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Abstract: It is significant to study the reason that semiconductor material has adjustable third-order
optical nonlinearity through crystal form and dimensions are changed. αMnS nanoparticles with
different crystal forms and sizes were successfully prepared by one-step hydrothermal synthesis
method and their size-limited third-order nonlinear optical property was tested by Z-scan technique
with 30 ps laser pulses at 532 nm wavelength. Nanoparticles of different crystal forms exhibited
different NLO (nonlinear optical) responses. γMnS had stronger NLO response than αMnS because
of higher fluorescence quantum yield. Two-photon absorption and the nonlinear refraction are
enhanced as size of nanoparticlesreduced. The nanoparticles had maximum NLO susceptibility
which was 3.09 × 10−12 esu. Susceptibility of αMnS increased about nine times than that of largest
nanoparticles. However, it was reduced when size was further decreased. This trend was explained
by the effects of light induced dipole moments. And defects in αMnS nanoparticles also had effect on
this nonlinear process. MnS nanoparticles had potential application value in optical limiting and
optical modulation.
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1. Introduction

With the development of the information age, people have increasing requirements for information
transmission, storage, exchange, or display speed in communication network systems [1]. However,
a large number of electronic devices, electro-optical, and optical-electrical conversion devices in systerm
limit the speed of information transmission [2,3]. Improving the speed of information transmission
becomes the most urgent need. It is the only way to break this bottleneck that faster response
photonic devices replace electro-optical and photo-electrical conversion devices [4–6]. In recent years,
semiconductor nanomaterials are one of the rapidly developing research fields because of their potential
applications in optoelectronic devices, all-optical switches, and fluorescent markers. Lots of study
reported that pure CdSe quantum dots and ZnSe quantum dots [7,8], semiconductor-particles-doped
CdSe/CdS quantum dots [9], and Mn-doped PbSe quantum dots [10] all show excellent NLO (nonlinear
optical) response.

CdS, CuS, ZnS, MnS and etc. are typical semiconductor nanomaterials and exhibit good
electrochemical property [11–14]. Meanwhile, these typical sulfide nanoparticles also exhibit significant
two-photon absorption and refraction in terms of NLO property [15–18]. Enhanced NLO response
of these semiconductor nanomaterials was due to intense surface plasmon resonance [7]. Cadmium,
zinc, copper, and manganese are significant metals ions for preparation of photoelectrons and
NLO nanoparticles, which may apply in optoelectronic devices and non-linear devices [7,8,16,18].
Some studies have experimentally determined that quantum dots exhibited the relationship between
NLO enhancement and quantum dot size [19–22]. Although there were many explanations for
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excellent NLO performance of quantum dots and mechanism for their performance enhancement,
quantum dot synthesis process was complicated and the samples’ stability was weaker compared
with nanoparticles, resulting in their limitation for preparation of faster response photonic devices.
In addition, the relationship between nanoparticles’ size and nonlinear optical property was still lack.
The correlation between size of semiconductor nanoparticles and their three order susceptibility has
not been well studied. The mechanism for studying NLO property of nanoparticles is urgent and
significant for the application of NLO devices.

In the previous study, we synthesized different crystal form MnS nanoparticles and their graphene
composites [18,23]. We discussed the relationship between synthesis time of composites and NLO
property, and the relationship between graphene addition of composites and NLO property. However,
the relationship between crystal form of pure MnS nanoparticles and NLO response, and the relationship
between size and NLO response have not been studied. The mechanism of NLO susceptibility changed
is still unclear. So it is necessary to explore the relationship between size of nanoparticles and
NLO property. Therefore, in this study, we used one-step hydrothermal method to synthesize MnS
nanoparticles with different sizes and γMnS nanoparticles. The goal is to obtain MnS nanoparticles of
tunable NLO property and achieve products which can be applicated in optical limiting and optical
modulation by clarifying the mechanism of NLO susceptibility.

2. Experiments

2.1. Synthesis of αMnS

MnS was prepared by the facile one-step hydrothermal method [18,23]. This method is easy
to operate, has high production efficiency, and can produce specific crystal forms of MnS or other
semiconductor materials by changing temperature, synthesis time, kinds of solvent, and sulfur source.
The method is important for the potential application of semiconductor nanomaterials in the fabrication
of NLO devices.

