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Identifying cisplatin-induced kidney damage in paediatric
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Abstract Cisplatin is one chemotherapeutic agent used to
treat childhood cancer in numerous treatment protocols, in-
cluding as a single agent. It is likely to remain in clinical use
over the long term. However, cisplatin-related toxicities, in-
cluding neurotoxicity and nephrotoxicity, are common, affect-
ing treatment, day-to-day life and survival of such children.
With one in 700 young adults having survived childhood can-
cer, patients who have completed chemotherapy that includes
cisplatin can experience long-termmorbidity due to treatment-
related adverse reactions. A better understanding of these tox-
icities is essential to facilitate prevention, surveillance and
management. This review article discusses the effect of
cisplatin-induced nephrotoxicity (Cis-N) in children and con-
siders the underlying mechanisms. We focus on clinical fea-
tures and identification of Cis-N (e.g. investigations and bio-
markers) and the importance of magnesium homeostasis and
supplementation.
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Introduction

Improvements in the long-term survival of children with can-
cer in the UK means that approximately one in 700 young
adults are survivors of childhood cancer [1]. However, these
survivors experience long-term morbidity due to a variety of
disease- and treatment-related adverse reactions that affect the
quality of survival (QoS). Cisplatin is an essential chemother-
apeutic agent used to treat childhood cancer, including osteo-
sarcoma, neuroblastoma, hepatoblastoma, brain tumours and
germ-cell tumours [2]. However, its use as either a single agent
or in combination with other drugs induces specific toxicities,
notably, neurotoxicity and nephrotoxicity. The closely related
drug carboplatin is also used to treat childhood cancer, but its
toxicity profile is clearly distinct from that of cisplatin, with an
increased risk of myelotoxicity but with reduced nephrotoxici-
ty in terms of both frequency and severity [3].

This review article discusses the phenomenon of cisplatin-
induced nephrotoxicity (Cis-N) in children, including its
mechanism of action in relation to renal injury and suscepti-
bility factors, including clinical and genetic. We focus on clin-
ical features and identification of Cis-N (e.g. investigations
and biomarkers) and the importance of magnesium homeosta-
sis and supplementation.

Mechanism of action and pharmacology

Cisplatin covalently cross links the purine bases of DNA,
interfering with DNA repair and inducing apoptosis through
DNA damage, exerting its antitumour effects by a variety of
well-described molecular mechanisms [4]. Tumour cells ex-
hibit higher levels of oxidative stress in comparison with nor-
mal cells, with a greater production of reactive oxygen species
(ROS) secondary to their increased metabolic activity, abnor-
mal mitochondrial function and oncogenic pressures [4].
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Cisplatin exposure further increases these levels of ROS, caus-
ing reduced glutathione, superoxide disumutase and catalase
activity and subsequent loss of the key mechanisms required
to scavenge ROS [4]. There is subsequently a loss of mito-
chondrial function arising from altered enzymatic function
(e.g. phosphodiesterase), protein disturbance (e.g. loss of the
protein sulfhydrl group) and loss of mitochondrial membrane
potential [4]. The increased production of ROS in response to
cisplatin exposure is related directly to both peak drug con-
centration and duration of drug exposure [5], leading to apo-
ptosis and autophagy [4, 6, 7]. Cisplatin also exerts an
anticellular effect through disruption of intracellular and mi-
tochondrial calcium homeostasis, leading to lipid peroxida-
tion, enzyme dysfunction (e.g. dehydrogenase inhibition sec-
ondary to glutathione depletion and general depletion of en-
zyme cofactors [4]), mitochondrial damage and inhibition and
depletion of essential metabolites such as adenonsine triphos-
phate (ATP), contributing to cell apoptosis and necrosis [4].
Apoptosis is further induced through genotoxic stress arising
from DNA cross linkage, direct activation of proapoptotic
pathways [e.g. c-Jun N-terminal kinases (JNK)] [8] and acti-
vation of environmental stress pathways [e.g. mitogen-
activated protein kinase (MAPK)] [9].

Cisplatin-induced nephrotoxicity

Cisplatin toxicity arises most characteristically in the kidneys,
cochlea, bone marrow, gastrointestinal mucosa and nerves
(with altered taste, peripheral neuropathy and encephalopathy).
The kidneys are particularly susceptible to cisplatin toxicity, as
they are almost exclusively responsible for its excretion. The
UK Renal Registry Report suggests that 1.9% of established
all-cause end-stage kidney disease in children is secondary to
malignancy, with 0.8% due to nephrotoxic drugs [10].

