
Fermented foods and beverages accompanied and 
likely facilitated the transition from hunter-gatherer 
communities to sessile agricultural communities in the 
Neolithic revolution about 14,000 years ago1,2. They have 
remained staples of human diets for centuries and are 
an increasingly popular food category. Yet, their emer-
gent popularity in the past 20 years has led to numerous 
misunderstandings and questions. What constitutes 
fermentation? Do fermented foods necessarily contain 
live microorganisms? Are fermented foods the same as 
probiotic foods? Do microorganisms in fermented foods 
become established in the gut or influence the gut micro-
biota? Do fermented foods provide health benefits and, 
if so, how?

Accordingly, the International Scientific Association 
for Probiotics and Prebiotics (ISAPP) organized a meet-
ing of clinical and scientific experts in family medicine, 
microbiology, food science and technology, ecology, 
immunology, and microbial genetics held in September 
2019 to develop a consensus report on fermented foods 

(a category that includes fermented beverages). The main 
goals of this Consensus Statement are to provide research-
ers, health-care providers, industry, regulators and con-
sumers with a clear and concise definition of fermented 
foods, to differentiate between fermented foods and pro-
biotics, and to summarize what is known about the health 
effects and safety of fermented foods. This Consensus 
Statement also discusses the mechanistic rationale for 
how fermented foods could improve gastrointestinal and 
systemic health, the advancements in knowledge on the 
microbial ecology and systems biology of those foods, 
and the current regulatory considerations and position 
of these foods in dietary guidelines.

Methods
The consensus panel was organized under the auspices 
of ISAPP, which is a non-profit organization governed 
by a volunteer board of directors. Although funded by 
member companies, ISAPP’s activities are not stipu-
lated by industry. The mission is to provide objective, 
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science-based information on probiotics, prebiotics and 
related health topics. Panel members were identified 
and invited based on their subject matter expertise and 
experience. An outline was developed and each expert 
was asked to address specific topics. The panel discussed 
each issue until consensus was reached. Following the 
meeting, each panellist wrote relevant sections and 
the assembled draft was reviewed and approved by all 
authors. The authors thank members of the ISAPP board 
of directors who did not directly participate in this con-
sensus panel but who reviewed, provided comments 
and approved this manuscript: G. Gibson, E. Quigley, 
S. Salminen, K. Scott and H. Szajewska.

Historical context
Humans must have learned early in their history that 
fermentation provided many important advantages 
for managing precious food resources. Fermentation 
can improve the functional properties of agricultural 
crops and transform bland raw materials into nutri-
tious, palatable or intoxicating products. Certainly, 
fermentation would have been regarded as one of the 
most effective ways to preserve foods owing, in part, to 
the formation of organic acids, alcohols, bacteriocins 
and other antimicrobial end-products as a result of fer-
mentation microorganisms3. Fermentation-associated 
microorganisms usually out-compete potential patho-
genic and spoilage organisms, further enhancing food  
safety and stability. In the absence of potable water, fer-
mented beverages, such as beer, wine, sour milk and 
cereal gruels, provided a safe and transportable source of  
liquids4. These qualities, along with the fermentation- 
mediated transformation of perishable raw food materi-
als into organoleptically satisfying products, led to their 
adoption by nearly every culture worldwide.

One particular example of how fermented foods and 
human culture co-evolved is through dairy fermentations5. 
The consumption of fermented milk products, including 

cheese, pre-date human lactase persistence, suggesting 
that lactose removal might have been one of the initial 
aims of this process6. Similarly, the human attraction to 
flavour-potentiating nucleotides and amino acids that 
are enriched in certain fermented foods, such as soy 
sauce and miso, could have evolved as a result of the safety 
and nutritional benefits of those foods in early human 
diets7. The extended shelf-life of fermented foods and 
the removal of noxious plant compounds by fermenta-
tion still serve critical purposes in regions of the world 
that have low food security and poor access to refriger-
ation, electricity and clean water. Even in societies for 
which sanitation and preservation are not a problem, fer-
mented foods constitute an important part of the human 
diet. It is estimated that more than 5,000 varieties of fer-
mented foods (and beverages) are currently produced and 
consumed globally8.

Beyond their importance to public health and food 
preservation and quality, current epidemiological evi-
dence suggests that diets rich in fermented foods can 
reduce disease risk and enhance longevity, health, 
and quality of life9–11. Nonetheless, with the exception 
of yoghurt and other cultured dairy products, few 
well-designed, randomized controlled trials (RCTs) on 
the health benefits of the array of fermented foods have 
been published. Likewise, hypothesis-driven research 
describing the mechanisms of how fermented foods 
affect human physiology is limited. Defining these 
gaps can provide a basis for future research, including 
experiments aimed at understanding the potential health 
benefits of fermented foods.

Defining fermentation
Biochemists define fermentation as “an ATP-generating 
process in which organic compounds act as both donors 
and acceptors of electrons”12. Although this definition 
might be relevant for anaerobic lactic and ethanolic 
fermentations13 that occur in yoghurt, kimchi or wine, 
it does not apply to numerous other food fermenta-
tions. Fermentation as applied to foods and beverages 
has a much broader meaning and includes reactions and 
pathways that do not involve any of the criteria implicit 
in the strict biochemical definition. For example, aer-
obic metabolism is used by fungi responsible for koji, 
the starting material for soy sauce and miso, and in the 
manufacture of vinegar and kombucha by acetic acid 
bacteria (AAB)14,15. Accordingly, the panel proposes a 
broader definition that accounts for these variations 
in metabolic pathways. Thus, we define fermented 
foods and beverages as: “foods made through desired 
microbial growth and enzymatic conversions of food 
components”.