An appropriate amount of ethylene glycol was used as solvent containing manganese source and
sulfur source. Thioacetamide (TAA) was used as sulfur source and MnCl2·4H2O as manganese source.
First, TAA and MnCl2·4H2O were thoroughly mixed and added to ethylene glycol. Next, the solution
was stirred through magnetic stirrer and sonicated for 1 h. Then, the solution was placed in Teflon
liner. The Teflon liner was transferred to stainless steel autoclave and reacted at 190 ◦C for 6 h. Finally,
the product was washed several times with absolute ethanol and deionized water. The final product
was dried in vacuum oven at 45 ◦C for 48 h and labeled as αMnS-6. Five samples were prepared
by the same steps with different reaction times. The synthesis times were 6 h, 8 h, 10 h, 12 h and
14 h, respectively. This was basically consistent with the synthetic methods in our previous studies.
Five samples were labeled as αMnS-6, αMnS-8, αMnS-10, αMnS-12 and αMnS-14, corresponding to
synthesis times of 6 h, 8 h, 10 h, 12 h and 14 h. However, this method synthesized αMnS bulk crystals
instead of nanoparticles. And nanoparticles are condensed not scattered. Nanoparticles make up
bulk crystals, so the massive crystals need to be dissolved in the solution with sufficient ultrasound to
obtain nanoparticles. αMnS powder was first dissolved in ultrapure water. The solution was then
thoroughly stirred and sonicated for 4 h and product was dried in a vacuum oven at 40 ◦C for 24 h.
At this time, massive αMnS became αMnS nanocrystal. γMnS nanoparticles could be obtained by
same steps, synthesis time was 6 h with different heat temperature, which was 170 ◦C.

2.2. Instrumental Characterization

XRD patterns of αMnS and γMnS were obtained on X-ray diffraction (XRD, Bruker D8
Advance, Bruker Inc., Karlsruhe, badensko-wuertembersko, Germany). SEM images of samples were
acquired by scanning electron microscope (SEM, Carl Zeiss Inc., Oberkochen, Baden-Württemberg,
Germany). αMnS and γMnS was also tested by Bruker Optics Vertex 70 (Bruker Inc., Karlsruhe,
badensko-wuertembersko, Germany) and Ultraviolet–Visible absorption instrument (Uv-Vis, Cary 5000,
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Agilent Inc., Sacramento, CA, USA), respectively. Raman spectra were obtained on Renishaw inVia
(Renishaw Inc., Gloucester, Gloucestershire, UK). The Z-scan patterns were received on picosecond
laser (picosecond laser, PLA2251A, Ekspla Inc., Vilnius, Lithuania) with wavelength 532 nm and pulse
width 30 ps. The incident laser wavelength and pulse width used to obtain the z-scan curves are
consistent with our previous studies.

3. Results and Discussion

3.1. Structure and Morphology Characterization

Samples were exposed to X-ray diffraction to obtain XRD spectra. XRD patterns of αMnS-6,
αMnS-10 and αMnS-14 were shown in Figure 1. For pure αMnS nanoparticles, there was no diffraction
peaks of impurities detected, demonstrating that products were pure αMnS. The characteristic
diffraction peaks of αMnS are located at 29.6◦, 34.3◦, 49.3◦, 59.3◦, 58.5◦, and 61.4◦, corresponding to
(111), (200), (220), (311), and (222) [24]. The sharpness of diffraction peak in XRD spectra represented
the crystallinity of samples [25]. higher rystallinity of αMnS was, sharper diffraction peak was. Figure 1
showed that sharpness of the diffraction peak ofαMnS-14 was higher than that ofαMnS-6 andαMnS-10,
indicating that the crystallinity of αMnS-14 was the highest. Due to different crystal form, the peaks of
γMnS were located at 26◦, 28◦, 29◦, 46◦, 50◦, and 53◦, corresponding to (100), (002), (101), (110), (103),
and (112) [23]. For γMnS, sharpness of diffraction peak was lower than αMnS, demonstrating that
γMnS exhibited lower crystallinity.
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Figure 1. XRD patterns of αMnS-6, αMnS-10, αMnS-14 and γMnS.