Small, heterogeneous populations from reported studies
mean definitive data on the incidence and prevalence of renal
injury in children receiving cisplatin is not conclusive. Most
children will experience acute deterioration in renal function
at some point in their treatment, but with considerable and

unpredictable variations in both severity and reversibility
[11, 12]. Tubulointerstitial injury is accepted as the most pre-
dominant form of Cis-N, with the concentration of cisplatin in
the proximal renal tubular cells reported to be around five
times higher than the peak serum concentrations [13]. The
S3 segment of the proximal tubule accumulates the highest
concentration of cisplatin, followed by the distal convoluted
tubule and the S1 segment in the proximal tubule [14].

Renal clearance of cisplatin exceeds both creatinine clear-
ance and glomerular filtration, indicating active secretion by
the kidney, with an in vivo exponential plasma half-life of
∼30 min. While small amounts are present in bile and detect-
able in the intestinal lumen, faecal excretion is insignificant
[15]. Numerous mechanisms for renal injury have been
proposed (Tables 1 and 2). Renal uptake is by active transport,
mediated by cell membrane transporter proteins, including
(copper transporter-1 (CTR1) [4, 16] and organic cation
transporter-2 (OCT2) [22, 23]. Several mechanisms for intra-
cellular metabolism have been proposed, including conver-
sion to cysteinyl–glycine conjugates and thiols and metabo-
lism of cisplatin–glutathione conjugates by gamma glutamyl
transpeptidase [17, 18].

Accumulation of cisplatin within renal parenchymal cells
occurs in a time- and concentration-dependent manner [24],
with a progressive increase in the concentration of toxic moi-
eties. Further kidney damage occurs secondary to the inhibi-
tion of carnitine synthesis and tubular reabsorption, further
impairing mitochondrial function within the kidney [4, 19].
As renal tubular cells exist in an already predominantly hyp-
oxic environment, synergy between these mechanisms of in-
jury occurs.

Histone deacetylases (HDACS) are a group of enzymes
that deacetylate specific lysine residues from both DNA-
binding proteins (e.g. histones) and cellular-binding proteins
[25], leading to the condensation of chromatin and general
downregulation of gene expression [26]. HDAC inhibitors,
e.g. valproate [27], sensitise tumour cells with synergistic ef-
fects on cisplatin cytotoxicity. With antiapoptotic and immu-
nomodulatory activity demonstrated in kidney cells in vitro

Table 1 Mechanisms of
cisplatin-induced kidney injury Mechanisms of cisplatin induced kidney injury References

Genotoxic stress from covalent cross-linkage DNA purine bases of DNA [4, 13]

Apoptosis induced by DNA damage from impaired repair [4, 6, 7, 13, 16]

Production of reactive oxygen species, increasing intracellular oxidative stress [4, 13, 17, 18]

Disruption of intracellular and mitochondrial calcium homeostasis [4, 13, 19]

Direct activation of proapoptotic pathways (e.g. JNK) [8, 20, 21]

Activation of environmental stress pathways (e.g. MAPK) [4, 9]

Inhibition of carnitine synthesis [4, 19]

Focal susceptibility from pharmacodynamics (e.g. renal parenchymal
accumulation/excretion)

[4, 16, 22–24]

JNK c-Jun N-terminal kinases, MAPK mitogen-activated protein kinase
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[25, 28, 29], HDAC involvement in cisplatin-mediated renal
injury is likely, with HDAC-elicited pathways conferring
renoprotection to cisplatin in animal models [25].

Magnesium is critical to cellular homeostasis and enzymat-
ic reactions, including as the cofactor for ATP activity, mito-
chondrial respiration and nucleic acid and protein synthesis
[30]. In the context of cisplatin administration, acute kidney
injury (AKI) is enhanced by magnesium deficiency [31]. This
is partly due to further stress on already disordered normal
physiological processes. However, direct molecular mecha-
nisms such as decreased renal expression of cisplatin efflux
transporters in the presence of hypomagnesaemia have been
elucidated in animal models (e.g. ATP-binding cassette sub-
family C, member 6) [32]. AKI also arises secondary to the
activation of other apoptotic pathways [33], incuding the lin-
ear chain ubiquitin assembly complex (LUBAC) [20] and
necrotic/necroptotic pathway, such as receptor-interacting
protein kinase 1 (RIP-1) [21].

Drug-induced tubular injury: classification and relation
to cisplatin

Recent literature describes a consensus classification of drug-
induced kidney injury to bring consistency to its diagnosis and
reporting [33]. Tubular dysfunction is characterised by renal tu-
bular acidosis, Fanconi syndrome, syndrome of inappropriate
antidiuretic hormone secretion (SIADH) through impaired water
handling secondary to drug-related alterations in ADH secretion
rather than direct tubular injury, diabetes insipidus and phosphate
handling [33]. Primary criteria include one or more of the fol-
lowing: hypophosphataemia, glycosuria, hyperchloraemic meta-
bolic acidosis and hypokalaemia or hyperkalaemia [33].
Secondary criteria include hypomagnesaemia, phosphaturia,
hypouricaemia, tubular proteinuria and diabetes insipidus.