The definition requires the activity of microorgan-
isms. Although endogenous or exogenous enzymes 
from plants, animals or other sources might be present, 
the activities of those enzymes alone are insufficient for 
a food to be regarded as fermented. This definition is 
sufficiently broad to include not only the fermentations 
noted earlier but also to distinguish fermentation from 
its microbiological converse, namely food spoilage. 
Whereas both processes occur via microbial growth 
and enzymatic activity on food constituents, spoilage is 
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clearly unintentional and fermentation is deliberate and 
controlled to generate the desirable attributes.

What is included or excluded in the fermented foods  
definition? This definition of fermented foods and bev-
erages accommodates the many products made globally 
from diverse starting materials (Box 1). The definition 
includes foods and beverages that are produced by fer-
mentation but might not have living microorganisms 
at the time of consumption. Fermented foods, such as 
leavened breads, are baked after fermentation, effectively 
killing the fermentation microorganisms. The manu
facture of some fermented foods (for example, most 
beers and wines) includes steps to remove live micro-
organisms from finished products. Although microbial 
inactivation or removal is not common to all fermen
tation processes, these products still qualify as fermented 
foods.

Some salad dressing, mustard and other condiments 
might include ingredients made by fermentation such as 
vinegar or sour cream. In our view, these foods would 
not satisfy the definition of a fermented food, even if 
they contained an appreciable amount of a fermented 
ingredient (Box 2), nor would a non-fermented food 
supplemented with added microorganisms be consid-
ered fermented. Lastly, there are chemically derived 
versions of fermented foods; these foods are not fer-
mented (Box 2). For example, some soft cheeses can be 
made by chemical acidification and fruits and vegetables 
are often preserved by ‘pickling’ processes that do not 
require the presence of live microorganisms. In some 
regions, the production of so-called synthetic vinegar 
and non-brewed soy sauce use chemical processes14,16. Of 
note, some cured meat products (made with nitrate or 
nitrite salts) can be fermented or non-fermented.

What is the difference between fermented foods and pro-
biotics? Fermented foods and beverages are sometimes 
characterized or labelled as “probiotic foods” or “con-
tains probiotics”. These declarations might reflect efforts 
by manufacturers to communicate to consumers that 
living, health-promoting microorganisms are present 

in the product. However, as noted in a previous consen-
sus statement17, the term ‘probiotic’ should only be used 
when there is a demonstrated health benefit conferred 
by well-defined and characterized live microorganisms. 
The health benefit must, at least in part, be due to the 
live microorganisms and must extend beyond any nutri-
tional benefit of the food matrix. For these reasons, the 
terms ‘fermented food’ and ‘probiotics’ cannot be used 
interchangeably (Table 1).

To label a product as a probiotic fermented food 
with an additional stipulated health benefit, evidence 
of a strain-specific benefit from a well-controlled 
intervention study is required together with proven 
safety and confirmation of sufficient numbers of that 
strain in the final product to confer the claimed benefit  
(Table 1). For example, traditional, spontaneously fer-
mented sauerkrauts likely contain multiple strains of 
Lactiplantibacillus plantarum (previously Lactobacillus 
plantarum), but these uncharacterized and unidentified 
strains, at unknown doses, would not qualify as pro-
biotics. By contrast, if L. plantarum 299v, a genetically 
characterized strain with clinically demonstrated pro-
biotic properties18,19, was present at an efficacious dose 
until the end of shelf-life and there were no indications 
for inhibitory interactions of the sauerkraut matrix, 
this sauerkraut would meet the minimum criteria for a 
probiotic fermented food. Such products could contain 
an appropriately worded claim, for example, “probiotic 
sauerkraut containing L. plantarum 299v might improve 
intestinal well-being”, provided that local regulatory 
requirements are satisfied (Table 1).

In the absence of strain-specific evidence of a health 
benefit for the live microorganisms in a fermented food, 
some fermented foods could be appropriately labelled 
as “contains probiotics” (Table 1). This statement is only 
supported if at least one of the strains in the food meets 
the criteria implicit in the term probiotic and if the strain 
is a member of a well-studied species known to confer 
probiotic health benefits via the principle of ‘shared 
benefits’. This principle is based on the knowledge that 
certain bacterial species that are consistently active in 
human studies have conserved, or core, properties asso-
ciated with improving health20. According to Hill et al.17 
and Sanders et al.20, these bacterial species are suffi-
ciently well studied such that most strains of that species 
can be reasonably expected to confer a health benefit. 
Consistent with this view, certain jurisdictions recog-
nize several common species for which the term ‘probi-
otic’ can be used in foods. For example, Health Canada 
recognizes more than 20 species of the Lactobacillus 
genus complex and Bifidobacterium provided they are 
delivered at a minimum of 109 colony-forming units 
per serving21. In Europe, health claims related to live 
yoghurt cultures and improved lactose digestion are 
approved by the European Food and Safety Authority 
based on the core presence of the lactase enzyme in 
yoghurt cultures (Lactobacillus delbrueckii subsp. bulga­
ricus and Streptococcus thermophilus)22. However, in our 
view, even if the fermented food contains one or more 
of those species, the label “contains probiotics” should 
only be used when the strains in the fermented food 
are defined to the strain level, the genome sequences 

Box 1 | Fermented food classification based on the presence of live microorganisms

Fermented
Live microorganisms present

•	Yoghurt

•	Sour cream

•	Kefir

•	Most cheeses

•	Miso

•	Natto

•	Tempeh

•	Non-heated fermented vegetables

•	Non-heated salami, pepperoni and 
other fermented sausages

•	Boza, bushera and other fermented 
cereals

•	Most kombuchas

•	Some beers

Live microorganisms absent

•	Bread

•	Heat-treated or pasteurized fermented 
vegetables, sausage, soy sauce, vinegar 
and some kombuchas

•	Wine, most beers and distilled spirits

•	Coffee and chocolate beans  
(after roasting)

Not fermented
•	Chemically leavened bread

•	Fresh sausage

•	Vegetables pickled in brine and/or 
vinegar

•	Chemically produced soy sauce

•	Salted or cured processed meats  
and fish

198 | March 2021 | volume 18	 www.nature.com/nrgastro

C o n S e n S u S  S tat e m e n t



are known and the strains are present at an appropriate 
number during product shelf-life (Table 1).

