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Abstract: Idiopathic pulmonary fibrosis (IPF) is a severe fibrotic lung disease characterized by
irreversible scarring of the lung parenchyma leading to dyspnea, progressive decline in lung function,
and respiratory failure. We analyzed lung transcriptomic data from independent IPF cohorts using
weighted gene co-expression network analysis (WGCNA) to identify gene modules based on their
preservation status in these cohorts. The consensus gene modules were characterized by leveraging
existing clinical and molecular data such as lung function, biological processes, pathways, and lung
cell types. From a total of 32 consensus gene modules identified, two modules were found to be
significantly correlated with the disease, lung function, and preserved in other IPF datasets. The
upregulated gene module was enriched for extracellular matrix, collagen metabolic process, and BMP
signaling while the downregulated module consisted of genes associated with tube morphogenesis,
blood vessel development, and cell migration. Using a combination of connectivity-based and trait-
based significance measures, we identified and prioritized 103 “hub” genes (including 25 secretory
candidate biomarkers) by their similarity to known IPF genetic markers. Our validation studies
demonstrate the dysregulated expression of CRABP2, a retinol-binding protein, in multiple lung cells
of IPF, and its correlation with the decline in lung function.

Keywords: Idiopathic pulmonary fibrosis; weighted gene co-expression network analysis; lung
fibrosis; gene modules; consensus network analysis; CRABP2

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a rare lung disease characterized by irreversible
scarring of the lung parenchyma leading to dyspnea, progressive decline in lung function,
and respiratory failure [1]. Typical clinical course in IPF includes slow and steady loss
of lung function resulting in a low median survival rate post disease diagnosis [2]. Both
epigenetic and transcriptional changes are associated with IPF risk and clinical phenotype.
Existing approaches use imaging and histological features for clinical assessment and IPF
diagnosis. Several studies have been able to identify gene signatures using transcriptomic
profiles from both lung tissue [3–5] and peripheral blood mononuclear (PBMC) [6] samples.
While they were able to distinguish IPF samples from the healthy controls, the cellular and
molecular basis for the IPF disease progression is still relatively unknown.

The established marginal statistical analysis methods tend to ignore the interactions
between the genes and often result in gene lists that are functionally incoherent with
no unifying biological theme [7]. Network-based methods on the other hand amount to
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pathway-based gene selection approaches [8] as they consider the strength of interactions
and intramodular connectivity between the genes and are therefore known to produce
biologically meaningful gene lists. Recent attempts have been made to analyze gene co-
expression networks to detect key genes, pathways, and regulatory factors in IPF [9–14].
These modules are often strongly enriched for distinct functional categories, phenotype-
genotype associations, or cell type markers. However, existing studies in IPF typically focus
on a single cohort and do not leverage all the transcriptomic data available. Consensus
mechanisms that combine multiple networks could lead to the identification of gene sets
or pathways that are strongly conserved between studies involving related but different
diseases or different biological tissues within the same disease. Results based on such
consensus unsupervised approaches are hypothesized to be more robust and biologically
relevant when compared to those from a single dataset or cohort.

In this study, we implemented a consensus version of weighted gene co-expression
network analysis (WGCNA) on two lung transcriptomic cohorts to identify conserved
clusters of genes. Candidate modules were identified based on their correlations with
IPF phenotypic traits, including the forced vital capacity (FVC) and diffusing capacity of
lungs for carbon monoxide (DLCO). Highly connected “hub” genes within the modules
were retrieved based on the strength of their associations with the phenotypic traits. We
further characterized and prioritized these modules by leveraging (i) single-cell RNA-seq-
based cell markers from normal and IPF lung samples, and (ii) genome-wide association
studies (GWAS) based on lung function traits and gene associations. Additionally, the
hub genes within these modules were filtered using curated gene lists to obtain novel
fibrotic candidates and potential biomarkers. The final set of secreted proteins and novel
candidate genes were validated with the help of independent lung transcriptomic datasets.
These candidate biomarkers were also found to distinguish and categorize IPF and other
respiratory lung disorders.

2. Results
2.1. Consensus Gene Modules

Normalized gene expression profiles from whole lung tissues across the two training
cohorts (GSE47460 and GSE53845) were extracted from the NCBI GEO website. The LTRC co-
hort (GSE47460) was filtered to retain only the IPF samples and controls. Using the expression
profiles of 15,180 genes found in both studies as inputs, we identified 32 consensus gene mod-
ules (Figures 1A,B and S1b) (Supplementary Methods). From these 32 modules, we selected
14 modules that showed a significant correlation (correlation ≥ 0.5; p-value < 0.05) with the
disease in at least one cohort (Figure 1C). Genes within these modules are hypothesized to be
co-expressed in samples from both studies [15]. The sizes of these consensus modules were in
the range of 100 to 2000 genes (Supplementary Table S4). All the pre-processing, and analysis
steps, were implemented using the WGCNA R package [16].

2.2. Identification of Conserved Candidate Modules Correlated with IPF Phenotypic Traits

Candidate modules that are significantly correlated with phenotypic traits in addi-
tion to being strongly preserved in independent validation studies are hypothesized to
represent gene clusters associated with distinct molecular mechanisms of the investigated
disease. To identify candidate modules associated with IPF, the consensus gene modules
were first correlated with the sample phenotype information (IPF or Control) using the
module eigengenes (Supplementary Methods). Additionally, the FVC and DLCO lung
function traits from the LGRC cohort (GSE47460) were used in the analysis. We found three
consensus modules significantly correlated (|Cor| ≥ 0.5; Pval (adj) ≤ 0.05) with both the
phenotype status and the lung function traits (Figure 1C). The brown (1333 genes) and
grey60 (305 genes) modules were significantly upregulated in IPF patients in both cohorts
while being significantly associated with DLCO and FVC. Similarly, the blue (2020 genes)
module was observed to be downregulated in IPF samples from both cohorts (Figure 1D).
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Statistical significance of these module correlations was assessed using Fisher’s asymptotic
p-values.
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Figure 1. Consensus WGCNA steps. (A) Q–Q plot of the scaled TOM matrices of both the training co-
horts. (B) Hierarchical dendrogram constructed based on the consensus TOM matrix. (C) Correlation
heatmap of consensus modules with the phenotypic traits from both training datasets. Candidate
modules identified based on the correlation strength with phenotype status in both cohorts (GSE47460
or LGRC; GSE53845) and the lung-function traits (FVC and DLCO) from the LGRC cohort. Only
modules with a disease (IPF) correlation≥ 0.5 in either of the two training cohorts have been included
in the heatmap. (D) Box plots illustrating the expression levels of intramodular hubs from the two
candidate modules (brown and blue) in the two cohorts. (E,F) Scatter plots of module preservation
scores of consensus modules (on the left) and box plots of expression levels of the brown and the
blue modules (on the right) in two independent validation cohorts, namely, GSE150910 (Panel E) and
GSE134692 (Panel F).

Next, we implemented module preservation analysis to obtain the preservation sta-
tus (Zsummary) of all consensus modules (Supplementary Methods). We used two in-
dependent datasets (GSE150910 and GSE134692) as the test networks and alternated
the two training datasets as reference networks. Based on the composite Z scores, we
observed that the brown and blue modules were preserved in both the test cohorts
(Supplementary Figure S2a,b). The brown module was moderately preserved in both
the datasets while the downregulated blue module was preserved strongly in GSE150910
(Figures 1E and S2a) and moderately in GSE134692 (Figures 1F and S2b). On the other hand,
the grey60 module, which was correlated strongly with IPF and lung function traits, was
found to be poorly preserved in both the test networks and was therefore not considered
for additional downstream analyses.

Genes within each module were ordered based on their HubScore (see Supplementary
Methods), and the top 5% of them, retrieved based on the 95th percentile threshold scores,
were categorized as the “intramodular hubs”. There was a total of 170 hub genes from the
two candidate modules with 68 of them upregulated (brown module) and 102 downregu-
lated genes (blue module) in IPF (Supplementary Table S4). These 170 hub genes were able
to categorize and distinguish the IPF patients from the healthy controls in both the training
cohorts (Supplementary Figures S3a,b) and in independent datasets, used for validation
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(Supplementary Figure S4). We further ranked these hub genes based on their similarities
to known GWA IPF genes and intersected them with secreted proteins to identify secreted
biomarkers and novel IPF-related genes. They were further used to characterize the two
phenotype correlated consensus modules. Finally, a filtered set of these hub genes were
found to distinguish IPF samples from those of other interstitial lung diseases.

2.3. Consensus Modules-Biological Processes

For functional characterization of the gene modules, we used the intramodular hubs
from each of the candidate modules as inputs to the ToppFun application of the ToppGene
Suite [17]. The brown module, upregulated in IPF, was expectedly enriched for the extra-
cellular matrix (ECM) organization (15 genes; FDR B&H: 1.36 × 10−10), genes encoding
ECM and ECM-associated proteins (22 genes; 1.36 × 10−9), and biological processes related
to ECM organization (16 genes; FDR B&H: 4.76 × 10−10). It was also enriched for genes
encoding collagen proteins, collagen formation, and collagen metabolic processes. Addi-
tionally, the brown module also consisted of genes involved in EMT, wound repair, and
fibrosis (7 genes; FDR B&H: 3.48 × 10−2), BMP signaling (5 genes; FDR B&H: 2.74 × 10−2),
and chondrocyte development and differentiation (4 genes; FDR B&H: 2.40 × 10−2). Hubs
from the downregulated blue module were enriched for tube morphogenesis (21 genes;
FDR B&H: 5.33 × 10−5) and tube development (24 genes; 3.63 × 10−5), blood vessel
morphogenesis (16 genes; 6.15 × 10−4), regulation of cell motility (15 genes: FDR B&H:
2.86 × 10−2), and epithelial cell migration (9 genes; FDR B&H: 1.40 × 10−2) (Figure 2)
(Supplementary Table S5).
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Figure 2. Functional enrichment analysis of hub genes from brown and blue modules. Network
representation of select enriched biological processes and pathways among the intramodular hubs
from the brown and the blue candidate modules. An edge between a gene (oval node) and a
functional annotation (rectangular node) indicates the membership of that gene to that annotation
term. Enriched terms are represented as blue color rectangles. Upregulated hub genes of brown
module are in pink color while the downregulated genes from the blue module are in green color.
Novel fibrotic candidates are highlighted using blue color solid node borders while the secreted novel
hubs are highlighted with zig-zag blue borders. Network is generated using Cytoscape application.