As mentioned above, MnS crystal synthesized by the hydrothermal method with sufficient
agitation and ultrasonication to obtain nanoparticles. Figure 2a showed the aggregation of αMnS
crystals. Figure 2b,c shows that MnS crystal was bulky, and volume of crystal block became large
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as synthesis time increased. αMnS nanoparticles obtained after treatment [18]. The volume of
nanoparticles decreased as the synthesis time increased and size range was 40 nm to 200 nm [23]. This
might be due to high temperature and high pressure in stainless-steel reactor. Initially, manganese source
and sulfur source combined to form manganese sulfide nanocrystals, which were then continuously
formed massive αMnS. Firstly,αMnS formed was loose cluster of grapes. Then, as synthesis time
increased, αMnS of massive structure began to become dense, presumably because of environmental
influence forming massive crystal, resulting in volume of αMnS nanoparticles reduced. Along with
the continuous formation of αMnS nanoparticles, volume of the crystals was increased, but volume
of nanoparticles continuously was reduced under high temperature and high pressure. Figure 2d
showed mapping images of MnS. Green areas represented sulfur and red areas represented manganese,
which indicated that the product was MnS not another substance. Figure 2e displayed the relationship
between nanoparticles and bulk crystals under high temperature and high pressure environment as
the synthesis time extended.
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Figure 2. SEM image of (a) massive αMnS-6, (b) massive αMnS-10, (c) massive αMnS-14, (d) mapping
images of MnS, and (e) process of αMnS bulk crystals change.
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It could be seen from Figure 3 that αMnS-6 showed strong exciton absorption peak at 285 nm,
αMnS-10 showed exciton absorption peak at 278 nm, the absorption peak of αMnS-14 was at 272 nm,
and the absorption peak of γMnS was at 281 nm. As reaction time increased, absorption spectra
exhibited significant blue shift, indicating that diameter of nanoparticles was decreased, which was
consistent with the results as mentioned above. The blue shift of 10 nm indicated some changes in
electronic state of nanoparticles. These changes in electronic states might be related to NLO property
of αMnS.
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Figure 3. UV absorption spectra of αMnS-6, αMnS-10, and αMnS-14.

Figure 4 showed Raman spectra of MnS with different crystal forms. αMnS exhibited Raman
absorption peak at 636 cm−1. However, Raman absorption peak γMnS was at 646 cm−1. There was
a little difference between peak of αMnS and that of γMnS. The reason for difference might be that
Raman absorption peak shift should be affected by lattice constant of distortion.
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Figure 4. Raman spectra of αMnS and γMnS.

3.2. NLO Property of Nanoparticles

In our previous study, NLO response of αMnS/rGO and γMnS/rGO was investigated. And results
showed that nonlinearity of graphene composites was enhanced and the reason for NLO enhancement
was surface defects and synergistic effect, including local field theory and charge transfer [18,23].
In this study, NLO absorption and refraction of αMnS with different size and γMnS were measured by
Z-scan technique using single Gaussian beam. The Nd:YAG laser system used for excitation generated
30 pisecond laser pulse at 532 nm wavelength. Laser system generated repetition frequency of 10 Hz
and had beam waist radius of about 10.6 µm at the focal plane. CS2 was standard for Z-scan curves,
which could calibrate curves, so that the center of the curve is centered on Z-axis. The measurement
data could ignore the absorption and scattering effects of the sample. The samples on a moving
platform move along the Z-axis and focal plane of 250 mm focal length lens. With absolute ethanol as
the solvent, the sample concentration was 0.125 mg/mL.

Figure 5a,b showed typical OA (open aperture) and CA (close aperture) /OA Z-scan curves
for nanoparticles of different crystal forms. The OA curve showed valley indicating two-photon
absorption process and the positive nonlinear absorption coefficient β. The CA/OA Z-scan curves
displayed peak-to-valley profile, indicating self-focusing and positive nonlinear refractive index n2 of
nanoparticles. The Reχ(3) and Imχ(3) values could be obtained by the equations showed below.
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Figure 5. (a) OA Z-scan curves of αMnS and γMnS. (b) CA/OA Z-scan curves of αMnS and γMnS.