It is expected that the majority of fermented foods 
sold commercially today do not belong in the “probiotic 
fermented food” category. Instead, fermented foods and 
beverages often contain undefined microbial consortia, 
usually at variable levels, and their potential health ben-
efits have generally not been demonstrated23,24. Thus, we 
affirm the suggestion from Hill et al.17 that manufactur-
ers should state only that their product contains “live 
and active cultures” provided the food is not processed 
to remove or kill the fermentation microorganisms and 
that these microorganisms are present at levels that are 
expected for foods of that type (Table 1). For pasteur-
ized fermented foods without live microorganisms in 
the final product, it is acceptable to label those foods 
as “foods made by fermentation” (Table 1). Even when 
characterized cultures are used to perform fermentations 
and are understood at the strain level, those micro
organisms are mostly selected based on performance 
characteristics, such as rapid acidification, substrate 
conversion, and flavour and texture properties, rather 
than on health-related functions. In the absence of evi-
dence for species-level ‘shared benefits’ and knowledge 
that the strains are present at an appropriate number  
during product shelf-life, we suggest that manufacturers 
consider other labelling options (as noted earlier).

Do fermented foods contain prebiotics? The presence of  
prebiotics, substrates selectively utilized by host micro
organisms that confer a health benefit25, has been 
reported for several fermented foods and beverages. 
These examples would include fermented grains or 
vegetables26 as well as beer and wine27,28 that con-
tain β-glucans, oligosaccharides and polyphenolic 
compounds29. Other fermented foods might contain 
prebiotics synthesized in situ by fermentation-associated 
microorganisms. For example, exopolysaccharides with 

prebiotic activity can be formed during dairy and cereal 
fermentations30. It is also possible that some fermented 
foods and beverages can contain both live microorgan-
isms and prebiotic substrates. However, such products 
would not qualify as synbiotic foods31 in the absence of 
a demonstrated health benefit.

Making fermented foods
Which microorganisms are needed to make fermented 
foods? To understand the scope of fermented foods in 
nutrition and health, it is necessary to acknowledge the 
wide diversity of microorganisms used for fermented 
food production. The most common fermented foods 
and beverages require lactic acid bacteria (LAB), AAB, 
bacilli or other bacteria, yeasts, or filamentous fungi. 
These microorganisms were among the very first to be 
isolated and characterized by Pasteur, Lister and other 
early microbiologists32–34 and have long served as model 
organisms in biology35,36 and as a source of industrial 
chemicals and bioactive molecules37,38. More recently, 
they were integral to the discovery and application of 
CRISPR technology39.

LAB are a group of Gram-positive, non-spore form-
ing, aerotolerant bacteria that are phylogenetically posi-
tioned within the Firmicutes phylum, predominantly 
in the order Lactobacillales. They are among the most 
important and widely used microorganisms in food 
fermentations, serving essential functions in fermented 
dairy, meat, cereal and vegetable products40. LAB include 
the reclassified members of the Lactobacillaceae or 
Lactobacillus genus complex41 and numerous other taxa, 
including species of Lactococcus and Tetragenococcus 
associated with milk and soy sauce fermentations, 
respectively. Besides LAB, particular species of Bacillus 
and AAB are solely responsible for some fermented foods 
(for example, Bacillus subtilis used for natto, made from 
whole soybeans, and AAB for vinegar) or have impor-
tant supporting roles as is the case for Staphylococcus, 
Enterococcus, Brevibacterium and Propionibacterium 
in sausage and cheese fermentations42,43. Among the 
fungi, ethanol-producing yeasts, usually species of 
Saccharomyces, are used for bread, beer, wine and various 
alcoholic fermentations. Interestingly, the domestication 
of Saccharomyces cerevisiae strains and their adaptation 
to a range of fermentation substrates and environments 
has led to the formation of distinct lineages associated 
with particular products44,45.

Similar domestication events are also likely respon-
sible for the widespread use of atoxigenic filamentous 
fungi46. Penicillium, Aspergillus and Rhizopus are among 
the moulds commonly used for fermented dairy, meat 
and soy products and include proteinase, lipase and 
amylase-producing strains47. As described later, many 
food fermentations involve microbial communities  
consisting of multiple genera and taxa.

Considerable progress has been made towards under-
standing the function of individual microorganisms in 
fermented food production and then using that infor-
mation to improve products and strains. Phylogenomic 
analyses have shown that, despite their general bio-
chemical and physiological similarities, wine, beer and 
bread yeast strains evolved independently based on 

Box 2 | Key conclusions of this consensus paper

•	Fermented foods are defined as foods made through desired microbial growth and 
enzymatic conversions of food components.

•	Microorganisms (either autochthonous or intentionally added) determine the course 
and outcome of fermentation processes and contribute to the development of the 
characteristic properties of the final fermented food.