2.4. Consensus Modules for Specific Cell Types from Normal, and Fibrotic Lung Markers

We next used multiple scRNA-seq studies, and their reported lung cell-type-based
markers to detect the specific cell-type identities of the candidate modules. We performed
enrichment analysis against the compiled cell type markers from scRNA-seq studies of
both normal and IPF lung tissues. Expectedly, the brown module hubs were enriched for
genes expressed in fibroblasts and other mesenchymal cell types (Supplementary Table S6).
Specifically, significant enrichment of myofibroblast markers was observed in both normal
lung (6 genes) and IPF lung (11 genes). The brown module hubs also included several
adventitial fibroblast markers (18 genes). Accordingly, we found several intramodular
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hubs (DCLK1, COMP, SFRP2, LTBP1, SULF1, CRABP2, CTHRC1, COL3A1, FHL2, COL15A1,
COL18A1, CLMP, COL14A1, TSHZ2, VCAN, and SERPINF1) in the brown module that were
upregulated in IPF lung myofibroblast cells [18] when compared to those from healthy
controls (Supplementary Table S6). Interestingly, a recent study has shown that GPX8
expression is upregulated during the epithelial–mesenchymal transition (EMT) program
and that loss of GPX8 confers epithelial characteristics in the mesenchymal cell lines [19].
Likewise, DCLK1 is known to promote EMT [19]. Recent studies have suggested that
EMT may promote a pro-fibrotic microenvironment by dysregulating paracrine signaling
between epithelial and mesenchymal cells and the therapeutic potential of targeting EMT
in fibrotic conditions [20].

The blue module on the other hand contained a significant number of marker genes
expressed in alveolar epithelial type 1 (AT1) cells in both healthy and fibrotic human
lung tissue. Interestingly, we also found several genes (VSIG10, HSD17B6, N4BP1, PLLP,
HPCAL1, MYRF, GPM6A, and AGER) that are downregulated in AT1 cells from IPF lung
tissue [18] relative to healthy samples. On the other hand, markers of alveolar fibroblast
cells were found to be downregulated in IPF and enriched (17 genes) in the downregulated
blue module. One of the enriched genes includes the glutamate receptor GRIA1, a unique
canonical marker of the newly identified alveolar fibroblast cells [21]. These cells were
found to be involved in the recruitment of immune cells and the complement system.
Significant enrichment of AT2-signaling (7 genes) [21] and transitional AT2 (9 genes) [22]
markers were also observed (Supplementary Table S6).

2.5. Candidate Biomarkers and Novel IPF-Associated Genes

To identify potential candidate biomarkers for IPF, the disease-related hub genes were inter-
sected with a pre-compiled list of secreted proteins (Supplementary Table S3) from the human
protein atlas (HPA) and 57 candidate biomarkers were identified (Supplementary Table S4).
These 57 secreted hubs were able to differentiate the IPF patients from healthy controls in both
the training cohorts (Supplementary Figure S3c,d) as well as independent validation datasets
(Supplementary Figure S5). Of the 57 genes, 30 genes were in the upregulated brown module
and 27 genes were found in the downregulated blue module. Furthermore, 12 of these are
candidate secretory biomarkers (CFB, CFI, EFNA4, GREM1, IGF1, SCG5, SERPINF1, VCAN,
HYAL1, KL, PCDH12, and VEGFD) (Supplementary Table S3). Moreover, 12 genes from this
secreted list (IGF1, LTBP1, SULF1, SFRP2, COL15A1, MMP1, CFI, COL3A1, AGER, WNT7A,
CDH13, and CRTAC1) are potentially associated with pulmonary fibrosis.

To identify potential novel fibrotic candidates, we have compiled a set of more than
4600 fibrosis-related genes (Supplementary Table S1) from several sources (see Section 4).
Intersecting these genes with the consensus module hub genes resulted in 103 potentially
novel candidates (35 upregulated, 68 downregulated in IPF) (Figure 3A) that are previously
not associated with pulmonary fibrosis (PF). Each of these 103 novel candidates is strongly
correlated with IPF (two independent cohorts) and lung function (Figure 3B,C). Addition-
ally, among these 103 candidate genes, there are at least 25 genes known to encode secretory
proteins (Figure 3B,C) suggesting their potential as novel biomarkers in IPF. Several of
these 103 novel candidates are found to be differentially expressed (cell marker genes) in
different lung cell types (Figure 3D,E).

Out of the 35 upregulated novel hub genes from the brown module, 14 candidates are
marker genes in at least one of the lung single cells studies used in our analysis. A total of
10 upregulated novel hubs were found amongst the markers from multiple mesenchymal
cell types, including 8 markers genes (STEAP2, STEAP1, TSHZ2, DCLK1, CLMP, SEC24D,
CRABP2, and GPX8) in myofibroblasts. Moreover, DCLK1, CRABP2, CLMP, and TSHZ2
are overexpressed in myofibroblast cells of the fibrotic lung [18,22]. Some of the novel
candidates (TTC39C, CDH3, TSHZ2, CRABP2, DCLK1, and PDIA4) from the brown module
are simultaneously expressed in lung epithelial cells. Interestingly, three of the novel hubs,
CRABP2, CDH3, and DCLK1 are found to be expressed in aberrant basaloid cells, a novel
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epithelial cell population that co-express basal epithelial markers and are located at the
edge of myofibroblast loci in the IPF lung [18,22] (Figure 3D,E).
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Figure 3. Novel IPF candidate genes and their cell types (based on two IPF scRNA-seq datasets).
(A) Venn diagram illustrating the overlap between intramodular hubs with a compiled set of known
pulmonary fibrosis genes. (B,C) Heatmap representation of the IPF and lung function (FVC and DLCO)
correlations of the 35 and 68 novel candidate genes from brown and blue modules, respectively. Also
shown in the heatmap are their mean fold change in IPF and whether they encode known secretory
proteins. Heatmaps were generated using the Morpheus application. Panels (D,E) represent the lung
cell associations for the novel candidate genes using two different single-cell data sets from IPF. The
pink and green ellipses represent genes from brown (upregulated in IPF) and blue (downregulated in
IPF) modules, respectively. The rectangular nodes are different cell types. The cell types are color coded
based on their broad cell type, namely, blue for epithelial, light green for mesenchymal, light, and deep
pink for lymphoid- and myeloid-immune, respectively, and orange for endothelial cell types. Networks
are generated using Cytoscape application.

Similarly, several of the 68 novel candidates from the downregulated blue module are
marker genes in normal or IPF lung, with most of them (30 genes) expressed in alveolar
epithelial type 1 (AT1) cells (Figure 3D,E). We observed eleven genes expressed in AT2
cells. Additionally, nine more candidates (ANKRD29, C1orf198, C5orf38, CRTAC1, EMP2,
EPB41L5, PLLP, SELENBP1, and SEMA3B) were reported to be expressed in transitional
AT2 cells in IPF lung tissue [22]. Interestingly, a recent study reported that the CRTAC1
protein levels in lung lavage fluid and blood plasma is a novel peripheral protein biomarker
of the lung alveolar epithelial health status reflecting the de-differentiation of AT2 cells
in lung fibrosis [23]. Genes expressed in AT2-signaling cells are found to be involved in
Wnt signaling and detoxification while the transitional AT2 cells potentially represent a
state during the differentiation trajectory from AT2 to AT1. Several of the downregulated
candidates (GRIA1, EFCC1, CAVIN2, OLFML2A, CDH13, EMP2, PAPSS2, ECHDC3, and
KCNMB4) are overexpressed in alveolar fibroblast cells in normal lung. Finally, we also ob-
served a significant number of novel candidates (FAXDC2, EMP2, PLLP, HPCAL1, GPM6A,
PAPSS2, RRAS, GALNT18, AFF3, ANKS1A, CAVIN2, P3H2, and PDZD2) expressed in both
epithelial and vascular-endothelial cells of human lung tissue (Supplementary Table S6).
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2.6. Consensus Hubs Associated with Lung Function Activity

Loss of lung function activity is a prominent symptom in IPF resulting in a low
median survival rate post diagnosis. To find if any of the IPF-related hubs are associated
with lung function, we used the GWA gene set associated with the lung function traits
(Section 4). Intersecting them with the intramodular hubs from both candidate modules
resulted in 59 lung function-associated genes. The upregulated brown module consisted of
22 lung function candidates, including 12 potential novel candidates (CFI, COL10A1, PDIA4,
SCRG1, ASIC1, GPX8, STEAP2, STEAP1, TTC39C, ITGA7, ZNF385D, and DCLK1). Both
CFI and DCLK1 are marker genes of several mesenchymal cells like adventitial fibroblasts
and lipofibroblasts. Furthermore, the CFI gene was found to be expressed in mesothelial
cells while DCLK1 is a marker gene of the newly identified aberrant basaloid cells [18].
Moreover, CFI, COL10A1, PDIA4, and SCRG1 are all found to be secreted. The blue
module contained 37 IPF downregulated genes which are known to be associated with
lung function traits. Of those, 24 novel candidate genes (AFF3, NINJ2, FRY, ARHGAP31,
ARHGEF26, ANKS1A, EPB41L5, EMP2, SPRYD7, SLC44A2, MYRF, KCNMB4, C1orf115,
ECHDC3, RNF144B, CTNND2, GRIA1, DENND3, CCDC85A, CDH13, MATN3, OLFML2A,
PCYOX1, and SEMA3B) were identified (Supplementary Table S2). Most of them were
found to be expressed in multiple epithelial and vascular endothelial cell populations
of both normal and fibrotic lung samples. Each of these lung function candidates is
significantly correlated with DLCO and/or FVC sample measurements (data from both
GSE47460 and GSE150910 cohorts) (Table 1 and Figure 4). Thus, apart from identifying
genes related to lung function in IPF, our approach was able to provide additional GWAS-
based genetic evidence to some of the novel candidates identified earlier.