When incident light was incident on the sample, normalized transmittance of Z-scan in actual
measurement could be represented by [25,26]

T(z) =
∞∑

m = 0

{[
q0(z)

]m
/(1 + m)3/2

}
(1)

where q0(z) was calculated according to q0(z) = βI0Leff/(1 + z2/z0
2) [26]. β could be obtained by

β =
[
2
√

2(1 − Tz = 0)
(
1 + Z2 + Z2

0

)]
/(I 0Leff

)
. (2)

Leff could be acquired by the formula below which was effect length.

Leff = (1 − exp( −αL))/(αL) (3)
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Imaginary part and real part could be calculated by the formulas that Imχ(3) = cn0λβ/480π and
Reχ(3) = n0n2/3π, where n2 was nonlinear refractive index obtained by

n2 = (2.941 × 106λω0n0τ4Tp-v)/[ELeff(1 − S)0.25] (4)

So nonlinear susceptibility of samples could be calculated by [27]

∣∣∣χ(3)∣∣∣ =
[(

Reχ(3)
)2

+
(
Imχ(3)

)2
]1/2

(5)

The third-order susceptibility of nanoparticles was also calculated in our previous studies,
but there was no discussion on various sizes and mechanisms of NLO property of nanoparticles [18,23].
According to equations, increase of α and Leff resulted in NLO absorption coefficient β enhanced.
∆Tp-v would influence change of n2 and ultimately affected final trend NLO susceptibility χ(3). T could
be observed from Figure 5a,b that T = 0.86 and T = 0.83. And ∆Tp-v also could be obtained by
Figure 5a,b that ∆Tp-v,αMnS-6 = 0.29 and ∆Tp-v,γMnS = 0.3. β could be calculated by the equations that
βαMnS-6 = 1.78 × 10−11mW−1 and βγMnS = 2.14 × 10−11mW−1. And n2 could be obtained by equations
that n2,αMnS-6 = 2.17 × 10−12 esu and n2,γMnS = 2.48 × 10−12 esu. Reχ(3), Imχ(3), and χ(3) are displayed
in Figure 6. Susceptibility χ(3) of γMnS was 0.95 × 10−12 esu and χ(3) of αMnS was 0.33 × 10−12 esu.
Due to different crystal forms, αMnS and γMnS nanoparticles exhibited different NLO response.
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Figure 6. The nonlinear optical parameters of all samples.

It was known from our previous studies that fluorescence peak of γMnS appeared at 432 nm
and the excitation wavelength was 283 nm [23]. However, αMnS did not show fluorescence peak [18].
The decrease in fluorescence quantum yield might weaken the NLO characteristics of the sample.
αMnS might have more non-radiative defects than γMnS due to the dissipation of energy by the lattice
thermal vibration, which caused the surface-localized electrons to quench rapidly due to non-radiative
defects, greatly reducing the fluorescence of semiconductor structures quantum yield, which resulted
in weak NLO performance.

