 with the –auto strategy.

Degenerate IUPAC base symbols that represent multiple bases were con-

verted to ‘‘N’’ and ultimately masked before training the algorithms. Six bp-

wide sliding windows with 1-bp shifts were generated across every position

in the alignment for a total of 100,835 alignment-tiled windows. Genetic fea-

tures including nucleotides and gaps for a given window were converted to bi-

nary vector representations using LabelEncoder and OneHotEncoder from the

Python scikit-learn library,44 for integer encoding of labels and one-hot encod-

ing, respectively. Additional Python libraries used include BioPython,45

NumPy,46 and pandas.47
(B) T cell epitope integrative analyses for nucleocapsid protein, membrane prot

identified from kernel regression estimates were mapped onto predicted MHC-I

See also Figure S6.
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Principal components analysis

Dimensionality reduction of encoded whole coronavirus genomes was per-

formed primarily using R scripts. The MSA was converted to cell-based repre-

sentations in a CSV file, followed by one hot encoding, PCA, and visualization

with metadata labeling. One hot encoding with performed with the ‘‘mltools’’ R

package and PCA was performed with the ‘‘prcomp’’ R function.

Training and evaluating ML base models

Genome metadata were converted to binary vector classifications with ‘‘1’’

representing predictor class genomes depending on classification strategy

and ‘‘0’’ representing all other genomes. Three different classification strate-

gies were used: (1) predictor class comprising coronavirus samples infecting

human hosts, (2) predictor class comprising all SARS-CoV-2, SARS-CoV,

and MERS-CoV samples, and (3) predictor class comprising SARS-CoV-2,

SARS-CoV, and MERS-CoV samples specifically infecting human hosts.

Five supervised learning classifiers from scikit-learn were used for training

and evaluation, with seeds set at 17 for algorithms that use a random number

generator. Support vector classifiers were trained with a linear kernel and reg-

ularization parameter of 1.0; random Forest classifiers were trained with 100

estimators; Bernoulli naı̈ve Bayes were trained with alpha of 1.0 with the ‘‘fit_p-

rior’’ parameter set as true to learn class prior probabilities; multi-layer percep-

tron classifiers were trained with ‘‘lbfgs’’ solver, alpha of 13 10�5, 5 neurons in

the first hidden layer, and 2 neurons in the second hidden layer; gradient

boosting classifiers were trained with ‘‘deviance’’ loss function, learning rate

of 0.1, and 100 estimators. All estimators were trained and evaluated with

stratified 5-fold cross-validation on each window, using 80% of the data for

training and 20%of the data for validation. Each of the 5-fold cross-validations

were performed once with the cross_val_score function from scikit-learn, with

folds created preserving the percentage of samples for each class.

Statistical hypothesis test-based meta-model

Accuracy scores obtained from ML base models were used as a proxy for

‘‘learned, predictive information content’’ to determine COPA scores using

a statistical hypothesis test-based meta-model. First, Shannon entropy

values were calculated for each window across the alignment. Windows

with minimal entropy values (n = 10,383), typically found in highly gapped re-

gions, were used to define a biologically meaningful control group; i.e., we

hypothesized that windows with low information content in highly gapped re-

gions should not be predictive of COPA and should have minimal discrimina-

tive value. For each position across the alignment (100,840 positions), scores

associated with windows that overlap with the position (typically approxi-

mately 6 windows) were pooled and tested to see if statistically significantly

different from the minimal entropy control group using the nonparametric 2-

sided Wilcoxon rank-sum test. For the main NT-COPA score calculations and

evolution-based analyses, all scores across the 3 classification strategies

were used for testing; in supplemental analyses, scores for individual classi-

fication strategies were used separately. This procedure was performed

across the alignment, and p values were adjusted for multiple comparisons

using the Benjamini and Hochberg procedure. The p values were transformed

to nucleotide resolution COPA scores by negative log base 10 (also referred

to as NT-COPA scores). Amino acid resolution scores were obtained by aver-

aging the NT-COPA scores for a given residue’s codon (referred to simply as

COPA scores).

Kernel regression smoothing for hotspot peak identification

For a systematic strategy to identify pathogenicity hotspots across the SARS-

CoV-2 genome using COPA scores, we combined kernel regression smooth-

ing with local maxima identification. For each position across the alignment,

we determined the Nadaraya-Watson kernel regression estimate using the

ksmooth function in R with a ‘‘normal’’ kernel and various bandwidth sizes.

Peaks highlighted in this study are primarily based on estimates calculated

with bandwidth size of 3. Local peaks were determined from kernel regression

estimates using the ‘‘findpeaks’’ function with nups parameter set at 2, from

the ‘‘pracma’’ R package.
ein, and envelope protein for MHC-I and MHC-II. Highly discriminative peaks

and MHC-II binders. Peptides with high peak counts are highlighted.

mailto:sidi.chen@yale.edu
mailto:sidi.chen@yale.edu
https://doi.org/10.5281/zenodo.5652344
https://doi.org/10.5281/zenodo.5652344
https://doi.org/10.17632/tfmzjdkxh6.1
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Figure 7. Integrative analyses of discrimina-

tive profiles with mutations associated with

SARS-CoV-2 variants of concern

(A) COPA score signal density across the spike

protein, NSP3, and N protein amino acid sequences

mapped with mutations associated with the UK

variant B.1.1.7. Vertical dashed lines represent the

locations of specific B.1.1.7 mutations. Mutations

overlapping with high COPA score hotspot regions

are marked with a red arrow and labeled.