With regard to cisplatin, the mechanism of drug-induced
injury is considered a type A reaction [34], which is dose
dependent and predictable (in terms of mechanism if not ex-
tent of injury) and alleviated by dose reduction or drug with-
drawal [33]. The time course is considered to be either sub-
acute (occurring within 4 weeks and taking up to 90 days to
resolve) or chronic (taking >90 days to resolve).

Susceptibility to cisplatin-induced nephrotoxicity

Clinical, pharmacological and demographic risk factors for
increased susceptibility to Cis-N have been clearly described,
including increasing cumulative dose and administration time
(e.g. 1 vs. 6 vs. 24 h, showing increased risk with short/
intermittent boluses compared with prolonged infusions)
[35], increasing patient age, and concurrent nephrotoxic
agents (e.g. ifosfamide [36], loop diuretics and aminoglyco-
side antibiotics) (Table 1). Cisplatin pharmacokinetics are
complex in vivo, affected by rapid plasma distribution, revers-
ible and irreversible protein binding to both plasma and cellu-
lar proteins [37] and with considerable and unpredictable in-
terindividual differences in cisplatin pharmacokinetics [37,
38]. The persistence of platinum moieties in the body up to
20 years after cessation of therapy may contribute to its long-
term nephrotoxic effects [39].

Individual susceptibility factors predispose to different
sites and mechanisms of injury. Renal injury correlates direct-
ly with peak serum and urine platinum concentrations [35,
40], whilst increasing age at treatment is associated with in-
creased tubular toxicity and likelihood of hypomagnesaemia
[40, 41]. Regardless, most children will experience an acute,
unpredictable deterioration in renal function at some point
during treatment [42].

Interindividual variability in predisposition to cisplatin-
induced adverse effects is significant, with differences in tox-
icity greater than the variability seen in pharmacokinetics,
despite equivalent doses. Genetic variants influencing regula-
tion and expression of cisplatin metabolism and transport pro-
teins (e.g. OCT2) have been described as risk factors for cis-
platin nephrotoxicity [22, 23]. No study has yet undertaken a
genome-wide approach. This contrasts cisplatin ototoxicity
for which several studies (including genome-wide association
studies) have been conducted to determine genetic predispo-
sition [43].

Preventing cisplatin-induced nephrotoxicity

In the paediatric setting, strategies are well established within
chemotherapy protocols to minimise the risk of Cis-N.
Patients receive posthydration infusions of cisplatin both be-
fore, during and after cisplatin administration as standard
practice. They also receive slower cisplatin infusions (e.g.
24- vs. 1-h bolus), reducing peak serum levels of both cisplat-
in and toxic metabolites, promoting renal excretion, and re-
ducing risk of Cis-N [35, 40]. Established drug regimens and
current clinical trials include the use of formally measured
glomerular filtration rate (GFR) [51-chromium-labelled ethyl-
ene diamine tetra-acetic acid (51Cr-EDTA)] at defined points
of treatment, with reduction, delay or cessation of cisplatin
treatment dependent upon the severity of any renal
impairment.

Table 2 Factors that increase the risk of kidney injury in children
receiving cisplatin

Risk factors for cisplatin-induced kidney injury References

Increasing cumulative dose [35]

Shorter administration time [35]

Concurrent treatment with other nephrotoxins
(e.g. ifosfamide/loop diuretics/aminoglycosides)

[36]

Increased peak serum/urine platinum concentrations
(interindividual differences in pharmacokinetics)

[35, 39]

Increasing patient age [41]
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Clinical pharmacokinetic studies previously indicated di-
rect correlations between peak total and peak free plasma con-
centrations and renal toxicity [44–46]. Strategies such as ex-
tensive pre-/post-hydration and the use of mannitol [47] have
become widely adopted in protocols, with the aim of driving
enuresis and renal flow to remove excess and free cisplatin
from vascular and renal spaces.

Detectiing cisplatin-induced nephrotoxicity

Current modalities available for detecting Cis-N in the clinical
setting are limited to structural or functional changes, includ-
ing clinical parameters [48]. Changes in renal structures can
be identified as histological or gross morphological, with his-
topathological assessment of kidney tissue the gold standard
in the research setting (e.g. animal models). However, renal
biopsy is rarely performed clinically.

Glomerular dysfunction may be manifest by elevated serum
creatinine, albuminuria, tubular dysfunction by aminoaciduria,
lowmolecular weight proteinuria, electrolyte loss and glycosuria,
poor response to regulatory mechanisms (e.g. hypertension) and
clinical effects of renal dysfunction (e.g. oliguria, requirement for
electrolyte supplementation, growth restriction) [2, 49]). These
can be monitored individually or in combination using validated
clinical prediction tools [e.g. Acute Kidney Injury Network
(AKIN), Pediatric Risk, Injury,Failure, Loss of Kidney
Function, and End-stage KidneyDisease (pRIFLE), Clinical
Practice Guideline for Glomerulonephritis (KDIGO) [50–52]).