Table 1. List of selected novel candidate genes found to be associated with DLCO and FVC/FEV
lung function traits (from Open Targets Genetics portal and GWAS Catalog). Also reported are the
correlations computed between the expression levels of the candidate genes and the lung function
trait measurements from GSE47460 and GSE150910 [24].

Gene
GSE47460 GSE150910

DLCO p-Value FVC p-Value DLCO p-value FVC p-Value

Upregulated in IPF

IGF1 −0.6 7.42 × 10−26 −0.54 5.68 × 10−20 −0.55 6.51 × 10−16 −0.5 4.95 × 10−13

LTBP1 −0.61 7.23 × 10−27 −0.55 8.62 × 10−21 −0.33 4.91 × 10−6 −0.31 2.32 × 10−5

SULF1 −0.61 7.23 × 10−27 −0.55 8.62 × 10−21 −0.54 1.34 × 10−15 −0.54 4.64 × 10−15

COL15A1 −0.59 7.59 × 10−25 −0.55 8.62 × 10−21 −0.33 9.12 × 10−6 −0.18 0.0249

SERPINF1 −0.65 2.85 × 10−31 −0.59 2.91 × 10−24 −0.57 2.46 × 10−17 −0.47 1.60 × 10−11

PDIA4 −0.65 2.85 × 10−31 −0.57 1.77 × 10−22 −0.49 1.57 × 10−12 −0.46 4.54 × 10−11

COL10A1 −0.61 7.23 × 10−27 −0.57 1.77 × 10−22 −0.49 1.15 × 10−12 −0.58 1.41 × 10−17

COL14A1 −0.64 4.43 × 10−30 −0.54 5.68 × 10−20 −0.55 4.21 × 10−16 −0.5 4.72 × 10−13

COL18A1 −0.61 7.23 × 10−27 −0.58 2.27 × 10−23 −0.45 2.46 × 10−10 −0.4 3.38 × 10−8

SCRG1 −0.62 6.88 × 10−28 −0.56 1.28 × 10−21 −0.41 6.28 × 10−9 −0.35 1.67 × 10−6

GPX8 −0.59 7.59 × 10−25 −0.56 1.28 × 10−21 −0.3 3.65 × 10−5 −0.31 2.97 × 10−5

COL3A1 −0.58 6.83 × 10−24 −0.55 8.62 × 10−21 −0.48 3.25 × 10−12 −0.51 1.75 × 10−13

STEAP2 −0.59 7.59 × 10−25 −0.52 2.07 × 10−18 −0.68 7.19 × 10−27 −0.63 1.24 × 10−21

STEAP1 −0.65 2.85 × 10−31 −0.6 3.15 × 10−25 −0.64 4.73 × 10−23 −0.59 2.23 × 10−18

TTC39C −0.66 2.13 × 10−32 −0.57 1.77 × 10−22 −0.47 2.14 × 10−11 −0.41 1.42 × 10−8

ITGA7 −0.59 7.59 × 10−25 −0.51 1.17 × 10−17 −0.46 3.61 × 10−11 −0.41 1.67 × 10−8
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Table 1. Cont.

Gene
GSE47460 GSE150910

DLCO p-Value FVC p-Value DLCO p-value FVC p-Value

ZNF385D −0.61 7.23 × 10−27 −0.53 3.50 × 10−19 −0.53 1.51 × 10−14 −0.44 7.71 × 10−10

DCLK1 −0.61 7.23 × 10−27 −0.53 3.50 × 10−19 −0.5 4.62 × 10−13 −0.48 6.39 × 10−12

CFI −0.61 7.23 × 10−27 −0.51 1.17 × 10−17 −0.62 2.30 × 10−21 −0.53 2.43 × 10−14

Downregulated in IPF

ADRB2 0.67 1.24 × 10−33 0.6 3.15 × 10−25 0.69 5.22 × 10−28 0.63 5.79 × 10−22

WNT7A 0.64 4.43 × 10−30 0.6 3.15 × 10−25 0.59 8.33 × 10−19 0.56 1.33 × 10−16

AFF3 0.61 7.23 × 10−27 0.52 2.07 × 10−18 0.65 6.70 × 10−24 0.51 1.10 ×10−13

AGER 0.7 1.50 × 10−37 0.64 2.81 × 10−29 0.7 1.36 × 10−28 0.66 1.80 × 10−24

MATN3 0.61 7.23 × 10−27 0.52 2.07 × 10−18 0.25 0.0007 0.2 0.0105

NINJ2 0.65 2.85 × 10−31 0.6 3.15 × 10−25 0.67 2.67 × 10−25 0.59 8.19 × 10−19

FRY 0.66 2.13 × 10−32 0.58 2.27 × 10−23 0.61 1.42 × 10−20 0.55 3.61 × 10−16

ARHGAP31 0.64 4.43 × 10−30 0.55 8.62 × 10−21 0.57 1.24 × 10−17 0.5 1.03 × 10−12

ARHGEF26 0.61 7.23 × 10−27 0.55 8.62 × 10−21 0.63 8.08 × 10−22 0.53 1.25 × 10−14

ANKS1A 0.6 7.42 × 10−26 0.5 6.32 × 10−17 0.2 0.0104 0.21 0.0061

CCBE1 0.62 6.88 × 10−28 0.56 1.28 × 10−21 0.59 1.75 × 10−18 0.44 5.15 × 10−10

NCKAP5 0.65 2.85 × 10−31 0.62 3.05 × 10−27 0.63 7.77 × 10−22 0.61 4.24 × 10−20

EPB41L5 0.61 7.23 × 10−27 0.55 8.62 × 10−21 0.66 3.84 × 10−25 0.62 1.89 × 10−20

ANXA3 0.66 2.13 × 10−32 0.59 2.91 × 10−24 0.65 5.04 × 10−24 0.61 3.39 × 10−20

EMP2 0.68 7.32 × 10−35 0.63 3.15 × 10−28 0.3 4.57 × 10−5 0.21 0.0056

RTKN2 0.66 2.13 × 10−32 0.61 3.18 × 10−26 0.7 8.68 × 10−29 0.66 1.72 × 10−24

SPRYD7 0.66 2.13 × 10−32 0.61 3.18 × 10−26 0.52 3.90 × 10−14 0.47 2.00 × 10−11

SLC44A2 0.58 6.83 × 10−24 0.53 3.50 × 10−19 0.56 7.94 × 10−17 0.55 5.85 × 10−16

KCNMB4 0.62 6.88 × 10−28 0.53 3.50 × 10−19 0.53 5.99 × 10−15 0.48 8.93 × 10−12

FAM167A 0.67 1.24 × 10−33 0.59 2.91 × 10−24 0.6 1.84 × 10−19 0.49 1.45 × 10−12

OLFML2A 0.68 7.32 × 10−35 0.61 3.18 × 10−26 0.67 4.13 × 10−26 0.67 3.79 × 10−25

ECHDC3 0.57 5.91 × 10−23 0.54 5.68 × 10−20 0.2 0.0086 0.092 0.2773

SEMA3B 0.66 2.13 × 10−32 0.62 3.05 × 10−27 0.48 5.53 × 10−12 0.52 5.33 × 10−14

LAMA3 0.64 4.42 × 10−30 0.57 1.77 × 10−22 0.62 1.62 × 10−21 0.6 1.34 × 10−19

PCYOX1 0.65 2.85 × 10−31 0.57 1.77 × 10−22 0.17 0.03216 0.17 0.03719

RNF144B 0.6 7.42 × 10−26 0.54 5.68 × 10−20 0.5 5.28 × 10−13 0.42 3.36 × 10−9

HYAL1 0.58 6.83 × 10−24 0.53 3.50 × 10−19 0.54 9.30 × 10−16 0.47 1.55 × 10−11

CDH13 0.62 6.88 × 10−28 0.59 2.91 × 10−24 0.44 6.94 × 10−10 0.41 1.45 × 10−8

CTNND2 0.71 4.57 × 10−39 0.64 2.81 × 10−29 0.63 3.33 × 10−22 0.57 6.84 × 10−17

DPP6 0.69 3.50 × 10−36 0.62 3.05 × 10−27 0.65 3.78 × 10−24 0.61 7.69 × 10−20

GRIA1 0.67 1.24 × 10−33 0.62 3.05 × 10−27 0.67 6.26 × 10−26 0.65 1.80 × 10−23

DENND3 0.64 4.43 × 10−30 0.57 1.77 × 10−22 0.46 4.49 × 10−11 0.38 1.25 × 10−7
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Figure 4. Scatter plots of select candidate hub genes associated with lung function (FVC). Each plot
includes sample FVC measures as a function of expression values of intramodular hub genes. All
the plots are annotated by the correlation values between the sample FVC measure and the sample
expression profile for each gene. Scatter plots for five genes each from the brown (COL10A1, SULF1,
STEAP1, STEAP2, and CFI) and blue (NINJ2, EPB41L5, GRIA1, MYRF, and FRY) modules and their
FVC correlations from two independent IPF cohorts are shown. Student’s asymptotic p-value for
given correlations is also included.