•	Fermented food products should only be labelled as ‘containing probiotics’ when 
there is evidence that their live microbial components provide health benefits and 
the precise microbiological content is defined.

•	A modern understanding of patterns of microbial community succession during 
the fermentation and ageing of fermented foods is being obtained through the 
application of metagenomics, metatranscriptomics and metabolomics.

•	A better understanding of the health effects of fermented foods based on data 
available from population-based diet and health studies as well as new randomized 
controlled trials are needed to clarify the role of the consumption of fermented foods 
and of the live microorganisms they might contain in human health.

•	When properly made, fermented foods and the bacteria and fungi responsible for 
their manufacture have a long history of safe use.

•	Fermented foods could benefit health through the nutritive alteration of the 
ingredients, modulation of the immune system, the presence of bioactive 
compounds that affect intestinal and systemic function, or by modulating gut 
microbiota composition and activity.
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habitat and geography as well as through human-driven 
domestication48,49. Since the twentieth century, pure 
starter cultures have been developed to provide consist-
ency and convenience and to accommodate large-scale 
industrial fermentations50. Typically, only one or two 
microbial strains (for example, bread, yoghurt, cheese) 
are necessary to initiate those fermentations51. Although 
technological performance properties remain one of 
the main criteria, the isolation and development of new 
strains increasingly relies on relevant genomic infor-
mation and on the application of available molecular 
tools50,52–54.

Culture-dependent methods remain the gold stand-
ard for the strain-level characterization of fermentation 
microbiota; however, these methods are increasingly 
complemented by holistic, meta-omics methods 
(metagenomics, metatranscriptomics, metaproteo
mics and metabolomics)55. Molecular approaches have 
shown that fermented foods are frequently depend-
ent on complex, multi-kingdom, microbial commu-
nities functioning in concert via dynamic succession 
processes56–59. However, despite this complexity, the 
presence of a so-called core microbiota (defined as 
widespread microorganisms that are central to the func-
tions of these ecosystems) are often apparent in a wide 
range of fermented foods60–64. Provided that the starting 
materials are generally the same, spontaneous fermen-
tations (relying on autochthonous or resident micro
organisms present in the ingredients and/or surrounding 
environment) typically result in products that contain 
very similar microorganisms (even the same species), 
regardless of provenance65. For example, fermentations 

of cabbage and other green leafy vegetables are all 
initiated by Leuconostoc mesenteroides followed by 
Lactiplantibacillus species and Levilactobacillus brevis, 
independent of whether the product is called sauerkraut 
(Europe and North America), kimchi (Korea), suan-cai 
(China) or sinki (Nepal)66. This highly reproducible 
succession of fermentation microbiota in spontaneous 
vegetable fermentations, whereby the assembly of fer-
mentation microbiota is limited by dispersal, reflects 
the stable association of these organisms with the raw 
materials (Fig. 1). Similar reproducible successions occur 
in fungi-fermented foods67. Collectively, these and other 
observations suggest that selective and competitive 
pressures drive microbiome assembly and succession 
dynamics and provide a basis for predicting the out-
come of food fermentations65. Thus, provided that the 
raw materials and environmental conditions are consist-
ent with the typical practices used for making that food 
and that salt concentrations, pH, atmosphere or other 
expected control measures are in place, unpredictable 
events, which constitute fermentation failure, are rel-
atively rare (Fig. 1). In the absence of those conditions 
and control measures, food fermentations could result 
in inferior or unsafe products.

What processes are involved in making fermented foods. 
The outcome of a food or beverage fermentation pro-
cess depends on the microorganism-led conversion of 
substrates into metabolites that support the aroma and 
taste, appearance, preservation, and nutritional pro
perties of the finished product. These characteristics 
are time-dependent and determined by the microbiota 

Table 1 | Distinctions between probiotics, fermented foods and probiotic fermented foods

Microbial composition

Probiotic 
substance

Definition Format Evidence 
for health 
benefit

Claim that is consistent 
with categorya

Alive and 
present in levels 
demonstrated to 
provide benefit

Taxonomically 
defined to 
strain level

Genome 
sequence 
available

Probiotic Live microorganisms 
that, when 
administered in 
adequate amounts, 
confer a health 
benefit on the host

No specific 
format 
required

Required “Probiotic” can be used 
on the label along with a 
health benefit claim, such 
as “helps to reinforce the 
body’s natural defences”, 
if the claim is supported 
by evidence

Required Required Required

Fermented 
food

Foods made 
through desired 
microbial growth 
and enzymatic 
conversions of food 
components

Food Not required If live microorganisms 
are not present: “Foods 
made by fermentation”; 
if live microorganisms are 
present: “Contains live 
and active cultures”

Not required Not required Not required

Probiotic 
fermented 
food

Food fermented 
by or containing 
probiotic(s) with 
strain-specific 
evidence

Food Required Same as for probiotic Required for 
probiotic but not 
for fermentation 
microorganisms

Required 
for probiotic 
but not for 
fermentation 
microorganisms

Required 
for probiotic 
but not for 
fermentation 
microorganisms

Food fermented 
by or containing 
probiotic(s) without 
strain-specific 
evidence

Food Required “Contains probiotics” Required for 
probiotic but not 
for fermentation 
microorganisms

Required 
for probiotic 
but not for 
fermentation 
microorganisms

Required 
for probiotic 
but not for 
fermentation 
microorganisms

aAs allowed by local or regional regulations.
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as well as by a range of physicochemical parameters, 
including temperature, pH, water activity, oxidation–
reduction potential and substrate availability. How 
these intrinsic and extrinsic environmental parameters 
are ultimately managed can have profound effects on 
the final properties and characteristics of fermented  
foods68.