It could be obtained from our previous study that αMnS with different synthesis time exhibited
two-photon absorption [18]. Value of T could be acquired from our previous study [18] that
T = 0.83, T = 0.71, T = 0.65, T = 0.69, and T = 0.84. ∆Tp-v could be obtained from our previous
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study that ∆Tp-v,αMnS-6 = 0.29, ∆Tp-v,αMnS-8 = 0.42, ∆Tp-v,αMnS-10 = 0.5, ∆Tp-v,αMnS-12 = 0.81,
and ∆Tp-v,αMnS-14 = 0.53 [18]. β could be calculated by the equations that βαMnS-6 = 1.78 × 10−11mW−1,
βαMnS-8 = 2.17 × 10−11mW−1, βαMnS-10 = 3.73 × 10−11mW−1, βαMnS-12 = 4.52 × 10−11 mW−1,
and βαMnS-14 = 3.98 × 10−11 mW−1. n2 could be obtained by equations that n2,αMnS-6 = 2.17 × 10−12 esu,
n2,αMnS-8 = 3.18 × 10−12 esu, n2,αMnS-10 = 3.84 × 10−12 esu, n2,αMnS-12 = 6.31 × 10−12 esu.
And n2,αMnS-14 = 4.08 × 10−12 esu. Reχ(3), Imχ(3), and χ(3) are displayed in Figure 6.The nonlinear
absorption characteristics exhibited by the nanoparticles first increased and then decreased with size of
the nanoparticles decreased. And Figure 6 showed all samples of αMnS exhibited positive nonlinear
refractive index. The nonlinear optical parameters of all samples in Figure 6 were based on the above
formula. NLO response of αMnS nanoparticles increased as their size decreased. The nonlinear
refraction characteristics of αMnS also decreased with the increase of size, which showed that changing
size by controlling synthesis time could control nonlinear characteristics of nanoparticles. Meanwhile, it
could be seen from Figure 6 that changing the temperature to control crystal form of nanoparticles could
also change nonlinear characteristics of nanoparticles. The nonlinear response of nanoparticles became
controllable, which made them have application potential in the fabrication of nonlinear devices.
It could be seen from Figure 6 that susceptibility of αMnS decreased instead when nanoparticles
were further reduced. The best result for χ(3) of αMnS-12 was 3.09 × 10−12 esu and αMnS-6 was
0.33 × 10−12 esu, demonstrating that χ(3) of αMnS-12 increased about nine times larger than that of
αMnS-6. αMnS nanoparticles with different synthesis times showed tunable NLO response.

The photoinduced transition dipole moment determined the NLO performance in αMnS
nanoparticles. The intensity of the exciton oscillation was related to overlap of electron and hole wave
functions [27]. Since movement of electrons and holes was free, the electron and hole wave functions
of two excitons hardly overlap when size of nanoparticles was large and thus the photoinduced dipole
moment was small. As the size of nanoparticles decreased, electrons might be limited by size of the
nanoparticles, and the wave functions of electrons and holes in the two pairs of excitons became
more overlapped as size decreased. This enhanced oscillation intensity of two excitons and improved
photoinduced dipole moment and third-order NLO property of nanoparticles [28,29]. However, as size
of nanoparticles was further reduced, the holes and electrons in two excitons were limited, resulting in
nonlinear characteristics of nanoparticles decreased.

On the other hand, defects in MnS nanoparticles possibly reduced their optical nonlinearity [30].
The large ground-state dipole moment was an intrinsic internal field, which was related to the defects
of nanoparticles and would strongly influence selection rules and electronic structures through exciton
transitions [30]. Due to reduced spatial overlap of local electron and hole wave functions, radiation
defects could enhance the photodipole moment. Surface-localized electrons were rapidly quenched for
non-radiative defects, which greatly reduced fluorescence quantum yield of semiconductor structure.
NLO performance was related to defects in nanoparticles and non-radiative defect state in nanoparticles
was negative for nonlinearity, which could quickly quench electrons and reduce the spatial overlap
of electron and hole wave functions. This reduced light induced dipole moment, resulting in NLO
response of nanoparticles weakened.

4. Conclusions

In summary, αMnS and γMnS nanoparticles were successfully prepared by simple one-step
hydrothermal synthesis method. Structure and morphology of nanoparticles were acquired on XRD,
SEM, UV absorption spectra, and Raman spectra, and their tunable and size-limited three order
nonlinear optical property was tested by Z-scan technique. By controlling synthesis temperature
and time to change crystal form and size of nanoparticles, nanoparticles of different sizes had
different nonlinear characteristics. Higher fluorescence quantum yield resulted in stronger NLO
response for γMnS. As size was reduced, NLO response of αMnS first increased and then reduced.
αMnS nanoparticles with 12 h synthesis time have maximum NLO susceptibility. This could be
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explained by the effects of light induced dipole moments and defects of nanoparticles. Tunable
nonlinearity makes MnS potentially useful in NLO device manufacturing.
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