2.7. Hub Genes Conserved across Different IPF Severities and Acute Exacerbation

To identify candidate hubs differentially expressed across different IPF severities, we
used a recently published lung transcriptomic study (GSE124685) [25] that used quantitative
micro-CT imaging and tissue histology on IPF lung samples to categorize IPF stages (IPF1
or early-stage IPF, IPF2 or progressive stage IPF, and IPF3 or end-stage IPF) representing
the increasing extent of fibrotic remodeling, lower alveolar surface density (ASD) and
higher collagen content. We first performed module preservation analysis to observe the
preservation status of both the candidate modules in the different IPF subtypes. In our
experiments, we observed that both the blue and brown gene modules were strongly
preserved in all the three sample sets (Supplementary Figure S6). Next, we extracted
the differentially expressed gene sets (DEGs) from each of the IPF severity levels (early,
progressive, and end-stage) using the limma approach [26]. Intersecting the DEGs from
IPF1, IPF2, or IPF3 stages with the consensus hubs resulted in an overlap of 51/68 (75%)
upregulated (brown module) and 76/102 (~75%) downregulated (blue module) hubs
with any of the three stages in IPF. A substantial number (41 brown module hub genes
and 30 blue module hub genes) were differentially expressed in all three stages of IPF
(Supplementary Table S7). Of the thirty-five novel candidate hub genes from the brown
module, 14 genes (CDH3, CFI, CHRDL2, COL10A1, CRABP2, DCLK1, DOK5, FNDC4, GPX8,
SCRG1, SPRR1A, STEAP1, STEAP2, and TDO2) were found to be overexpressed in all the
three IPF stages (Table 2). Among these, CDH3, CRABP2, and DCLK1 are expressed in
aberrant basaloid cells while CRABP2, DCLK1, DOK5, GPX8, STEAP1, and STEAP2 are
expressed in myofibroblasts or fibroblasts suggesting early upregulation in the progression
of the disease. Several of these genes (e.g., CRABP2) are strongly correlated with lung
function, differentially expressed in acute exacerbation, and showed a gradual increase
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in expression from IPF1 to IPF3 (Figure 5A–D). CRABP2 is also expressed in IPF-specific
epithelial (aberrant basaloid cells) and IPF-specific mesenchymal cell (HAS1 high and
PLIN2+ fibroblasts) populations (Figure 5E,F). Similarly, 30/68 novel hubs from the blue
module were downregulated in all three IPF stages (Table 2). These included four genes
(EMP2, EPB41L5, PLLP, CRTAC1) from transitional AT2 cells and the translational utility of
CRTAC1 as an IPF biomarker [23] has been reported recently.

Table 2. Novel intramodular hubs which are differentially expressed across different IPF stages
(GSE124685 [25]). Estimates of log2 fold changes (≥0.6 log FC or ≤−0.6 log FC; adjusted
p-value < 0.05) in each stage are listed for each candidate gene (see Supplementary Table S7 for
additional details).

Hub Gene Name IPF1—Early
logFC

IPF2—Progressive
logFC

IPF3—Advanced
logFC

Brown Module

CDH3 Cadherin 3 2.16 2.53 2.59

CFI Complement factor I 1.01 0.7 0.95

CHRDL2 Chordin like 2 1.03 2.04 1.8

COL10A1 Collagen type X alpha 1 chain 2.78 2.84 2.91

CRABP2 Cellular retinoic acid binding protein 2 2.45 3 3.25

DCLK1 Doublecortin-like kinase 1 0.86 0.94 1.04

DOK5 Docking protein 5 1.16 1.37 1.23

FNDC4 Fibronectin type III domain containing 4 1.04 1.19 1.29

GPX8 Glutathione peroxidase 8 (putative) 1.08 0.98 1.16

SCRG1 Stimulator of chondrogenesis 1 1.23 1.29 1.48

SPRR1A Small proline rich protein 1A 2.51 3.19 3.66

STEAP1 STEAP family member 1 1.3 1.57 1.74

STEAP2 STEAP2 metalloreductase 1.03 1.35 1.34

TDO2 Tryptophan 2,3-dioxygenase 2.34 2.92 2.8

Blue Module

AATK Apoptosis associated tyrosine kinase −0.94 −0.96 −0.99

AFF3 AF4/FMR2 family member 3 −1.22 −1.43 −1.44

ARHGEF26 Rho guanine nucleotide exchange factor 26 −0.91 −1.14 −1.27

BTNL9 Butyrophilin like 9 −3.39 −4 −3.69

C1orf115 Chromosome 1 open reading frame 115 −0.85 −1.14 −1.26

CDH13 Cadherin 13 −0.69 −0.84 −0.88

CRTAC1 Cartilage acidic protein 1 −1.57 −2 −2.33

DENND3 DENN domain containing 3 −1.17 −1.16 −1.33

EMP2 Epithelial membrane protein 2 −0.74 −1.4 −1.53

EPB41L5 Erythrocyte membrane protein band 4.1 like 5 −0.81 −1.04 −1.1

GALNT18 Polypeptide
N-acetylgalactosaminyltransferase 18 −1.33 −1.6 −1.71

GRIA1 Glutamate ionotropic receptor AMPA
type subunit 1 −0.71 −1.1 −1.09

HPCAL1 Hippocalcin like 1 −0.86 −1.34 −1.71

ITLN2 Intelectin 2 −2.29 −3.52 −4.18
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Table 2. Cont.

Hub Gene Name IPF1—Early
logFC

IPF2—Progressive
logFC

IPF3—Advanced
logFC

KANK3 KN motif and ankyrin repeat domains 3 −0.92 −1.08 −1.16

KCNMB4 Potassium calcium-activated channel
subfamily M regulatory beta subunit 4 −1.02 −1.36 −1.41

MATN3 Matrilin 3 −0.92 −1.4 −1.61

MYRF Myelin regulatory factor −1.43 −1.59 −2.13

NDRG4 NDRG family member 4 −1.59 −2.24 −2.61

NPR1 Natriuretic peptide receptor 1 −0.79 −1.22 −1.27

OLFML2A Olfactomedin like 2A −0.85 −0.94 −0.9

PAPSS2 3′-phosphoadenosine 5′-phosphosulfate
synthase 2 −0.66 −1.01 −1.3

PLLP Plasmolipin −0.86 −1.49 −1.7

RNF144B Ring finger protein 144B −0.65 −0.91 −1.17

RS1 Retinoschisin 1 −0.71 −1.61 −1.79

SERTM1 Serine rich and transmembrane
domain containing 1 −1.11 −1.8 −2.02

STARD8 StAR related lipid transfer domain
containing 8 −0.95 −1.08 −1.29

STXBP6 Syntaxin binding protein 6 −0.76 −1.71 −2.17

VIPR1 Vasoactive intestinal peptide receptor 1 −1.51 −2.41 −2.72

VSIG10 V-set and immunoglobulin domain
containing 10 −0.75 −1.09 −0.96

Similarly, we identified several intramodular hub genes differentially expressed in the
acute exacerbation of the IPF phenotype (IPF-AEx). Specifically, we found 54/68 upregu-
lated hubs (FDR p-value = 2.04 × 10−61) including 27/35 novel candidates (FDR p-value =
2.01 × 10−30) that are overexpressed in the IPF-AEx tissue samples (Supplementary Table S7).
Among the blue module hubs, 46/102 genes (FDR p-value = 1.83 × 10−56) were downregu-
lated in the IPF-AEx phenotype with 26/68 novel candidates (FDR p-value = 9.07 × 10−30)
among them (Supplementary Table S7). Interestingly, we found 8 novel candidate genes (FRY,
SEMA3B, SLC1A1, C5orf38, NINJ2, VSIG10, PDZD2, and SELENBP1) from the blue module
(FDR p-value = 1.02 × 10−6) that were downregulated exclusively in IPF lung tissue samples
with acute exacerbations. Differentially expressed genes in IPF-AEx were obtained from a
previously published study [27] using the limma approach.