Systems and evolutionary biology approaches are 
now providing a rational basis for controlling or manag
ing microbial diversity and community structure to 
achieve different fermentation processes65,69. Although 
fermented foods have long been studied as model sys-
tems to understand microbial ecology70, these latest 
efforts integrate broader ecological and evolutionary 
principles, including dispersal, selection, drift and 
diversification65,71–73. The contribution of these prin-
ciples to community assembly in fermented foods is 
outlined in Fig. 1. The use of these principles enables 
the control of fermentation microbiota in food inde-
pendent of whether the fermentation is initiated with 

starter cultures, spontaneously or by inoculation from 
a prior successful fermentation of the same type (that 
is, back-slopping) (Fig. 1). The application of systems 
biology approaches combined with community recon-
structions can identify specific microbial interactions 
that drive community composition51,74, determine a 
genetic basis for particular microorganisms to live in  
a fermented food environment75 and recreate the domes
tication processes that generated the industrial cultures 
used in fermentations76,77. Ultimately, findings from those 
studies will help to address product variation and qua
lity issues that occur even when starter cultures are used. 
They might also lead to the identification of biomarkers 
to monitor these foods throughout production and to 
predict nutritional and health-impacting qualities.

Fermentation and food safety
Does fermentation improve food safety? Fermented 
foods that contain appreciable levels of fermentation- 
produced organic acids (>100 mM), combined with low 
water activity, salt, nitrite and other antimicrobials, have 
a long record of food safety78. Likewise, beverages con-
taining 4% or more alcohol and pH values less than 4.5 
are also considered microbiologically safe79. Many LAB, 
whether part of the autochthonous microbiota or added 
as starter cultures, are known to produce bacteriocins 
that inhibit undesirable bacteria, including Listeria, 
Staphylococcus and Clostridium80.

Food fermentations can also enhance food safety and 
nutritional quality by removing toxic or anti-nutritive 
compounds from the raw ingredients. For example, the 
removal of toxic compounds is a prominent feature of 
cereal, legume and tuber fermentations81. Bitter cassava, 
for example, contains cyanogenic glycosides that must be 
removed by fermentation, soaking or other suitable pro-
cesses to avoid acute toxicity when consumed82. During 
sourdough fermentations, some LAB facilitate the deg-
radation of phytate, a cereal grain-associated compound 
that chelates divalent cations and prevents their absorp-
tion in the gastrointestinal tract83. Reducing phytate 
results in enhanced calcium, magnesium, iron and zinc 
bioavailability from these breads84–86. Sourdough fer-
mentation is also hypothesized to reduce the concentra-
tion of other immune-reactive proteins, including the 
amylase-trypsin inhibitor in wheat, and could therefore 
be better tolerated than conventional breads by indi-
viduals with non-coeliac wheat intolerance or irritable 
bowel syndrome87.

Do fermented foods have food safety risks? For any food 
product, there are safety concerns associated with live 
pathogenic microorganisms as well as toxins or meta-
bolic products that can produce harmful effects. With 
few exceptions, food-fermenting LAB, yeasts and fila-
mentous fungi are non-pathogenic and do not produce 
toxins or harmful end-products88. When properly made 
from safe and wholesome ingredients, fermented foods 
are rarely associated with gastroenteritis. Nonetheless, 
some cheeses and low-acid fermented foods can pose 
a safety risk if the food is contaminated with Listeria 
monocytogenes, Salmonella, Clostridium botulinum or 
other foodborne pathogens89. Although not a direct 
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Fig. 1 | Processes that determine community assembly in traditional fermented 
foods. The conditions established during traditional and industrial fermentations 
provide a basis for controlling and manipulating autochthonous and allochthonous 
microorganisms. Microbial communities in spontaneous food fermentations are 
determined by dispersal and selection. In most spontaneously fermented foods, 
plant-associated or animal-associated microorganisms are dominant. Back-slopping  
of fermented foods eliminates dispersal limitation, and selection is the major principle 
that determines community assembly. Among lactic acid bacteria (LAB), nomadic and 
free-living species are dominant in spontaneous food fermentations while host-adapted 
species dominate many back-slopped fermentations184. Speciation and domestication 
have been demonstrated for eukaryotic food fermenting organisms, including 
Saccharomyces cerevisiae and Aspergillus oryzae, but not for bacteria49,97. If comparable 
raw materials and fermentation protocols are employed, community assembly in 
fermented foods is reproducible at the genus level (spontaneous food fermentations)  
or even at the species level (back-slopped food fermentations). The assignment  
of lifestyles to food-fermenting lactobacilli has been previously described185.  
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effect on safety, some microorganisms, including spe-
cies of the Lactobacillaceae as well as Enterococcus and  
Staphylococcus associated with long-ripened cheeses, sau-
sages and other fermented foods, can carry transmissible  
antibiotic-resistance genes90–92.

The microbial metabolites of some fermented foods 
can, under certain circumstances, also present safety 
risks. Alcohol (for example, wine, beer and liquor) 
and salt (for example, soy sauce or kimchi) are inher-
ent constituents of some fermented foods and should 
be consumed in moderation. Histamine, tyramine 
and other biogenic amines are formed by some LAB 
via the decarboxylation of amino acids during the fer-
mentation of cheese, meats, vegetables, soybeans and 
wine93. In the absence of host-mediated detoxification 
systems, these amines can cause mild to more severe 
effects such as migraines94. Several strategies have been 
adopted to reduce or mitigate biogenic amine forma-
tion, including hygiene to minimize the occurrence of 
microorganisms producing these compounds and using 
decarboxylase-negative starter cultures95,96.

