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Abstract: A simple and reliable dispersive liquid-liquid microextraction (DLLME) coupled with
smartphone-based digital images using crude peroxidase extracts from cassia bark (Senna siamea Lam.)
was proposed to determine carbaryl residues in Andrographis paniculata herbal medicines. The method
was based on the reaction of 1-naphthol (hydrolysis of carbaryl) with 4-aminoantipyrine (4-AP) in
the presence of hydrogen peroxide, using peroxidase enzyme simple extracts from cassia bark as
biocatalysts under pH 6.0. The red product, after preconcentration by DLLME using dichloromethane
as extraction solvent, was measured for blue intensity by daily life smartphone-based digital im-
age analysis. Under optimized conditions, good linearity of the calibration graph was found at
0.10–0.50 mg·L−1 (r2 = 0.9932). Limits of detection (LOD) (3SD/slope) and quantification (LOQ)
(10SD/slope) were 0.03 and 0.09 mg·L−1, respectively, with a precision of less than 5%. Accuracy of
the proposed method as percentage recovery gave satisfactory results. The proposed method was
successfully applied to analyze carbaryl in Andrographis paniculata herbal medicines. Results agreed
well with values obtained from the HPLC-UV method at 95% confidence level. This was simple,
convenient, reliable, cost-effective and traceable as an alternative method for the determination
of carbaryl.

Keywords: carbaryl; cassia bark (Senna siamea Lam.); smartphone-based digital image analysis;
1-naphthol; peroxidase enzyme

1. Introduction

Since the outbreak of the COVID-19 virus in 2019, the application of medicinal
plants to strengthen immunity and prevent viral infections has increased as another op-
tion [1–3]. Andrographis paniculata is an indigenous medicinal plant found in Malaysia and
Thailand [1,2,4,5] that has antioxidant properties to scavenge free radicals [6,7] and stimu-
late the immune system [8,9] against foreign matter entering the body, thereby inhibiting
the growth of cancer cells [5,10–12]. This plant is widely used for treating sore throats, flu
and upper respiratory tract infections [5,13]. Therefore, the use of pesticides increases the
harvest of Andrographis paniculate [14].
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Carbaryl (1-naphthyl methylcarbamate), a synthetic insecticide in the carbamate family,
causes reproductive and developmental toxicity including neurodevelopmental perturba-
tions that impact the immune system as a possible human carcinogen. Carbaryl exhibits
high toxicity to non-target organisms [15] but is only moderately toxic to aquatic organisms
(LC50 values in rainbow trout and bluegill of 1.3 and 10 mg·L−1, respectively) [16]. Oral
LD50 of carbaryl ranges from 250 mg·kg−1 to 850 mg·kg−1 in rats, and from 100 mg·kg−1

to 650 mg· kg−1 in mice [17].
Various analytical methods have been established for the determination of carbaryl

such as high-performance liquid chromatography (HPLC) [18–20], liquid chromatography-
mass spectrometry (LC-MS) [21,22], liquid chromatography-tandem mass spectrometry
(LC-MS/MS) [23], gas chromatography (GC) [24,25] and capillary electrophoresis [26,27].
These techniques can simultaneously determine carbaryl with other carbamate insecti-
cides but they require highly skilled operators and are cost-consuming. Electrochemical
analysis [28–31] to investigate carbaryl content has advantages in terms of specific and
low detection limits. However, this method requires skilled fabrication and modification
of the working electrode. Fluorescence spectroscopy has also been used to determine
carbaryl [32,33], providing advantages of selectivity detection, while spectrophotometric
methods [34–38] are based on carbaryl hydrolysis to 1-naphthol, which is subsequently
coupled with different reagents. Spectrophotometric procedures are considered to be appro-
priate as they involve commonly available laboratory instruments such as a spectrometer
but they still need some specific requirements [39,40].

Recently, image processing was applied for chemical analysis. Digital image acquisi-
tion devices such as a scanner, camera and smartphone built-in camera as cheap electronic
components were employed to capture digital photo images [39]. Digital imaging analysis
is an advanced technique to evaluate the color intensity of captured digital photo images
using image processing software [41]. Pixels in red, green or blue channels with numerical
values ranging from 0 to 255 can be utilized for analytical calibration [42]. Digital images
provide data that can be used for fast and low-cost colorimetric detection of quantitative
chemical analysis [43]. Smartphones are extensively employed in daily life as image acqui-
sition tools because they are portable, with multiple data transmission functions and high
storage capacity [44]. Digital image data acquired from image software can considerably
enhance detection accuracy [45,46]. Digital image analysis has been applied in various
fields including environmental monitoring, food safety and clinical analysis due to its
convenience, stability, low cost and flexibility [47,48]. Digital image analysis has also been
developed to determine liquid turbidity [42] and bacterial cell concentration in liquid
media [49].