2.8. Candidate Genes Categorizing IPF and Other Interstitial Lung Diseases

Next, we investigated whether the candidate hub genes we have identified can differen-
tiate IPF from other interstitial lung disorders (ILDs). To do this, we developed and trained
regularized logistic regression models [28] using novel hub genes as independent predic-
tors and evaluated them on test samples from independent test cohorts or test partitions
from within the LGRC study (see Supplementary Methods). The elastic net regularization
method linearly combines both L1 and L2 regularization schemes with a mixing parameter
α and is useful for effective variable selection [23]. Firstly, we identified 42 novel hubs
(α = 0.35) that were able to categorize the IPF samples with a precision-recall area under
curve (PRAUC) scores of 0.923 (FDR p-value = 0.05) and 0.98 (FDR p-value = 0.05) in the two
test studies (GSE150910 and GSE134692) (Supplementary Figure S7a). Among them were
eleven secreted proteins—MATN3, C12orf49, COL7A1, COL10A1, EFNA4, ST6GALNAC5,
C5orf38, CRTAC1, VWCE, CFI, and PDZD2 (Table 3). On the other hand, the model with
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the complete set of novel candidates (α = 0) as predictors did not show any significant
improvements in terms of PRAUC scores (0.937 in GSE150910 and 0.967 in GSE134692).
As mentioned previously, a recent study reported CRTAC1 protein levels in lung lavage
fluid and blood plasma as a novel peripheral protein biomarker of the lung alveolar ep-
ithelial health status [23], indicating the translational utility of our findings. Next, we
identified 45 marker genes (α = 0.2) capable of distinguishing IPF from chronic hypersen-
sitive pneumonitis (CHP) samples (from GSE150910) with a PRAUC score of 0.804 (FDR
p-value = 0.0077; Supplementary Figure S7b). Several of these filtered candidates were
found to be secreted (C12orf49, COL10A1, FNDC4, ITLN2, MATN3, PDZD2, RS1, SCRG1,
and ST6GALNAC5) making them potential candidate biomarkers useful for distinguishing
IPF from pneumonitis. In comparison, the full model containing all 170 intramodular hubs
as independent variables underperformed (PRAUC = 0.785; FDR p-value = 0.02) (Table 3).
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Figure 5. CRABP2 as a novel candidate for IPF. CRABP2 is significantly upregulated in IPF (A) and is
negatively correlated with lung function (FVC and DLCO; B). Additionally, CRABP2 is differentially
expressed in acute exacerbation (C) and shows a gradient level upregulation in three stages of IPF,
namely, early (IPF1), progressive (IPF2), and advanced (IPF3) stages (D). CRABP2 is enriched in
both epithelial (aberrant basaloid or KRT5-/KRT17+ and goblet cells) and mesenchymal (fibroblast,
myofibroblast, HAS1-high fibroblasts, and PLIN2+ fibroblasts) cells (E,F).

Table 3. List of novel candidate genes capable of distinguishing fibrotic samples from healthy controls
in the two training cohorts and two independent validation cohorts (GSE150910 and GSE134692).

Symbol Gene ID Description

Brown Module

CHEK2 11200 Checkpoint kinase 2

CRABP2 1382 Cellular retinoic acid binding protein 2

TSHZ2 128553 Teashirt zinc finger homeobox 2

COL7A1 1294 Collagen type VII alpha 1 chain

SEC24D 9871 SEC24 homolog D, COPII coat complex component
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Table 3. Cont.

Symbol Gene ID Description

REEP2 51308 Receptor accessory protein 2

COL10A1 1300 Collagen type X alpha 1 chain

TTC39C 125488 Tetratricopeptide repeat domain 39C

STEAP1 26872 STEAP family member 1

EFNA4 1945 Ephrin A4

CLMP 79827 CXADR-like membrane protein

CDH3 1001 Cadherin 3

NPM3 10360 Nucleophosmin/nucleoplasmin 3

VWCE 220001 von Willebrand factor C and EGF domains

PLEKHA4 57664 Pleckstrin homology domain containing A4

CFI 3426 Complement factor I

TDO2 6999 Tryptophan 2,3-dioxygenase

TMEM229A 730130 Transmembrane protein 229A

Blue Module

MATN3 4148 Matrilin 3

FRY 10129 FRY microtubule binding protein

CTNND2 1501 Catenin delta 2

RADIL 55698 Rap associating with DIL domain

ECHDC3 79746 Enoyl-CoA hydratase domain containing 3

KANK3 256949 KN motif and ankyrin repeat domains 3

SPRING1 79794 SREBF pathway regulator in golgi 1

ANKS1A 23294 Ankyrin repeat and sterile alpha motif domain containing 1A

SLC44A2 57153 Solute carrier family 44 member 2

TNS3 64759 Tensin 3

ST6GALNAC5 81849 ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 5

C5orf38 153571 Chromosome 5 open reading frame 38

AFF3 3899 AF4/FMR2 family member 3

RNF182 221687 Ring finger protein 182

CRTAC1 55118 Cartilage acidic protein 1

PLLP 51090 Plasmolipin

NINJ2 4815 Ninjurin 2

KCNMB4 27345 Potassium calcium-activated channel subfamily M regulatory
beta subunit 4

VSIG10 54621 V-set and immunoglobulin domain containing 10

PDZD2 23037 PDZ domain containing 2

BTNL9 153579 Butyrophilin like 9

VIPR1 7433 Vasoactive intestinal peptide receptor 1

DENND3 22898 DENN domain containing 3

FAM189A1 23359 Family with sequence similarity 189 member A1
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2.9. Hub Gene Prioritization

Novel intramodular hub genes from the brown (35 genes) and blue (68 genes) modules
were further prioritized based on their functional relatedness (guilt by association) to a set of
known IPF genes. We compiled and used a list of 34 GWA genes from GWAS Catalog [29]
as the training set (Supplementary Table S1). The ToppGene application from the ToppGene
Suite [17] was used to compute the functional similarity scores between the training set and
each of the two intramodular hub gene sets separately (Table 4; Supplementary Table S8).
The hub genes are ranked based on their similarity to the training set genes (34 IPF GWA
genes) in gene ontology (GO), both mouse and human phenotype ontologies, biological
pathways, diseases, and single-cell gene annotations. The top twenty ranked genes from
brown and blue modules are listed in Table 4.

Table 4. Top 20 ranked novel hubs ranked based on their functional similarities to known GWA IPF
genes. Upregulated and downregulated hubs are ranked separately.

Rank Upregulated
Hub Genes Description Downregulated

Hub Genes Description

1 CHEK2 Checkpoint kinase 2 CTNND2 Catenin delta 2

2 CDH3 Cadherin 3 CDH13 Cadherin 13

3 COL7A1 Collagen type VII alpha 1 chain SELENBP1 Selenium binding protein 1

4 CFI Complement factor I ARHGAP31 Rho GTPase activating protein 31

5 KCND3 Potassium voltage-gated channel
subfamily D member 3 CAVIN2 Caveolae associated protein 2

6 CRABP2 Cellular retinoic acid binding
protein 2 DENND3 DENN domain containing 3

7 ZNF469 Zinc finger protein 469 SLC1A1 Solute carrier family 1 member 1

8 STEAP2 STEAP2 metalloreductase EMP2 Epithelial membrane protein 2

9 TDO2 Tryptophan 2,3-dioxygenase PAPSS2 3′-phosphoadenosine
5′-phosphosulfate synthase 2

10 SEC24D SEC24 homolog D, COPII coat
complex component SLC44A2 Solute carrier family 44 member 2

11 CLMP CXADR like membrane protein N4BP1 NEDD4 binding protein 1

12 DCLK1 Doublecortin like kinase 1 GPM6A Glycoprotein M6A

13 MAGED4B MAGE family member D4B NINJ2 Ninjurin 2

14 PDIA4 Protein disulfide isomerase family A
member 4 RRAS RAS related

15 ITGA7 Integrin subunit alpha 7 HPCAL1 Hippocalcin like 1

16 NPM3 Nucleophosmin/nucleoplasmin 3 AFF3 AF4/FMR2 family member 3

17 COL10A1 Collagen type X alpha 1 chain NDRG4 NDRG family member 4

18 GPX8 Glutathione peroxidase 8 (putative) VIPR1 Vasoactive intestinal peptide
receptor 1

19 EFNA4 Ephrin A4 MYRF Myelin regulatory factor

20 DOK5 Docking protein 5 RS1 Retinoschisin 1

2.10. CRABP2—Novel Candidate Gene and Potential Biomarker of IPF

As a proof-of-concept to demonstrate the translational relevance of our study, we
selected cellular retinoic acid-binding protein 2 (CRABP2), one of the novel intramodular
hubs that is (a) upregulated in IPF lungs; (b) differentially expressed across different IPF
severity levels; (c) part of the novel candidate genes that are capable of distinguishing fi-
brotic samples from healthy controls in the two training cohorts and two other independent
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validation studies (GSE150910 and GSE134692); (d) shows cell-specific expression; and
(e) encodes a secretory protein (Figure 5). CRABP2 is an intracellular lipid-binding protein
associated with retinoic acid and modulates retinoic acid signaling in the cell [30].

To validate whether upregulation of CRABP2 is also reflected in protein levels in
IPF, we immunostained lung sections of IPF and control lungs using CRABP2-specific
antibody and quantified CRABP2 levels in both subpleural and distal airways of the lungs.
Notably, we observed a significant increase in immunostaining of CRABP2 in both airway
epithelial cell types and spindle-shaped fibroblasts in the distal fibrotic lung lesions of
IPF compared to control lungs (Figure 6). While our preliminary results are promising
regarding the feasibility and utility of CRABP2 as a novel diagnostic candidate gene in IPF,
further investigation is warranted to determine whether observed increases in CRABP2
levels associate with the disease progression and severity of fibrosis in preclinical models
of pulmonary fibrosis.
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Figure 6. Upregulation of CRABP2 in the lungs of IPF. Immunostaining was performed using
antibody against CRABP2 on the lung sections of normal and IPF. (A) Representative images of distal
lung airway from normal and IPF lungs immunostained with anti-CRABP2 antibody and images
were taken at 60×magnification. Scale bar: 50 µm. Arrows are used to highlight airway epithelial
cells positive for CRABP2. (B) Quantification of the percent of CRABP2 staining in airways in the
total lung area of images analyzed using BZ-X analyzer. (C) Representative images of subpleural
and adventitia from normal and IPF lungs immunostained with anti-CRABP2 antibody and images
were taken at 60×magnification. Scale bar: 50 µm. Arrows and arrow heads are used to highlight
mesothelial cells lining the lung and spindle-shaped fibroblasts, respectively. (D) Quantification of
the percent of CRABP2 staining in subpleural and adventitial area in the total lung area of images
analyzed using BZ-X analyzer. (**** p < 0.00005, n = 6–7/group; Student’s t-test).