Mycotoxins are a potential concern for all fermented 
foods produced with filamentous fungi. However, 
domestication and careful strain selection have effec-
tively eliminated mycotoxin-producing lineages of 
Aspergillus and Penicillium from koji, cheese and other 
fermented foods76,97,98. Other microbial metabolites, 
including citrulline and reuterin, are precursors of the 
toxic compounds ethyl carbamate99 and acrolein100, 
respectively. Both occur in alcoholic beverages as well as 
in other fermented foods. However, their risks to human 
health from the exposure to fermented foods have not 
been established101,102.

Fermented foods and human health
What is the current evidence that fermented foods ben-
efit human health? Consumer interest in fermented 
foods has been driven in large part by their suggested 
nutritional benefits, and this interest has led to renewed 
popularity of these foods on nearly every continent24,103. 
However, except for yoghurt and cultured dairy prod-
ucts, few human clinical studies have been performed to 
verify their benefits23,24,104. Yoghurt consumption is asso-
ciated with reductions in adiposity factors (BMI, waist 
circumference)105, type 2 diabetes mellitus and cardio-
vascular disease (see reviews106,107), among other positive 
indications108. Although much of this evidence is based 
on prospective or epidemiological studies, more than 
20 RCTs with yoghurt and cultured milk products have 
been reported for both healthy individuals and patient 
population groups109. Likewise, milk kefir110, kimchi111, 
sauerkraut112, natto113, vinegar114 and sourdough bread115 
have been investigated in at least one RCT. By contrast, 
evidence of health promotion for other fermented foods 
(for example, kombucha) is mostly limited to chemical 
analyses and animal and cell culture models24.

A better understanding of the health benefits of fer-
mented foods will be obtained from harvesting infor-
mation from existing population-based diet and health 
databases as well as with new RCTs. These studies should 
address the health outcomes arising from the intake of 
differentiated fermented food categories (including 

fermented dairy products and other fermented foods 
with living versus dead microorganisms), food types 
(such as fermented vegetables, fermented soy and 
yoghurt), and individual fermented food products with 
well-characterized strains and nutrient compositions. 
Large, placebo-controlled RCTs will need to account 
for the known limitations of these types of nutrition 
study, including blinding, sample size, diet control, 
dietary recall and adequate intervention times, as well 
as the challenges specific to fermented foods (in par-
ticular, how to provide relevant placebo treatments). To 
prevent the foods from being easily distinguished by 
study participants, placebo controls might need to be 
made to provide the same sensory attributes expected 
for the fermented foods being tested. Retrospective 
cohort or, preferably, prospective cohort studies that 
meet the Bradford Hill criteria should be used116 and 
efforts should be made to avoid misleading or unwar-
ranted conclusions117. It should be noted that additional 
challenges exist for cohort studies because dietary data-
bases do not often include fermented foods as a cate-
gory and critical aspects of those foods might not be 
reported (for example, percent fat, percent protein or 
microbiological content).

What is the mechanistic basis for the health benefits 
of fermented food? Knowledge on the specific health- 
promoting properties of fermented foods provides a 
foundation to evaluate how those properties vary by 
food type, strain composition and production methods. 
Several routes for health promotion by fermented foods 
are proposed (Fig. 2), including nutritive alteration of 
raw ingredients and the biosynthesis of bioactive com-
pounds, modification of the human gut microbiota, and 
development and modification of the immune system.

Microbial activity during food fermentations results 
in the enrichment and/or removal of compounds that 
affect the nutritional composition of the final food 
product118. Microorganisms reduce the concentrations 
of high-calorie monosaccharides and disaccharides 
(glucose, sucrose and fructose) present in milk, meat 
and plants via catabolic pathways. Reductions in certain 
sugars could also reduce the glycaemic index119,120 and 
improve food tolerability (for example, lactose in dairy 
foods, fructans in wheat, or raffinose, stachyose and ver-
bascose in soybeans and legumes)121. Fermentation can 
result in the hydrolysis of polysaccharides, proteins or 
fats, thereby increasing their digestion122–124. Other enzy-
matic transformations with important nutritional impli-
cations also occur, including detoxification reactions (for 
example, degradation of linamarin in bitter cassava) and 
the removal of anti-nutritive factors (for example, inacti-
vation of trypsin inhibitor in soybeans and phytic acid in 
cereals such as sorghum)125–127. For polyphenol-containing 
foods, the conversion of phenolic compounds by 
lactobacilli128 increases the bioavailability of flavonoids, 
tannins and other bioactive compounds129,130. The biosyn-
thesis of vitamins, amino acid derivatives, organic acids 
and cofactors can also occur during fermentation23,131,132, 
with effects at either local gastrointestinal or systemic 
sites. Some of these compounds are broadly distributed 
between fermented food types (such as lactic acid133 
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and acetic acid134), whereas others are common in cer-
tain foods (for example, alkyl catechols135) or limited to 
certain microorganisms with specific enzymatic acti
vities (for example, synthesis of γ-aminobutyric acid, 
conjugated linoleic acid or angiotensin-converting  
enzyme inhibitors132).