Enzymes are often employed as bio-accelerators because they require small amounts
of substrate and utilize specific reactions that operate under mild conditions [50,51]. Per-
oxidase enzymatic spectrophotometry has been used to quantify carbaryl residues in
vegetables by our group [52,53]. Cassia bark (Senna simea), an indigenous plant found
in many areas including Thailand, Southern India, Sri Lanka, Myanmar (Burma), Cam-
bodia, Malaysia and parts of Indonesia was employed as a source of peroxidase enzyme
for extraction by a simple method yielding crude peroxidase enzyme. Crude peroxidase
enzyme extract was used as an alternative to commercially available expensive horseradish
peroxidase as a biocatalyst for the enzymatic reaction of carbaryl with 4-AP in the presence
of hydrogen peroxide under optimal pH. No additional enzyme purification steps were
required to avoid deterioration through enzyme degradation [54–56]. This process offered
comparable analytical performance to horseradish peroxidase as a green chemical analysis.

However, a sample containing carbaryl at low levels in complicated matrices requires
pretreatment before the colorimetric detection step. Sample pretreatment techniques such
as dispersive liquid-liquid microextraction (DLLME) have recently attracted increased
attention to concentrate the sample before analysis [52,57,58]. DLLME has advantages of
simplicity of operation, rapidity, low cost, high recovery, high preconcentration factor and
environmental benignity [59].
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Here, we developed a simple downscaling cost effective procedure as a green chemical
analysis for the colorimetric enzymatic determination of carbaryl residues in herbal medicine
samples by employing crude peroxidase enzyme extracts with smartphone-based digital
image analysis, using dispersive liquid-liquid microextraction for sample pretreatment.

Here, low-cost crude peroxidase enzyme extract from cassia bark was employed as
biocatalysts. A down-scaled dispersive liquid-liquid microextraction technique reduced the
consumption of deleterious extraction and disperser solvent to preconcentrate the analyte
before daily life smartphone-based digital imaging analysis. The developed method was
simple, cost-effective, reliable and tracible and produced comparable results to HPLC.

2. Results and Discussion
2.1. Activity of Peroxidase Crude-Extract

Peroxidase enzyme extracts from cassia bark were mixed with ready-to-use ABTS
substrate in the presence of hydrogen peroxide. The green color of ABTS cation radical
was observed, indicating that peroxidase was found in the crude extracts from cassia bark.
Activity of the crude enzyme was 1.15 ± 0.05 kU 10 µL−1, equivalent to 0.32 kU L−1 of
horseradish peroxidase (HRP, Sigma-Aldrich, St. Louis, MO, USA) evaluated from HRP
activity calibration in the range 0.125–2.0 kU L−1 [52]. Peroxide activity remained constant
for 3 months at −20 ◦C. Activity decreased by 9% after 6 months compared with fresh
extracts, while the stability of enzyme extracts declined after 8 h at room temperature,
indicating that they could be used for quantification of carbaryl for only one day.

2.2. Suggested Reaction between Peroxidase Extracts and Carbaryl

The suggested reaction for the determination of carbaryl was based on the mixed solu-
tion containing 1-naphthol as the hydrolysis product of carbaryl under alkaline conditions,
4-AP and hydrogen peroxide. The mixture solution was catalyzed by crude peroxidase
enzyme extracts under phosphate buffer pH 6. Maximum absorption of red product was
observed at a wavelength of 500 nm (Figure 1a).

Figure 1. Determination of carbaryl based on peroxidase enzymatic reaction; (a) Absorption spectra
10 mg·L−1 carbaryl in phosphate buffer pH 6.0 and blank; (b) suggested mechanism for the reaction
of carbaryl with 4-AP in the presence of hydrogen peroxide, exploiting crude peroxidase as a catalyst.

Figure 1b shows the reaction involving two steps as (i) hydrolysis of carbaryl under
alkaline conditions yielding 1-naphthol, and (ii) enzymatic reaction of 1-naphthol with
4-AP in the presence of hydrogen peroxide using peroxidase as a catalyst. 4-AP reacted
with 1-naphthol at the para-position of the aromatic ring giving a red-colored product [60].
Results indicated that carbaryl insecticide could be produced using crude peroxidase
enzyme extracts from cassia bark.

2.3. Optimization of Operational Parameters for Determination of Carbaryl by Smartphone-Based
Digital Images

A light-emitting diode (LED) (Yongnuo YN300 III, China) was placed in the middle
of the light control box used as the illumination device. This eliminated the need for flash
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photography to capture images and control the uniformity of light intensity (Figure S1). The
captured images of the 96-microwell plate without extraction phase and the repeatability
of RGB intensities were used to assess the homogeneity of light illumination from the
LEDs. Relative standard deviation (RSD) was 1.47%, indicating excellent measurement
repeatability of RGB intensity under the light control box. The RSD obtained from the
calibration graph in the range 0.10 to 0.50 mg·L−1 of standard carbaryl was less than 6%
(n = 9). We concluded that light and temperature in a closed light control box were not
significantly affected by the intensity of RGB color.