3. Discussion

Leveraging multiple transcriptomic datasets, we implemented a network-based ap-
proach to identify consensus co-expressed gene clusters associated with IPF phenotypes,
biological processes, and pathways implicated in IPF onset and progression. Using lung
transcriptomic profiles of IPF patients and healthy controls from two independent cohorts
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(GSE47460 and GSE53845), we identified thirty-two consensus gene modules. Of these,
we prioritized two candidate modules (brown and blue) based on their correlations with
FVC and DLCO lung function traits, phenotype status and their level of preservation in two
independent test datasets (GSE150910 and GSE134692). Interestingly, these modules con-
sisted of 6 GWA genes (ABCA3, OBFC1, TOLLIP, SFTPC, ATP11A, and DEPTOR) reported
to be associated with IPF [29].

Using a novel hub score measure based on a combination of connectivity-based and
trait-based significance measures enabled us to identify 170 hub genes (68 upregulated,
102 downregulated) that are central in both the candidate modules and are strongly corre-
lated with lung function traits. Selecting only the intramodular hub genes from disease-
related consensus modules has been shown to be useful to make the gene lists manageable
and with a unifying biological theme [8]. When compared to differentially expressed gene
lists, this approach has the advantage of identifying genes that are potentially relevant to
the IPF phenotype because it considers lung function measurements when prioritizing the
genes. From these intramodular hub genes, we identified 57 secreted candidate biomarkers,
103 novel candidates that are previously not known to be associated with pulmonary fibro-
sis with 36 lung function-associated genes among them. A majority of the intramodular
hub genes were found to be differentially expressed among the various stages of IPF [25]
and IPF acute exacerbation. Furthermore, using cell marker genes from both normal and
fibrotic lung scRNA-seq studies, we identified 122 hub genes and 68 novel candidates
which are marker genes in various single-cell populations in the lung. We also identified
sixteen potential candidate biomarkers that are not only capable of classifying IPF samples
(versus controls) but also distinguish IPF from other interstitial lung disorders. In all our
experiments, these filtered genes have either matched or outperformed the models with
complete gene sets as predictors. Further validation studies centered around these hubs
could lead to a better understanding of the underlying biological mechanisms, disease
progression, and novel therapeutic discovery in IPF.

In comparison to previous studies that have used network analysis for IPF transcrip-
tomic data, our approach has the advantage of using data from two independent cohorts.
We also validated the preservation status of the identified gene modules in two indepen-
dent test cohorts. Another advantage of our current approach is the utilization of the
intramodular hub genes instead of the entire modules for characterizing the consensus
modules. These hub genes were identified using a novel HubScore metric combining
both connectivity-based and trait-based correlations. Further, and most importantly, we
have leveraged scRNA-seq-based cell markers with the network hubs to characterize and
identify the specific cell-type identities associated with the gene modules.

Our approach does hold certain limitations. Firstly, due to the differences between
the reference panels used in the two training datasets, we could include only the common
set of transcripts, resulting in the exclusion of several genes. This also puts a pragmatic
upper bound on the number of transcriptomic datasets that could simultaneously be
used in such approaches. Thus, computational frameworks, based on neural network
architectures, which utilize all or most of the available gene expression data for a specific
disease could prove to be more fruitful. Another important limitation of our study is the use
of hard thresholding of the HubScore measure (top 5%) for filtering the intramodular hub
genes from within the candidate modules. In addition, the regularized elastic-net logistic
regression models suffer from low sample counts. As a result, some of our models are
bound to be impacted by the lack of adequate training data. Therefore, carefully designed
experimental validations are needed to validate the hypotheses and candidate biomarkers
coming out of our study.

A particularly interesting future work in this direction would be to implement unsu-
pervised graph neural network (GNN) frameworks for module detection on gene networks.
These methodologies not only exploit the geometric structure (connectivity among the
genes) but also make use of multi-dimensional features that can include functional annota-
tion terms, trait/phenotype associations, cell types, and other features. In conclusion, we
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present an unsupervised community detection framework on gene co-expression networks
that leverage clinical features to discover translationally actionable gene modules and
targets. Known markers of different cell types, genetic markers from GWA studies, and
biological processes and pathways are used to further characterize and prioritize these
gene modules.

4. Materials and Methods
4.1. IPF Transcriptomic Datasets

Publicly available microarray lung transcriptomic data were obtained from the NCBI’s
Gene Expression Omnibus (GEO) repository [31]. The NHLBI-funded LTRC (Lung Tis-
sue Research Consortium) dataset (GSE47460) contains expression profiles and clinical
attributes for 160 IPF patients and 108 healthy controls. Additionally, we included transcrip-
tomic profiles from an independent cohort (GSE53845 [32]) of 40 IPF cases and 8 controls
for the consensus analysis (Table 5). Other IPF datasets from the GEO repository were
explored but were deemed unsuitable due to the lack of consensus of their topological
similarity distributions with the remaining datasets (Figure 7; Supplementary Methods).
For validating the candidate modules and novel biomarkers identified, we used two in-
dependent cohorts, an RNA-seq study GSE134692 [33] containing 72 lung tissue samples
(46 IPF cases and 26 healthy controls) and GSE150910 [24] with 103 tissue samples each
from IPF patients and healthy controls. Since different reference platforms are used in these
transcriptomic datasets, as part of data pre-processing, we replaced all the probe IDs with
their corresponding gene symbols. If multiple transcripts (i.e., probe IDs) were found to
be mapped to the same gene, the probe set (along with its mapped gene) with the highest
expression value was retained. All the expression datasets were also checked for genes and
samples with excessive missing values.
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Figure 7. Schematic representation of the workflow: Transcriptomic data from the IPF and controls
were downloaded from NCBI’s Gene Expression Omnibus (GEO) and used as inputs for WGCNA
consensus Analysis after the necessary data cleaning and normalization steps. Consensus modules
obtained from WGCNA were correlated with phenotype status and other IPF-relevant clinical traits
to select candidate modules. Intramodular hub genes were identified within each candidate module
and used for functional characterization and to identify novel candidates and secreted biomarkers
in IPF.
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Table 5. List of GEO datasets used in the WGCNA consensus analysis (including the validation cohorts).

GEO Accession ID # IPF Cases # Controls Reference

GSE47460 160 108 LGRC

GSE53845 40 8 [32]

GSE134692 46 26 [33]

GSE150910 103 103 [24]

4.2. Normal and IPF Lung Single-Cell Markers

For filtering out novel IPF and lung function-related genes from the modules, we
compiled single-cell transcriptomic signatures in both normal [21,22] and IPF lung sam-
ples [18,22,34]. Only significant associations (FDR p-value ≤ 0.05; log fold change or
FC ≥ 0.5) were retained in the analysis. In the case of IPF signatures, the upregulated
and downregulated genes were distinguished based on the fold change values and used
separately for enrichment analysis. Similarly, human lung single-cell markers from two
different protocols [21] were used separately during the enrichment step.

4.3. Known Pulmonary Fibrosis Genes

In addition to markers from individual cell types in lung tissues, several curated gene
sets were also used in the post-processing of the disease-related gene modules. A list of
4673 known pulmonary fibrosis genes was compiled from literature and different databases
(Supplementary Table S1). This list comprised human genes associated with “Pulmonary
fibrosis”, “Idiopathic pulmonary fibrosis”, and “Interstitial Lung Disease” from Open
Targets platform [35], CTD [36], Phenopedia [37], and GeneCards [38] databases along with
a literature search on PubMed. This compiled list of 4673 pulmonary fibrosis genes was
used to obtain novel candidate genes for pulmonary fibrosis.

4.4. Hub Gene Prioritization

Intramodular hub genes from phenotype correlated consensus modules were ranked
based on their functional similarity to a set of known IPF genes. We compiled and used a
list of 34 GWA genes from GWAS Catalog [29] as the training set (Supplementary Table S1).
ToppGene application from the ToppGene Suite [17] was used to further prioritize the
candidate genes using the guilt by association principle of functional relatedness (Figure 7).

4.5. Lung Function GWA Genes

A second set of curated genes include those that are associated with lung function traits
(DLCO, FVC/FEV) extracted from both Open Targets Genetics [35] and GWAS Catalog [29]
portals. These genes are associated based on significant GWAS variants (p-value < 10−5)
mapped from multiple studies. At the time of drafting this manuscript, 5416 such genes
were identified from the two portals and utilized to filter out lung function-related genes
from the consensus modules (Supplementary Table S2).

4.6. Secreted Proteins

The “secretome” was compiled using a list of proteins known to be secreted by cells
from the Human Protein Atlas [39] database. This gene set consisting of 2640 genes was
used for the biomarker discovery (Supplementary Table S3). It included 742 blood-secreted
markers and 234 genes secreted to the extracellular matrix.

4.7. Consensus WGCNA and Candidate Modules

A weighted gene co-expression network analysis (WGCNA) framework is used to
identify clusters of co-expressed genes [40,41] based on pairwise correlations between gene
expression profiles across all the samples (Supplementary Methods). WGCNA consen-
sus module analysis is used to find highly connected genes preserved among multiple
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datasets [42]. It involves constructing co-expression networks for each dataset and then
identifying consensus modules among them.