(B) COPA score signal density across the N protein

and ORF3a amino acid sequences mapped with

mutations associated with the South African variant

B.1.351. Vertical dashed lines represent locations of

specific B.1.351 mutations. Mutations overlapping

with high a COPA score hotspot regions are marked

with a red arrow and labeled.

(C) COPA score signal density across the N protein

and NSP3 amino acid sequences mapped with

mutations associated with the Brazilian variant P.1.

Vertical dashed lines represent locations of specific

P.1 mutations. Mutations overlapping with high

COPA score hotspot regions are marked with a red

arrow and labeled.

See also Figure S7.
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Evolutionary analyses

Protein sequences used for evolutionary analyses were aligned using MAFFT

version 7 with the ‘‘L-INS-i’’ strategy.43 Alignments were visualized using Jal-

view 2.11.1.0.48 Phylogenic analyses were performed using MEGA10.1.8 soft-

ware.49 Phylogeny trees were generated with the Maximum Likelihood statis-

tical method, Jones-Taylor-Thornton substitution model, uniform rates among

sites, use of all sites, nearest-neighbor-interchange heuristic method, and

default NJ/BioNJ initial tree. For spike protein analysis, all obtained sequences

were used for alignment and phylogeny. For NSP12 analysis, all obtained

ORF1ab sequences and reference SARS-CoV-2 NSP12 (YP_009725307)

were used for alignment, but only ORF1ab sequences were used for

phylogeny.

For large-scale phylogenetic analysis, efficient tree inference on the full

genome set multiple sequence alignment was performed using IQ-TREE

version 2.0.650 with the GTR + F + R10 model, which was selected automati-

cally usingModelFinder.51 Circular phylogenetic trees were then generated for

visualization and labeled using FigTree v1.4.4.

Structural analyses

The crystal structure of SARS-CoV-2 spike RBD bound with ACE2 was ob-

tained from Protein DataBank (PDB) with accession code PDB: 6M0J.16 The

cryo-EM structure of the SARS-CoV-2–NSP12-NSP7-NSP8 complex bound

to the template-primer RNA and the RTP was obtained from PDB with acces-
sion code PDB: 7BV2.22 The crystal structure of

SARS-CoV spike RBD bound with ACE2 was ob-

tained from PDB with accession code PDB:

2AJF.20 Molecular graphics and analyses including

mapping of COPA scores onto structures were per-

formed with UCSF ChimeraX version 0.94.52

B cell epitope analysis

FASTA sequences for reference SARS-CoV-2 struc-

tural proteins were used to predict B cell epitopes.

Linear B cell epitopes probability scores were ob-

tained using BepiPred-2.0.53 Consensus regions

were defined as amino acid residues with epitope

scores of greater than 0.5 and COPA scores of

greater than 8. Hypergeometric test of overlap of

high COPA score (>8) and high epitope score

(>0.5) residues was performed to determine the sta-
tistical significance of consensus regions. Compound regions were identified

using k-means clustering. Briefly, the R function ‘‘kmeans’’ was run with vari-

able number of clusters and nstart parameter 25 on a dataset containing resi-

due position, epitope score, and COPA score. Residues were marked as com-

pound regions if they belonged to clusterswith epitope score centers of greater

than 0.5 and COPA score centers of greater than 8. Flagged residues that did

not belong to a contiguous run of amino acids with 5 or more residues were

filtered out.

T cell epitope analysis

FASTA sequences for reference SARS-CoV-2 structural proteins and select

NSPs were used to predict T cell epitopes. Prediction of peptides binding to

MHC class I and class II molecules was then performed using TepiTool54

from the Immune Epitope Database (IEDB) Analysis Resource. MHC-I binder

predictions weremade for the ‘‘human’’ host species and the 27most frequent

A and B alleles in the global population. Default settings for a low number of

peptides (only 9mer peptides), IEDB recommended prediction method, and

predicted percentile rank cutoff of 1.0 or lower were used for peptide selection.

MHC-II binder predictions were made for the ‘‘human’’ host species using the

‘‘7-allele method’’ (median of percentile ranks from DRB1*03:01, DRB1*07:01,

DRB1*15:01, DRB3*01:01, DRB3*02:02, DRB4*01:01, DRB5*01:01). A median

consensus percentile rank of 20.0 or less was used for peptide selection.
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Pathogenicity associated peaks within the proteins with NT-COPA scores of

greater than 8 were then mapped to the predicted peptides for prioritization.

Variant of concern analysis

Mutation profiles for the United Kingdom variant B.1.1.7,35 South African

variant B.1.351,36 and Brazilian variant P.137 were obtained for comparison

with NT-COPA score profiles. Individual mutations were mapped onto COPA

score signal density plots for separate features and mutations overlapping

with highly discriminative regions were marked.

Statistical information summary

Comprehensive information on the statistical analyses used are included in

various places, including the figures, figure legends, and Results, where the

methods, significance, p values, and/or tails are described. All error bars

have been defined in the figure legends or methods. Standard statistical cal-

culations such as Spearman’s rho were performed in R with functions such

as ‘‘cor.’’

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100407.
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