Image qualities obtained from the camera and smartphone were not significantly
different. The RGB intensity of captured images using standard carbaryl at 0.30 mg·L−1

achieved using a smartphone and camera were not significantly different (t Stat = 0.123 < t
Critical = 1.985 at 95% confidence level and df = 95). Moreover, the slope of the calibration
graph obtained from the smartphone was not significantly different when compared with
the slope of the calibration curve from the camera (t Stat = 1.14 < t Critical = 2.78 at 95%
confidence level and df = 4).

After enzymatic reaction and DLLME optimization, the extraction solvent was trans-
ferred to a 96-microwell plate to capture the digital image under the light control box using
a smartphone. RGB intensity of the photographed image was evaluated by ImageJ software
to obtain the RGB profile as illustrated in Figure S2. For quantification purposes, the graph
of RGB intensity difference (∆I) (difference in color intensity of reagent blank zone and
color intensity of standard) was plotted against carbaryl concentrations in the range 0 to
0.50 mg·L−1 (Figure S3). Blue (B) and green (G) intensity of the captured image related to
the concentration of carbaryl but blue intensity gave the highest sensitivity. Therefore, blue
intensity was utilized to determine carbaryl by the proposed method.

Sensitivity of the developed method depended on the volume of extraction phase in
the microwell plate and was investigated at 100, 200 and 300 µL. The loading extraction
phase at 200 µL gave good sensitivity and linearity for quantification of carbaryl. Low
sensitivity was achieved at 100 µL, while 300 µL gave a narrow linear range and low
sensitivity. Hence, 200 µL of the extraction phase was loaded into the 96-microwell plate.
The calibration graph was constructed by plotting the change in intensity of blue color
(intensity of blank − intensity of analyte) versus carbaryl concentration ranging from 0.10 to
0.50 mg·L−1.

2.4. Optimized Conditions for Determination of Carbaryl Using Crude Peroxidase Enzyme
2.4.1. Effect of pH

The pH value impacts stability, conformation and activity of an enzyme. The effect of
pH on the enzymatic reaction for carbaryl assay was determined using citrate-phosphate
buffer (pH 3 to pH 5) and phosphate buffer (pH 6 to pH 7). Results in Figure 2a show
that crude peroxidase extract provided the highest sensitivity using phosphate buffer
pH 6. Therefore, the peroxidase enzyme catalytic reaction for carbaryl assay was operated
at pH 6.0.

2.4.2. Effect of 4-AP Concentration

4-AP chromogenic substrate was employed for peroxidase enzymatic reaction to de-
termine carbaryl. 4-AP acts as a hydrogen atom donor in the peroxidase catalytic reaction.
Concentrations of 4-AP from 50 to 200 mg·L−1 were investigated. Results indicated that
the analytical signal increased gradually with increasing 4-AP concentration from 50 to
150 mg·L−1. The signal was not significantly different from 150 to 200 mg·L−1 because ac-
tive sites of peroxidase were almost saturated with 4-AP (Figure 2b). Therefore, 150 mg·L−1

of 4-AP was selected for the next experiment.
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Figure 2. Investigation of various carbaryl detection parameters based on peroxidase enzymatic
reaction; (a) effect of pH; (b) effect of 4-AP concentration; (c) effect of hydrogen peroxide concentration
and (d) effect of enzyme volume on sensitivity of carbaryl detection by peroxidase enzymatic reaction.

2.4.3. Effect of Hydrogen Peroxide Concentration

Hydrogen peroxide acts as a hydrogen atom acceptor. Results in Figure 2c show
that the signal increased sharply between 0.01 and 0.3 mmol·L−1 hydrogen peroxide and
then dropped until 1.0 mmol·L−1 due to hydrogen peroxide inhibition, with 0.3 mmol·L−1

providing the highest value. This concentration was selected for subsequent experiments.

2.4.4. Effect of Peroxidase Enzyme Volume

The volume of peroxidase enzyme extracts impacted sensitivity by influencing enzyme
activity. Here, 10–200 µL of enzyme extracts were tested. Enzyme activity increased with
increasing volume of enzyme, accelerating the reaction. When increasing the volume of
enzyme, the red color of the blank also increased. Results are presented in Figure 2d. The
signal increased gradually from 10 µL to 150 µL and then decreased above 150 µL. Thus,
150 µL volume was selected for subsequent experiments.

2.4.5. Effect of Incubation Time

Longer incubation time increased products from the catalytic reaction. Incubation
time ranging 1–20 min was studied. Sensitivity climbed continuously from 1 min to 10 min
and then the signal leveled off over 10 min (data not shown). Therefore, 10 min incubation
time was chosen for the next procedure giving sufficient determination sensitivity and
short time of analysis.
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2.5. DLLME Optimization for Carbaryl Detection
2.5.1. Effect of Types and Volume of Extraction Solvents

Types and volume of extraction solvents in DLLME impacted extraction efficiency [57,59].
Chloroform, dichloromethane, octanol and 1-dodecanol were explored, with results shown
in Figure 3a. Optimal extraction efficiency for carbaryl was obtained when dichloromethane
was used as the extraction solvent, and this was selected for the proposed method. Volumes
of 100–700 µL extract solvent were also considered. Results showed that the signal increased
from 100 µL to 500 µL and then decreased from 500 µL to 700 µL because of the dilution effect
(Figure 3b). Thus, 500 µL of extraction solvent was selected for subsequent experiments.