WGCNA identified modules are ranked and prioritized by correlating them with
sample clinical traits and phenotypic status [15]. Disease-related candidate modules are
selected based on the strength and statistical significance (Student’s asymptotic p-values)
of these module correlations with the phenotypic traits (Supplementary Methods). Further,
module preservation analyses are used to filter the candidate modules based on their
preservation status in other test networks coming from independent cohorts [43] to effi-
ciently distinguish the preserved from the non-preserved modules. Finally, hub genes
within the candidate modules are chosen by considering both connectivity-based and
trait-based significance measures. Module membership for a specific gene is computed
as a Pearson correlation between its expression profile and the specific module eigengene
(Supplementary Methods) and signifies the connectivity-based importance of the gene
within a module of interest. In this study, we used the phenotype status of the samples
in both the cohorts along with DLCO and FVC lung function traits from the GSE47460
training cohort to calculate trait-based gene significance (see Supplementary Methods for
additional details).

4.8. Immunohistochemistry

De-identified lung tissue specimens were collected from the distal areas of explanted
lungs using research protocol approved by the Cincinnati Children’s Hospital Medical
Center institutional review board (IRB # 2015-1347). The lung tissues were fixed in formalin
and embedded with paraffin to prepare 6-micron-thick lung tissue sections from both IPF
and age-matched healthy controls (n = 6–7/group). The lung sections were immunostained
with anti-CRABP2 (Sigma, St. Louis, MO, USA) as a primary antibody (1:200 dilution).
We used goat anti-rabbit Ig as an isotype control antibody and observed no detectable
immunostaining (data not shown). Hematoxylin counterstain was used to counter stain
nuclei in color blue. All images were collected using a Keyence BZ-X800 microscope (Itasca,
IL, USA) at high magnification (×60). BZ-X image analysis software was used to quantify
brown staining areas in the total lung area of five representative images collected for each
lung slide and expressed as the percentage of CRABP2-positive area in the total lung area
of an image.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23105447/s1.

Author Contributions: Conceptualization, S.G. and A.G.J.; data curation, S.G., M.S. and A.G.J.;
formal analysis, S.G., M.S., S.K.M. and A.G.J.; funding acquisition, S.K.M. and A.G.J.; investigation,
S.G., H.H.E., S.K.M. and A.G.J.; methodology, S.G., H.H.E. and S.K.M.; software, S.K.M.; supervision,
A.G.J.; validation, S.G., H.H.E. and S.K.M.; visualization, S.G. and A.G.J.; writing—original draft, S.G.
and A.G.J.; writing—review and editing, S.G., M.S., H.H.E., S.K.M. and A.G.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported in part by the Cincinnati Children’s Hospital and Medical Center
and the National Institute of Health (1R01 HL134801 and 1R01 HL157176).

Institutional Review Board Statement: De-identified lung tissue specimens used for experimental
validation were collected as part of the research protocol approved by the Cincinnati Children’s
Hospital Medical Center institutional review board (IRB # 2015-1347).

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
article and its supplemental information files.

Conflicts of Interest: Jegga serves as a member of Scientific Advisory Board of GEn1E Lifesciences,
Palo Alto, California, USA. The other authors declare that they have no competing interests.

https://www.mdpi.com/article/10.3390/ijms23105447/s1
https://www.mdpi.com/article/10.3390/ijms23105447/s1


Int. J. Mol. Sci. 2022, 23, 5447 20 of 21

References
1. Kaur, A.; Mathai, S.K.; Schwartz, D.A. Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment. Front.

Med. 2017, 4, 154. [CrossRef] [PubMed]
2. Olson, A.L.; Swigris, J.J.; Lezotte, D.C.; Norris, J.M.; Wilson, C.G.; Brown, K.K. Mortality from Pulmonary Fibrosis Increased in

the United States from 1992 to 2003. Am. J. Respir. Crit. Care Med. 2007, 176, 277–284. [CrossRef] [PubMed]
3. Bauer, Y.; Tedrow, J.; De Bernard, S.; Birker-Robaczewska, M.; Gibson, K.F.; Guardela, B.J.; Hess, P.; Klenk, A.; Lindell, K.O.;

Poirey, S.; et al. A Novel Genomic Signature with Translational Significance for Human Idiopathic Pulmonary Fibrosis. Am. J.
Respir. Cell Mol. Biol. 2015, 52, 217–231. [CrossRef] [PubMed]

4. Meltzer, E.B.; Barry, W.T.; A D’Amico, T.; Davis, R.D.; Lin, S.S.; Onaitis, M.W.; Morrison, L.D.; A Sporn, T.; Steele, M.P.; Noble, P.W.
Bayesian probit regression model for the diagnosis of pulmonary fibrosis: Proof-of-principle. BMC Med Genom. 2011, 4, 70.
[CrossRef]

5. Wang, Y.; Yella, J.; Chen, J.; McCormack, F.X.; Madala, S.K.; Jegga, A.G. Unsupervised gene expression analyses identify
IPF-severity correlated signatures, associated genes and biomarkers. BMC Pulm. Med. 2017, 17, 133. [CrossRef] [PubMed]

6. Herazo-Maya, J.D.; Noth, I.; Duncan, S.R.; Kim, S.; Ma, S.-F.; Tseng, G.C.; Feingold, E.; Juan-Guardela, B.M.; Richards, T.J.;
Lussier, Y.; et al. Peripheral Blood Mononuclear Cell Gene Expression Profiles Predict Poor Outcome in Idiopathic Pulmonary
Fibrosis. Sci. Transl. Med. 2013, 5, 205ra136. [CrossRef]

7. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

8. Langfelder, P.; Mischel, P.S.; Horvath, S. When is hub gene selection better than standard meta-analysis? PLoS ONE 2013, 8, e61505.
[CrossRef]

9. Wang, Z.; Zhu, J.; Chen, F.; Ma, L. Weighted Gene Coexpression Network Analysis Identifies Key Genes and Pathways Associated
with Idiopathic Pulmonary Fibrosis. Med. Sci. Monit. 2019, 25, 4285–4304. [CrossRef]

10. E McDonough, J.; Kaminski, N.; Thienpont, B.; Hogg, J.C.; Vanaudenaerde, B.; A Wuyts, W. Gene correlation network analysis to
identify regulatory factors in idiopathic pulmonary fibrosis. Thorax 2018, 74, 132–140. [CrossRef]

11. Liu, J.; Gu, L.; Li, W. The Prognostic Value of Integrated Analysis of Inflammation and Hypoxia-Related Genes in Idiopathic
Pulmonary Fibrosis. Front. Immunol. 2022, 13, 730186. [CrossRef] [PubMed]

12. Zhang, N.; Guo, Y.; Wu, C.; Jiang, B.; Wang, Y. Identification of the Molecular Subgroups in Idiopathic Pulmonary Fibrosis by
Gene Expression Profiles. Comput. Math. Methods Med. 2021, 2021, 7922594. [CrossRef] [PubMed]

13. Guillotin, D.; Taylor, A.R.; Platé, M.; Mercer, P.F.; Edwards, L.M.; Haggart, R.; Miele, G.; McAnulty, R.J.; Maher, T.M.;
E Hynds, R.; et al. Transcriptome analysis of IPF fibroblastic foci identifies key pathways involved in fibrogenesis. Thorax
2020, 76, 73–82. [CrossRef] [PubMed]

14. Xia, Y.; Lei, C.; Yang, D.; Luo, H. Identification of key modules and hub genes associated with lung function in idiopathic
pulmonary fibrosis. PeerJ 2020, 8, e9848. [CrossRef] [PubMed]

15. Horvath, S.; Dong, J. Geometric Interpretation of Gene Coexpression Network Analysis. PLoS Comput. Biol. 2008, 4, e1000117.
[CrossRef] [PubMed]

16. Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559.
[CrossRef] [PubMed]

17. Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
Nucleic Acids Res. 2009, 37, W305–W311. [CrossRef] [PubMed]

18. Adams, T.S.; Schupp, J.C.; Poli, S.; Ayaub, E.A.; Neumark, N.; Ahangari, F.; Chu, S.G.; Raby, B.A.; DeIuliis, G.; Januszyk, M.; et al.
Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 2020,
6, eaba1983. [CrossRef]

19. Khatib, A.; Solaimuthu, B.; Yosef, M.B.; Rmaileh, A.A.; Tanna, M.; Oren, G.; Frisch, M.S.; Axelrod, J.H.; Lichtenstein, M.; Shaul, Y.D.
The glutathione peroxidase 8 (GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive breast cancer phenotype. Proc.
Natl. Acad. Sci. USA 2020, 117, 21420–21431. [CrossRef]

20. Hill, C.; Jones, M.; Davies, D.; Wang, Y. Epithelial-Mesenchymal Transition Contributes to Pulmonary Fibrosis via Aberrant
Epithelial/Fibroblastic Cross-Talk. J. Lung Health Dis. 2019, 3, 31–35. [CrossRef]

21. Travaglini, K.J.; Nabhan, A.N.; Penland, L.; Sinha, R.; Gillich, A.; Sit, R.V.; Chang, S.; Conley, S.D.; Mori, Y.; Seita, J.; et al. A
molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020, 587, 619–625. [CrossRef] [PubMed]

22. Habermann, A.C.; Gutierrez, A.J.; Bui, L.T.; Yahn, S.L.; Winters, N.I.; Calvi, C.L.; Peter, L.; Chung, M.-I.; Taylor, C.J.; Jetter, C.; et al.
Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci.
Adv. 2020, 6, eaba1972. [CrossRef] [PubMed]