Multiple studies in humans have shown that micro-
organisms in fermented foods can survive gastric tran-
sit and reach the colon112,136–144. Indeed, many of the 
LAB that dominate lactic acid-fermented foods pos-
sess intrinsic characteristics that promote their ability 
to survive gastric transit (for example, acid and bile 

tolerance)145. Depending on individual dietary habits, 
fermented food-associated LAB can transiently consti-
tute between 0.1% and 1% of the bacteria in the large 
intestine and a comparable proportion in the small intes-
tine145. This percentage is based on current estimates  
of autochthonous microbiota in the gastrointestinal 
tract146 and the presence of up to 1011 LAB cells in a sin-
gle serving of many fermented foods, such as yoghurt 
or kefir, that contain live and active microorganisms. 
Similarly, another study published in 2020 showed that 
food-associated LAB reached faecal metagenome abun-
dances of >0.1%147. Although these microorganisms are 
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unlikely to maintain long-term residence in the intes-
tine, some fermented food microorganisms are known to  
be metabolically active in the gastrointestinal tract144,148, 
and short-term colonization could be sufficient to syn-
thesize bioactive compounds, inhibit intestinal patho
gens and mediate epithelial modulatory effects (for 
example, via interaction with Toll-like receptors149). 
Such interactions would be augmented by the repeated 
daily consumption of the fermented food. According 
to population-based studies and RCTs, fermented 
foods can also influence the composition of the gut 
microbiota136,150–153. Modulation of the gut microbiota can 
result from the living (or inactivated) microorganisms in 
those foods, the nutritional components and metabolites 
released as a result of fermentation, and changes these 
food constituents confer on the host immune system. 
These effects are likely dependent on inter-individual  
differences in host physiology and gut microbiota 
composition154.

As approximately 70% of the human immune system 
is located in the gastrointestinal tract155, foods and bev-
erages are the major conduit of contact between external 
antigens and the human body. The gastrointestinal tract 
is vulnerable to the initial pattern of microbial coloniza-
tion during the first months of life156, potentially setting 
a critical window for microbial stimuli effects on the 
immune system. In one cross-sectional study, fermented 
food intake (fermented vegetables) during early child-
hood was associated with a reduced risk of childhood 
atopy157,158. In another epidemiological study, fermented 
food consumption combined with common daily-life 
exposure (for example, hand versus machine dishwash-
ing) also reduced the risk of childhood allergies157,158. 
The authors from the former study further reported 
that an anthroposophic lifestyle (low antibiotic use and 
vaccinations and high intake of fermented vegetables) 
was associated with differences in infant microbiome 
structure, including a higher abundance and diversity 
of LAB, and a higher concentration of acetate compared 
with infants from a traditional lifestyle159. Fermented 
food intake is also one of the synergistic factors asso-
ciated with a farming upbringing, a lifestyle factor that 
has consistently been associated with reduced allergy 
and asthma risk (reviewed elsewhere160). These asso-
ciations could indicate that a lack of fermented foods 
in modern, industrialized societies constitutes a sub-
stantial loss in exposure to non-harmful microorgan-
isms important for immune system development and 
maintenance.

Although fermented foods such as milk kefir161 have 
been shown to modulate immune responses in numer-
ous animal models, RCTs or prospective studies on the 
human immune system have yet to be performed. It is 
expected that the modulation of the human immune 
system by fermented foods would be the result of the 
combined effects of compounds present in the starting 
ingredients and those formed during fermentation as 
well as of living and dead or inactivated microorganisms.  
Those fermentation-associated microorganisms and 
their cell components (for example, peptidoglycan, sur-
face proteins, exopolysaccharides and lipoteichoic acid) 
are already known to be immune reactive according to 

animal model and in vitro studies149,162–164. Knowledge 
about other immune-modulating compounds, such as 
d-phenyllactic acid, produced by lactic acid bacteria 
in situ165, is still emerging. Ultimately, the precise molec-
ular stimuli in fermented foods responsible for immuno-
modulation probably depend on the total composition 
of the product133,134,166.

What are the regulatory considerations for fermented 
foods? Guidelines that govern food fermentation are 
covered in international regulations and are mainly 
concerned with food safety167,168. The use of microbial 
cultures is also regulated and includes criteria for estab-
lishing safety, such as the ‘Generally Recognized As Safe’ 
designation in the USA or the ‘Qualified Presumption 
of Safety’ list in Europe. The latter, for example, is a 
designation assigned by the European Food and Safety 
Authority to groups of microorganisms that, in general, 
do not raise safety concerns as components of foods, 
including fermented foods169. Strains developed by the 
use of recombinant DNA technology or those that are 
genetically modified have different regulatory controls. 
For example, in the USA, genetically modified strains 
must have a ‘Generally Recognized As Safe’ status, 
whereas in Europe, such products require Qualified 
Presumption of Safety status170.

The identification of core microbial components in 
fermented foods has the potential to lead to new regu-
lations around the labelling of these foods. Regulations 
could be used to ensure that minimum requirements 
relating to the involvement of specific microbial taxa 
in the fermentation process are met. Only a few stand-
ards exist, mostly for cultured dairy products. For 
example, the Codex Alimentarius states that yoghurt 
should be made using a combination of S. thermo­
philus and L. delbrueckii subsp. bulgaricus and that kefir  
is a fermented milk consisting of Lentilactobacillus kefiri 
and species of the genera Leuconostoc, Lactococcus and 
Acetobacter, in addition to lactose-fermenting yeasts 
(Kluyveromyces marxianus) and non-lactose-fermenting 
yeasts (Saccharomyces unisporus, S. cerevisiae and 
Saccharomyces exiguus)171. Similar standards could 
emerge as the microorganisms present in other fer-
mented foods are identified (for example, kombucha 
and water kefir).