2.5.2. Effect of Types and Volume of Dispersive Solvents

Dispersive solvents must have a good tendency between organic (extraction solvent)
and aqueous phases and should be selected according to the miscibility properties of
the extraction solvent and aqueous phase [61,62]. Different dispersive solvents such as
acetonitrile, ethanol, methanol and acetone were investigated. Ethanol provided the highest
signal compared to the other tested solvents (Figure 3c) and was selected as the dispersive
solvent of DLLME. To evaluate the effect of dispersive solvent volume on extraction
efficiency, a constant volume extraction solvent (dichloromethane at 500 µL) containing
different volumes of ethanol from 100 µL to 700 µL was studied for the DLLME process.
The signal at 300 µL ethanol showed maximum sensitivity (Figure 3d).

2.5.3. Effect of Ionic Strength

Sodium chloride was added to improve extraction efficiency through the salting-out
effect by decreasing the solubility of the analyte [52,63]. Results are shown in Figure 3e.
The signal sharply increased from 0.6 to 1.0% (w/v) and then reduced from 1.2 to 1.4%
(w/v). Thus, 1.0% (w/v) sodium chloride was chosen for the developed method.

2.5.4. Effect of Vortex Time

Vortex mixing increases contact between the extraction solvent and the analyte to
improve extraction efficiency. The analysis signal increased from 0.1 min to 1 min (data
not shown), while at over 1 min the signal leveled off because equilibrium was attained.
Therefore, 1 min vortex time was adopted.

2.5.5. Effect of Centrifugation Time

Centrifugation to complete phase separation between the organic and aqueous phases
was examined in the range 1–10 min at 4032 g. Results showed that the signal climbed con-
tinuously from 1 to 7 min, with little increase up to 10 min (Figure 3f). Thus, centrifugation
at 7 min was selected to achieve phase separation for the proposed method.
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Figure 3. Investigation of DLLME parameters on carbaryl detection using smartphone-based digital
image analysis; (a) effect of extraction solvent type; (b) effect of extraction solvent volume; (c) effect
of dispersive solvent type; (d) effect of dispersive solvent volume; (e) effect of salt concentration and
(f) effect of vortex time on the sensitivity of carbaryl determination.

2.6. Analytical Characteristics

Under optimal conditions of the proposed procedure summarized in Table S1, the
linearity range of the calibration graph with DLLME for digital images based on the
colorimetric method was 0.10 to 0.50 mg·L−1 carbaryl with good linear regression r2 at
more than 0.99 (Figure 4). LOD and LOQ were calculated by 3SD/slope and 10SD/slope,
where SD is the standard deviation of the blank, at 0.03 and 0.09 mg·L−1, respectively.
Precision of the digital image method when analyzing carbaryl intraday at 0.30 mg·L−1

(n = 7) was 4.91%, with reproducibility 7.59% for 7 days (n = 3 × 7). The calibration
graph was prepared daily to minimize inherent experiment variability when using crude
peroxidase enzyme extracts. A summary of the analytical characteristics of the proposed
method compared to some other spectrophotometric methods/digital image colorimetry is
shown in Table 1. The developed method was sensitive and simple as an alternative for the
determination of carbaryl. The developed procedure was down-scaled into a microliter
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volume operation using 500 µL of extraction and dispersive solvent (300 µL) for the DLLME
procedure compared with the previous peroxidase enzymatic spectrophotometry [52], while
exploiting daily life smartphones as acquisition tools provided rapidity and traceability for
carbaryl detection.

Figure 4. Calibration graph for carbaryl determination using smartphone detection plots between
∆blue intensity and carbaryl concentrations in the range 0.10 to 0.50 mg·L−1.

2.7. Recovery and Carbaryl Residues in Andrographis paniculata Herbal Medicines

Recovery of the developed method was studied by adding standard 0.10, 0.20 and
0.30 mg·L−1 carbaryl into real samples, with results presented in Table 2. Carbaryl sample
recovery ranged 83–109% and 88–114% for smartphone-based digital images and HPLC-UV,
respectively. RSDs of recovery were less than 10% indicating that the method showed good
accuracy and good precision.