23. Mayr, C.H.; Simon, L.M.; Leuschner, G.; Ansari, M.; Schniering, J.; E Geyer, P.; Angelidis, I.; Strunz, M.; Singh, P.;
Kneidinger, N.; et al. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol.
Med. 2021, 13, e12871. [CrossRef]

24. Furusawa, H.; Cardwell, J.H.; Okamoto, T.; Walts, A.D.; Konigsberg, I.R.; Kurche, J.S.; Bang, T.J.; Schwarz, M.I.; Brown, K.K.;
Kropski, J.A.; et al. Chronic Hypersensitivity Pneumonitis, an Interstitial Lung Disease with Distinct Molecular Signatures. Am. J.
Respir. Crit. Care Med. 2020, 202, 1430–1444. [CrossRef] [PubMed]

http://doi.org/10.3389/fmed.2017.00154
http://www.ncbi.nlm.nih.gov/pubmed/28993806
http://doi.org/10.1164/rccm.200701-044OC
http://www.ncbi.nlm.nih.gov/pubmed/17478620
http://doi.org/10.1165/rcmb.2013-0310OC
http://www.ncbi.nlm.nih.gov/pubmed/25029475
http://doi.org/10.1186/1755-8794-4-70
http://doi.org/10.1186/s12890-017-0472-9
http://www.ncbi.nlm.nih.gov/pubmed/29058630
http://doi.org/10.1126/scitranslmed.3005964
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1371/journal.pone.0061505
http://doi.org/10.12659/MSM.916828
http://doi.org/10.1136/thoraxjnl-2018-211929
http://doi.org/10.3389/fimmu.2022.730186
http://www.ncbi.nlm.nih.gov/pubmed/35309336
http://doi.org/10.1155/2021/7922594
http://www.ncbi.nlm.nih.gov/pubmed/34646338
http://doi.org/10.1136/thoraxjnl-2020-214902
http://www.ncbi.nlm.nih.gov/pubmed/33214245
http://doi.org/10.7717/peerj.9848
http://www.ncbi.nlm.nih.gov/pubmed/33194355
http://doi.org/10.1371/journal.pcbi.1000117
http://www.ncbi.nlm.nih.gov/pubmed/18704157
http://doi.org/10.1186/1471-2105-9-559
http://www.ncbi.nlm.nih.gov/pubmed/19114008
http://doi.org/10.1093/nar/gkp427
http://www.ncbi.nlm.nih.gov/pubmed/19465376
http://doi.org/10.1126/sciadv.aba1983
http://doi.org/10.1073/pnas.2010275117
http://doi.org/10.29245/2689-999X/2019/2.1149
http://doi.org/10.1038/s41586-020-2922-4
http://www.ncbi.nlm.nih.gov/pubmed/33208946
http://doi.org/10.1126/sciadv.aba1972
http://www.ncbi.nlm.nih.gov/pubmed/32832598
http://doi.org/10.15252/emmm.202012871
http://doi.org/10.1164/rccm.202001-0134OC
http://www.ncbi.nlm.nih.gov/pubmed/32602730


Int. J. Mol. Sci. 2022, 23, 5447 21 of 21

25. McDonough, J.E.; Ahangari, F.; Li, Q.; Jain, S.; Verleden, S.E.; Herazo-Maya, J.; Vukmirovic, M.; Deiuliis, G.; Tzouvelekis, A.;
Tanabe, N.; et al. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4, e131597.
[CrossRef] [PubMed]

26. Ritchie, M.E.; Belinda, P.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

27. Konishi, K.; Gibson, K.F.; Lindell, K.O.; Richards, T.J.; Zhang, Y.; Dhir, R.; Bisceglia, M.; Gilbert, S.; Yousem, S.A.; Song, J.W.; et al.
Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2009, 180,
167–175. [CrossRef]

28. Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat.
Softw. 2010, 33, 1–22. [CrossRef]

29. Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.;
Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [CrossRef]

30. Budhu, A.S.; Noy, N. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid
Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest. Mol. Cell. Biol. 2002, 22, 2632–2641.
[CrossRef]

31. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.;
Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 2012, 41, D991–D995.
[CrossRef] [PubMed]

32. DePianto, D.J.; Chandriani, S.; Abbas, A.R.; Jia, G.; N’Diaye, E.N.; Caplazi, P.; E Kauder, S.; Biswas, S.; Karnik, S.K.; Ha, C.; et al.
Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic
pulmonary fibrosis. Thorax 2014, 70, 48–56. [CrossRef] [PubMed]

33. Sivakumar, P.; Thompson, J.R.; Ammar, R.; Porteous, M.; McCoubrey, C.; Cantu, E.; Ravi, K.; Zhang, Y.; Luo, Y.; Streltsov, D.; et al.
RNA sequencing of transplant-stage idiopathic pulmonary fibrosis lung reveals unique pathway regula-tion. ERJ Open Res. 2019,
5, 00117–02019. [CrossRef] [PubMed]

34. Reyfman, P.A.; Walter, J.M.; Joshi, N.; Anekalla, K.R.; McQuattie-Pimentel, A.C.; Chiu, S.; Fernandez, R.; Akbarpour, M.;
Chen, C.-I.; Ren, Z.; et al. Single-Cell Transcriptomic Analysis of Human Lung Provides Insights into the Pathobiology of
Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 199, 1517–1536. [CrossRef] [PubMed]

35. Carvalho-Silva, D.; Pierleoni, A.; Pignatelli, M.; Ong, C.K.; Fumis, L.; Karamanis, N.; Carmona, M.; Faulconbridge, A.;
Hercules, A.; McAuley, E.; et al. Open Targets Platform: New developments and updates two years on. Nucleic Acids Res.
2018, 47, D1056–D1065. [CrossRef]

36. Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C. The Comparative
Toxicogenomics Database: Update 2019. Nucleic Acids Res. 2018, 47, D948–D954. [CrossRef]

37. Yu, W.; Clyne, M.; Khoury, M.J.; Gwinn, M. Phenopedia and Genopedia: Disease-centered and gene-centered views of the
evolving knowledge of human genetic associations. Bioinformatics 2009, 26, 145–146. [CrossRef]

38. Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The
GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33.
[CrossRef]

39. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.;
Asplund, A.; et al. Tissue-Based Map of the Human Proteome. Science 2015, 347, 1260419. [CrossRef] [PubMed]

40. Zhang, B.; Horvath, S. A General Framework for Weighted Gene Co-Expression Network Analysis. Stat. Appl. Genet. Mol. Biol.
2005, 4, 17. [CrossRef]

41. Langfelder, P.; Zhang, B.; Horvath, S. Defining clusters from a hierarchical cluster tree: The Dynamic Tree Cut package for R.
Bioinformatics 2008, 24, 719–720. [CrossRef] [PubMed]

42. Langfelder, P.; Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol.
2007, 1, 54. [CrossRef] [PubMed]

43. Langfelder, P.; Luo, R.; Oldham, M.C.; Horvath, S. Is my network module preserved and reproducible? PLoS Comput. Biol. 2011,
7, e1001057. [CrossRef] [PubMed]

http://doi.org/10.1172/jci.insight.131597
http://www.ncbi.nlm.nih.gov/pubmed/31600171
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1164/rccm.200810-1596OC
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1093/nar/gky1120
http://doi.org/10.1128/MCB.22.8.2632-2641.2002
http://doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
http://doi.org/10.1136/thoraxjnl-2013-204596
http://www.ncbi.nlm.nih.gov/pubmed/25217476
http://doi.org/10.1183/23120541.00117-2019
http://www.ncbi.nlm.nih.gov/pubmed/31423451
http://doi.org/10.1164/rccm.201712-2410OC
http://www.ncbi.nlm.nih.gov/pubmed/30554520
http://doi.org/10.1093/nar/gky1133
http://doi.org/10.1093/nar/gky868
http://doi.org/10.1093/bioinformatics/btp618
http://doi.org/10.1002/cpbi.5
http://doi.org/10.1126/science.1260419
http://www.ncbi.nlm.nih.gov/pubmed/25613900
http://doi.org/10.2202/1544-6115.1128
http://doi.org/10.1093/bioinformatics/btm563
http://www.ncbi.nlm.nih.gov/pubmed/18024473
http://doi.org/10.1186/1752-0509-1-54
http://www.ncbi.nlm.nih.gov/pubmed/18031580
http://doi.org/10.1371/journal.pcbi.1001057
http://www.ncbi.nlm.nih.gov/pubmed/21283776

	Introduction 
	Results 
	Consensus Gene Modules 
	Identification of Conserved Candidate Modules Correlated with IPF Phenotypic Traits 
	Consensus Modules-Biological Processes 
	Consensus Modules for Specific Cell Types from Normal, and Fibrotic Lung Markers 
	Candidate Biomarkers and Novel IPF-Associated Genes 
	Consensus Hubs Associated with Lung Function Activity 
	Hub Genes Conserved across Different IPF Severities and Acute Exacerbation 
	Candidate Genes Categorizing IPF and Other Interstitial Lung Diseases 
	Hub Gene Prioritization 
	CRABP2—Novel Candidate Gene and Potential Biomarker of IPF 

	Discussion 
	Materials and Methods 
	IPF Transcriptomic Datasets 
	Normal and IPF Lung Single-Cell Markers 
	Known Pulmonary Fibrosis Genes 
	Hub Gene Prioritization 
	Lung Function GWA Genes 
	Secreted Proteins 
	Consensus WGCNA and Candidate Modules 
	Immunohistochemistry 

	References