What is the standing of fermented foods in dietary guide-
lines? Fermented foods are widely consumed around the 
world and have been estimated to account for approxi-
mately one-third of the human diet172,173. However, with 
few exceptions, fermented foods are generally absent as 
a recommended category in dietary guidelines172,174,175. 
The only country, to our knowledge, that has a specific 
guideline is India, which encourages pregnant women 
to consume fermented foods176. Other countries, includ-
ing the USA and Canada, mention yoghurt and kefir in 
the dairy products section136,138, but there is no specific 
emphasis on fermented foods. Owing to the high levels 
of live, potentially health-promoting microorganisms 
in many fermented foods, these foods have been advo-
cated for inclusion in dietary recommendations132,172,174. 
To advance this field, studies that collect dietary 
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information should also track foods that contain live 
cultures. Adding granularity to dietary intake data so 
that fermented foods are not subsumed under other 
categories will enable researchers to better understand 
the role of these foods in health.

Implications for stakeholders
One of the main goals of this panel was to bring scientific 
clarity to the rapidly growing field of fermented foods 
and beverages. We anticipate that the outcomes descri
bed in this report (Box 2) could affect a range of stake-
holders, including consumers, industry, government,  
and science communicators.

Consumers. Although consumers have become increas-
ingly interested in fermented foods, it is unfortunate 
that, in our opinion, much information available on fer-
mented foods in popular press magazines, websites and 
social media is exaggerated or inaccurate. For example, 
on the many internet and popular magazine lists of the 
‘best super foods’, fermented foods are often ranked at 
the top. Such labels, while perhaps useful for market-
ing, do not convey accurate information for consum-
ers regarding nutritional or other specific properties 
of fermented foods. Furthermore, as discussed earlier, 
fermented foods are frequently considered as probiotic 
foods, even when live microorganisms are absent in the 
final product and the health benefits have not been clin-
ically demonstrated. This report clarifies these points for 
consumers and communicators.

Industry. As noted previously, fermented foods and 
beverages were among the first processed foods. Bread, 
beer, wine and fermented dairy, soy and other prod-
ucts continue to represent a considerable portion of 
the total processed foods industry. This form of pro-
cessing remains extremely important in many parts 
of the world, whereby fermented foods can enhance 
both food security and sustainability177. Food fermen-
tation can also provide new strategies for industry to 
address contemporary socioeconomic and health chal-
lenges involving ageing, malnutrition and obesity178. 
Manufacturers who produce and market fermented 
foods can benefit from clear definitions and criteria 
for what constitutes probiotic fermented foods. In par-
ticular, we reaffirm the statement in Hill et al.17 that 
fermented foods are not equivalent to probiotic foods. 
Many fermented food products have no evidence that 
their live microbial component provides health ben-
efits and the precise microbiological content is rarely 
defined. Without this level of characterization, they 
should not be labelled as “containing probiotics”. Some 
manufacturers supplement fermented foods with 
microorganisms after a heat treatment, perhaps to 
satisfy consumer interest in adding live microorgan-
isms to their diet. These products, in our view, do not 
reflect the expected characteristics of fermented foods 
containing live microorganisms. In general, there is 
no expectation that fermented foods must contain live 
microorganisms. The most notable exception is for 
yoghurt, where, depending on the jurisdiction, spe-
cific requirements can exist. Industry is responsible for 

producing fermented foods following good manufac-
turing practices and should practice advertising and 
labelling that is truthful and informative and should be 
consistent with the criteria stipulated above.

Government. In most jurisdictions, governments pro-
vide regulatory oversight of the safety and marketing 
of fermented foods, including advertising, product 
labelling and health benefit claims. In Europe, a broad 
range of fermented foods are made in accordance with 
so-called Protected Designation of Origin requirements 
that impose geographical, manufacturing and qual-
ity requirements179. Similar arrangements also exist in 
other countries. Although the Protected Designation 
of Origin framework is designed to control product 
claims about geographical origins and production 
practices and not microbiological properties of foods, 
per se, these protections can dictate the type or nature 
of the cultures used in cheese, sausages, bread, vinegar 
and other fermented foods. Thus, for these products, 
governments can indirectly influence how fermented 
products are produced as well as the safety and quality 
properties. This process is especially relevant as indus-
trialization and high-throughput production practices 
have been adopted even by traditional small-scale 
manufacturers180.

Government agencies are also responsible for pro-
viding accurate and informative nutritional labelling 
and for reviewing and approving health benefit claims. 
However, as already noted, most regulatory agencies 
have not considered the potential inclusion of fermented 
foods in dietary guidance programmes beyond their 
nutritional contribution to health. Nonetheless, as more 
clinical and epidemiological studies are reported, such 
efforts could be warranted.

Conclusions
For more than a century, microbiologists have sought 
to identify and describe the relevant ‘microbial parts’ 
within fermented foods and beverages. Only in the 
past two decades have researchers from multiple sci-
entific disciplines, including systems and molecular 
biology, microbial ecology, and bioinformatics, begun 
to understand how those parts are assembled to build 
microbial communities that are ultimately responsible 
for the attributes associated with fermented foods and 
beverages. Collectively, this research provides a rational 
basis for improving both the functional characteristics 
and nutritional properties of these foods. It could also 
be feasible to identify and introduce novel microbial 
species that can augment desirable traits50. Many spon-
taneously fermented foods serve as a rich reservoir of 
potentially valuable strains181–183. Of particular interest 
is the possibility of predicting the quality attributes of 
fermented foods and beverages based on the initial 
microbial composition of the raw materials. Ultimately, 
the production of fermented foods and beverages with 
greater quality control will ensure the delivery of prod-
ucts that provide flavour, texture and health-related 
attributes.
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