This method was also applied for carbaryl determination in 10 Andrographis paniculate
herbal medicines. Carbaryl contents shown in Table 2 ranged 5.54 ± 0.13–16.22 ± 0.29 and
6.31 ± 0.70–15.56 ± 0.32 mg·kg−1 for smartphone-based digital images and HPLC, re-
spectively. Concentrations of carbaryl residues in Andrographis paniculate herbal medicines
obtained from both methods were not significantly different at 95% confidence level using
the paired t-test (t Stat = 1.06, t Critical = 2.57, df = 5). High contamination of carbaryl in
Andrographis paniculate herbal medicines was observed in sample Nos. 1, 4–7 and 10. There
are no reports regarding maximum residue limit (MRL) of carbaryl in herbal medicines.

2.8. Selectivity for the Determination of Carbaryl by Peroxidase Enzymatic Reaction

Other insecticides in the carbamate family such as carbofuran, promecarb, aldicarb
and isoprocarb were studied for the selectivity of the peroxidase enzyme catalytic reaction.
Only carbaryl was catalyzed by peroxidase enzyme, while carbofuran, promecarb, aldicarb
and isoprocarb were not observed [52,53]. Therefore, the quantification of carbaryl using
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peroxides enzyme extracts from cassia bark was selective since the other carbamates did
not interfere with carbaryl detection.

Table 1. Comparison of peroxidase enzymatic reaction-DLLME and smartphone-based digital image
method with other spectrophotometric and digital image colorimetric methods for the determination
of carbaryl in various samples.

Detection Technique Pre-concentration Method Reagent Linearity a LOD Recovery (%) b RSD (%) Sample Reference

Spectrophotometry - Diazotized
2-aminonaphthalenesulfonic acid 0.01–0.1 mg· L−1 - 96–98 - Soil and insecticide [32]

Spectrophotometry -

p-Aminophenol, p-N,N-
dimethylphenylenediamine,

dihydrochloride, and
1-amino-2-naphthol-4-

sulphonic acid

0.08–1 mg L−1 0.08 mg·L−1 92.0–97.5 1 Insecticide, water and
grains [35]

Spectrophotometry -
2,6-Dibromo-4-methylaniline,

2,4,6-tribromoaniline, and
2,6-dibromo-4-nitroaniline

0.6–10.0 mg· L−1 0.825 mg·L−1 94.20–99.00 <2 Environmental Samples [34]

Spectrophotometry c CPE Rhodamine-B 0.04–0.4 mg· L−1 0.005 mg·L−1 97.80–101.20 <2 Water and grains [36]

Spectrophotometry d DLME and e DMSPE 2-Naphthylamine-1-sulfonic acid 10–100 µg·L−1 8 ng·mL−1 97.3–108.1 8.5 Tap water, field water
and fruit juice [58]

Spectrophotometry
f SPE g QuEChERS

and h DLLME
4-AP, H2O2 with crude rubber

tree bark peroxidase extracts 0.1–3.0 mg L−1 0.06 mg·L−1 83–118 <4 Vegetable sample [52]

Digital
image colorimetry

i LPME
4-Methoxybenzene-diazonlum

tetrafluoroborate (MBDF) 0.03–30.0 mg·kg−1 0.006–0.008 mg·kg−1 92.3–105.9 <5 Food sample [41]

Smartphone-based
digital image analysis DLLME

4-AP, H2O2 with non-purified
peroxidase extracts from Senna

siamea Lam. bark
0.10-0.50 mg·L−1 0.03 mg·L−1 82.5–108.2 4.9 Pharmaceutical sample This work

a LOD is limit of detection; b RSD is relative standard deviation; c CPE is could point extraction; d DLME
is dispersive liquid microextraction; e DMSPE is dispersive µ-solid phase extraction, f SPE is solid phase ex-
traction; g QuEChERS is Quick, Easy, Cheap, Effective, Rugged and Safe; hDLLME is dispersive liquid-liquid
microextraction and iLPME is liquid phase microextraction.

Table 2. Mean recovery percentage of spiked standard carbaryl into real samples and concentration
of carbaryl residues in Andrographis paniculate herbal medicines obtained by smartphone-based digital
images and HPLC-UV.

Sample Added (mg·L−1)

Smartphone-Based Digital Images (n = 3) HPLC-UV (n = 3)

Found
(mg·L−1 ± SD)

Mean
Recovery, %(RSD)

Carbaryl Content
(mg·kg−1 ± SD)

Found
(mg·L−1 ± SD)

Mean
Recovery, %(RSD)

Carbaryl Content
(mg·kg−1 ± SD)

1 0.1 0.11 * ± 0.01 108(6)
9.48 ± 0.15

0.100 ± 0.005 100(7) 9.72 ± 0.30
0.2 0.20 ± 0.01 100(2) 0.177 ± 0.009 88(5)
0.3 0.31 ± 0.01 104(9) 0.289 ± 0.014 96(5)

2 0.1 0.10 ± 0.01 101(10) <LOD 0.100 ± 0.005 100(2) <LOD
0.2 0.20 ± 0.01 99(3) 0.184 ± 0.009 93(5)
0.3 0.25 ± 0.01 84(5) 0.340 ± 0.010 114(3)

3 0.1 0.09 ± 0.01 87(3) <LOD 0.100 ± 0.003 100(1) <LOD
0.2 0.19 ± 0.00 92(2) 0.189 ± 0.004 95(2)
0.3 0.30 ± 0.01 101(2) 0.288 ± 0.011 96(3)

4 0.1 0.10 ± 0.00 98(5) 13.55 ± 0.34 0.089 ± 0.004 89(3) 14.83 ± 0.13
0.2 0.20 ± 0.00 98(4) 0.198 ± 0.012 99(6)
0.3 0.32 ± 0.00 105(5) 0.285 ± 0.009 95(3)

5 0.1 0.08 ± 0.00 83(6) 6.98 ± 0.16 0.097 ± 0.007 97(5) 6.57 ± 0.11
0.2 0.20 ± 0.00 98(3) 0.184 ± 0.013 92(7)
0.3 0.27 ± 0.00 91(4) 0.284 ± 0.009 94(3)

6 0.1 0.10 ± 0.00 103(4) 16.22 ± 0.29 0.095 ± 0.008 95(6) 15.56 ± 0.32
0.2 0.21 ± 0.01 105(2) 0.193 ± 0.005 97(3)
0.3 0.32 ± 0.00 106(3) 0.282 ± 0.007 93(3)

7 0.1 0.10 ± 0.00 101(5) 9.42 ± 0.97 0.102 ± 0.003 102(2) 10.15 ± 0.40
0.2 0.20 ± 0.00 98(5) 0.195 ± 0.003 99(2)
0.3 0.26 ± 0.00 87(2) 0.280 ± 0.006 93(2)

8 0.1 0.11 ± 0.01 109(5) <LOD 0.103 ± 0.005 103(7) <LOD
0.2 0.20 ± 0.00 99(2) 0.190 ± 0.006 95(3)
0.3 0.29 ± 0.01 96(4) 0.307 ± 0.003 102(2)

9 0.1 0.09 ± 0.01 90(5) <LOD 0.104 ± 0.003 103(2) <LOD
0.2 0.19 ± 0.01 93(4) 0.212 ± 0.009 106(5)
0.3 0.27 ± 0.01 91(3) 0.315 ± 0.006 105(2)

10 0.1 0.11 ± 0.00 108(4) 5.54 ± 0.13 0.103 ± 0.003 103(3) 6.31 ± 0.70
0.2 0.19 ± 0.01 93(5) 0.195 ± 0.002 103(3)
0.3 0.29 ± 0.01 95(3) 0.310 ± 0.006 103(3)

* The subscripts are the second decimal place.
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3. Materials and Methods
3.1. Reagents and Chemicals

All chemicals used were analytical grade and utilized without further purification.
Deionized (DI) water (Milli-Q, Millipore, Solna, Sweden) was used to prepare all the
solutions, while 1000 mg·L−1 carbaryl stock solution (Sigma-Aldrich, Darmstadt, Germany)
was prepared by weighing 0.10 g carbaryl, with volume adjusted to 100 mL with 95%
ethanol (Merck, Darmstadt, Germany). Working solutions of carbaryl were freshly prepared
by appropriate dilution of carbaryl stock solution by deionized water. Hydrogen peroxide
100 mmol·L−1 was prepared by transferring 1.02 mL 30% hydrogen peroxide solution
into a 100 mL volumetric flask and adjusting the volume with deionized water. 4-AP,
1000 mg·L−1, was prepared by weighing 0.10 g of 4-AP in a 100 mL volumetric flask and
adjusting the volume with deionized water. Buffer solutions were prepared by mixing
appropriate volumes of disodium hydrogen phosphate and citric acid, with the required
pH attained by adjusting with sodium hydroxide solution.

3.2. Instruments and Apparatus

A UV-Visible spectrophotometer (UV-1800 Shimadzu, Kyoto, Japan) was utilized to
evaluate enzyme activity at a wavelength of 420 nm. A Rotanta 46 R model centrifuge
(Hettich Zentrifugen, Tuttlingen, Germany) was employed to achieve separation of extract
solutions, yielding a clear supernatant. A pH meter (Eutech, Ayer Rajah Crescent, Singa-
pore) was used to measure buffer pH. Reaction temperature was controlled by a water
bath (Memmert, Schwabach, Germany). A vortex mixer was used to increase mass transfer
of QuEChERS (Quick Easy Cheap Effective Rugged Safe) and DLLME steps. A cooking
blender model EBR 2601 from Electrolux (Electrolux, Bangkok, Thailand) was utilized to
homogenize the materials. iPhone model 11 Pro Max (Designed by Apple in California
Assembled in China) was utilized to photograph the color products after preconcentration
by DLLME under the light control box.

3.3. Light Control Box

The in-house light control box was adapted from our previous project [64] and con-
structed from white opaque acrylic sheet with outer dimensions 19 × 32 × 15 cm to prevent
light penetration from the surroundings (Figure S1). The outer part was covered with PVC
sticker sheet. A tray to place a 96-microwell plate was installed in the middle of the box.
Internal illumination was provided by a LED video light with 300 high quality LED light
beads of extra-large luminous chips (Yongnuo YN300 III, Shenzhen, China). An ON/OFF
switch was used to control the power supply (6.5–8.5 V, 3 A). the LED light was positioned
below the acrylic tray in the box used as a light diffuser. A hole 3.0 × 3.5 cm (w·l) was
made in the top of the box for photography using a daily life smartphone built-in camera
(iPhone 11 Pro Max, Apple, Zhengzhou, China).

3.4. Extraction of Peroxidase Enzyme from Cassia Bark

Fresh cassia bark (200 g) was collected from Amnat Charoen Province, washed with
deionized water and cut into small pieces. Next, 200 g of cassia bark was weighed into a
600 mL beaker. Phosphate buffer extracted solution 100 mL, pH 6.0 was then added. The
mixed contents were thoroughly blended for 5 min. The solution was then filtered using a
white cloth and centrifuged at 3028× g, 4 ◦C for 30 min and 9072× g, 4 ◦C for 30 min. The
supernatant was filtered using Whatman No. 1 filter paper and stored in a brown 1.5 mL
microcentrifuge tube at −20 ◦C.

3.5. Peroxidase Enzyme Extract Activity Study

Peroxidase enzyme activity, not previously studied in cassia bark, was investigated to
confirm the presence of the enzyme in the extract solution [52]. Briefly, 10 µL crude extract
solution was mixed with specific peroxidase enzyme substrate ready-to-use ABTS solution
(ABTS solution, Roche, Mannheim, Germany). Absorbance was immediately monitored at
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420 nm for 1 min, and the initial slope of the enzymatic reaction was calculated. Enzyme
activity of 1 U was defined as the amount of enzyme required to generate 0.001 absorbance
of product every minute under the described conditions.

3.6. Peroxidase Enzymatic Analytical Method Synergied with DLLME for Determination of
Carbaryl by Smartphone-Based Digital Image Analysis

As illustrated in Figure 5, samples (200 µL, see Section 3.10), NaOH (100 µL, 50 mmol·L−1),
4-AP (1.5 mL, 1000 mg·L−1), hydrogen peroxide (300 µL, 10 mmol·L−1) were transferred
into a 10 mL volumetric flask. Then, the enzyme extract (150 µL) was added before adjusting
the volume with phosphate buffer (pH 6.0, 50 mmol·L−1). The mixture was incubated at
30 ◦C for 15 min until a red color product was observed. The mixture was then transferred to
a 15 mL centrifuge tube containing sodium chloride (0.10 g) and dichloromethane (500 µL,
as extraction solvent), and rapidly injected with ethanol (300 µL, as disperser solvent)
before vortexing for 1 min, followed by 7 min centrifuging (4032 g). The aqueous phase was
completely withdrawn using a long needle syringe and the organic phase was diluted with
95% ethanol (500 µL). An aliquot (200 µL) of the resulting solution was transferred into a
microwell plate and photographed using a smartphone in a light control box (Figure S1).
Image processing was performed for RGB (red, green, blue) intensity of the captured image.
The calibration graph was a plot of ∆B intensity against carbaryl concentration ranging
0.10 to 0.50 mg·L−1.

Figure 5. Illustration of DLLME synergy with smartphone-based digital images for the determi-
nation of carbaryl using enzymatic reaction of crude peroxidase enzyme extracts from cassia bark
as biocatalyst.

3.7. Optimization of Carbaryl Determination Conditions Using Crude Peroxidase Enzyme

The influence of various parameters including pH, 4-AP concentration, hydrogen
peroxide concentration, peroxidase crude enzyme volume and incubation time were in-
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vestigated to determine the optimized conditions. The effect of pH was studied in the
range 3–6, with 4-AP concentration at 50–200 mmol·L−1. Hydrogen peroxide concentration
was examined between 0.01 and 1 mmol·L−1, while crude peroxide enzyme volumes were
determined in the range 10–200 µL. Incubation time of 1–20 min was also studied.

3.8. Optimization for DLLME

Various parameters influence the DLLME procedure. Optimized conditions for
DLLME were investigated for extraction solvent type, extraction solvent volume, dispersive
solvent type, dispersive solvent volume, salt concentration, vortex time and centrifuge
time to enhance sensitivity before the smartphone-based digital image determination step.
Extraction solvent types as chloroform, dichloromethane, octanol and 1-dodecanol were
employed. The effect of extraction solvent volume was explored at 100–700 µL. Dispersive
solvent type was studied for acetonitrile, methanol, ethanol and acetone. Volume of disper-
sive solvent was explored in the range 100–700 µL. Salting out of NaCl during the DLLME
process was determined between 0.6 and 1.4% (w/v) NaCl concentration. Vortex time was
also tested between 0.1 and 2 min, while the influence of centrifuge time was investigated
in the range 1–10 min.

3.9. Validation Methods

To evaluate method validation, linearity range, limit of detection (LOD), limit of
quantification (LOQ), precision in terms of relative standard deviation (RSD) and accuracy
were investigated. A linear calibration graph was studied by varying carbaryl standard
in the range 0.10–0.50 mg·L−1 under the selected conditions. A calibration curve was
constructed by plotting blue intensity difference (Y-axis) versus carbaryl concentration
in mg·L−1 (X-axis), with the linear equation and linear regression coefficient (r2) also eval-
uated. The precision of the proposed method was studied by monitoring the blue intensity
of carbaryl standard at 0.10 and 0.30 mg·L−1 for seven replicates intraday (repeatability)
and repeated for five days (reproducibility). Precision of the proposed method was re-
ported in terms of RSD. The accuracy of this method was researched by adding various
concentrations of 0.10, 0.20 and 0.30 mg·L−1 of carbaryl standard solution to the sample
and evaluating the recovery percentage of carbaryl under optimal conditions. LOD and
LOQ were calculated from 3SD/slope and 10SD/slope, respectively where SD represents
the standard deviation of the blank.

3.10. Samples

Pharmaceutical preparations containing Andrographis paniculata were collected from
different drug stores in Maha Sarakham Province, Thailand. Samples were extracted by the
ultrasonication-assisted QuEChERs method [53]. Briefly, Andrographis paniculata powder in
the capsules was weighed at 0.7–0.8 g into a 15 mL centrifuge tube. Then, 2.0 of MgSO4
anhydrous and 0.5 g NaCl were added, followed by pipetting 7 mL of acetonitrile extraction
solvent. The solution mixture was homogenized by a vortex mixer for 1 min and then
transferred to an ultrasonic bath for irradiation at 40 ◦C for 15 min. The sample was then
centrifuged at 4032× g for 10 min to separate the solid and organic extraction solvent. The
extraction phase was filtered through Whatman filter paper No. 1 into a 10 mL volumetric
flask and the volume was adjusted with acetonitrile. Next, 3 mL of the extraction phase
was transferred to a 15 mL centrifuge tube containing 10 mg of activated charcoal powder
for color elimination. The solution was then vortexed for 1 min and then centrifuged
at 1008× g for 10 min. The organic extraction phase was filtered through a nylon filter,
0.45 µm, and kept at −4 ◦C until analysis via peroxidase enzymatic reaction and followed
by DLLME.

3.11. Reference Method

HPLC-UV detection was proposed as the reference method to compare sample concen-
trations of carbaryl. Chromatographic separation was conducted using a Waters 1525 HPLC
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System with a Binary Pump (Waters, Milford, MA, USA) and a LiChroCART® 150-4.6 RP-18
endcapped (4.6 × 150 mm, 5.0 µm) column (Merck, Darmstadt, Germany). An isocratic
system involving 40% v/v acetonitrile in deionized water with a flow rate of 1.0 mL·min−1

was performed. The samples were injected manually using a Rheodyne injector with a
20 µL sample loop. Absorption of carbaryl was detected at 270 nm using a Waters 2489 UV
detector (Waters, Milford, MA, USA). Breeze software version 2.0 was adopted for data
acquisition and peak area integration.

4. Conclusions

A simple and reliable dispersive liquid-liquid microextraction with smartphone-based
digital images for determination of carbaryl residues was developed. A simple peroxidase
extract from Senna siamea Lam. bark served as a catalyst for the reactions at pH 6 of
4-aminoantipyrine, hydrogen peroxide and 1-naphthol, which was the hydrolysis product
of carbaryl. Dispersive liquid-liquid microextraction was synergized with peroxidase
enzymatic reaction to pre-concentrate the analyte. The red color product was sensed by a
smartphone camera for further evaluation to quantify the carbaryl content. The developed
procedure, with micro-liter volume operation, was applied for carbaryl residue assay in
Andrographis paniculata herbal medicine. Results were not significantly different from the
HPLC-UV reference method, at 95% confidence limits. The developed procedure was
cost-effective, simple, reliable and down-scaled and offered traceability as an alternative
for the assay of carbaryl residues in herbal medicines.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27103261/s1, Figure S1: Light control box for
smartphone-based digital imaging for the determination of carbaryl, Figure S2: RGB profile plots
of color intensities obtained from smartphone-based digital imaging in the enzymatic reaction and
DLLME in a light control box for carbaryl in the range 0–0.50 mg·L−1, Figure S3: Plots of intensity
difference (delta intensity) versus carbaryl concentration: (a) delta red intensity (b) delta green inten-
sity, and (c) delta blue intensity, (delta intensity being the intensity due to that carbaryl concentration
subtracted by that of blank), Table S1: Summarized selected conditions of smartphone-based digital
images with DLLME for the determination of carbaryl residues.
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