Standard biomarkers rely on the measurement of serum
electrolytes and markers of renal function. Serum creatinine
is used as a marker of acute injury but its use is limited, as it
typically rises late due to renal reserve [53]. It is also unreli-
able in patients with low muscle mass, which is often seen in
children with cancer.

Thus, current biomarkers are inadequate for timely diagnosis
of Cis-N, and there is a need for more sensitive detection
methods in exposed children. As well as detecting transient,
acute, tubulointerstitial renal injury—the most frequent clinical

pattern of Cis-N—clinical investigations must also identify
changes in glomerular and tubular function [37, 42, 51–55] and
chronic disease courses [37, 42, 56–58].Within paediatric oncol-
ogy, changes in establishedmarkers of renal pathology have been
investigated in patients receiving cisplatin. Increased levels of
retinol-binding protein in the urine of paediatric patients receiv-
ing cisplatin suggest decreased physiological reabsorption indic-
ative of tubular injury but do not provide information on prog-
nosis [59]. Similarly, urinary albumin–creatinine ratio, urinary
beta-2 microglobulin [54, 60] and assessments of phosphate ex-
cretion and tubular reabsorption have been used as measures of
tubular injury [54, 61, 62]. Novel biomarkers such as kidney
injury molecule-1 (KIM-1 [61]) and neutrophil-gelatinase-
associated lipocalin (NGAL [62]) demonstrate potential clinical
utility, with significant increases in levels following administra-
tion of cisplatin in human studies (Table 3 [59, 61–65]).
However, neither novel nor more established markers of renal
injury have been clinically validated and integrated into routine
paediatric practice.

Clinical implications of cisplatin-induced nephrotoxicity:
hypomagnesaemia

Tubular damage represents an adverse, and often permanent,
sequela of cisplatin exposure, with hypomagnesaemia the
most common manifestation in both acute and chronic prox-
imal tubular injury [63] at a prevalence between 30 and 100%
depending on the timing of investigation [2, 11, 66–69]. This
arises frommagnesuria [2, 66, 70] and as part of the process of
polyuria and deranged renal calcium metabolism and meta-
bolic alkalosis in distal tubular toxicity [2]. Rat models have
established specific molecular pathways: epidermal growth
factor/transient receptor potential M6 (EGF/TRPM6) are
downregulated in response to cisplatin exposure, leading to
tubular magnesium loss [71], initiating further molecular
mechanisms, including interactions between claudin-16 and
-19 (known to influence tight membrane permeability) [72].
It is important to note, however, that hypomagnesaemia in this

Table 3 Novel markers of
cisplatin-induced nephrology
(Cis-N) in children with cancer

Biomarker Year Sample (N) Summary References

Kidney-injury molecule-1 2015 22 Significantly increased levels
of KIM-1 in adult patients
receiving cisplatin

[63]

Kidney-injury molecule-1 2015 39 ×2 and ×4 elevation in urinary
KIM-1 levels at days 3 and
10 postcisplatin

[61]

Cystatin C 2008 22 18% increase in cystatin C
serum levels after application
of cisplatin

[64]

Neutrophil gelastinase-
associated lipocalin

2013 33 Significant elevation of NGAL
between 12 h and 4 days
following administration of cisplatin

[62]

KIM-1 kidney injury molecule-1, NGAL neutrophil-gelatinase-associated lipocalin
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population of patients can be confounded by other factors,
such as vomiting and gastrointestinal disturbance, making it
difficult to determine specific causality.

Whilst predominantly an intracellular cation, it is extracel-
lular magnesium concentrations that account for most signs
and symptoms [71, 73–75], as follows:

& Muscle weakness/Cramps/Tetany/Twitching
& Constipation/Nausea/Vomiting/Loss of appetite
& Sensory loss/Numbness/Parasthesia/Tingling
& Headache
& Vertigo/Apathy/Depression/Fatigue/Anxiety/Insomnia
& Prolonged QT/Cardiac arrhythmias/Cardiac arrest
& Asthma/Wheeze
& Ataxia
& Cortical blindness/Seizures/Coma

When concurrent with other electrolyte imbalances, severe
hypomagnesaemia can contribute to ventricular arrhythmias
[74, 75]. Magnesium administered parenteral;y or intrave-
nously aims at preventing the development of symptoms.
Given established paediatric reference ranges for serum mag-
nesium, the aim of supplementation is to normalise serum
concentrations

Based on our own experience [76] and extensive review of
the literature (unpublished data), hypomagnesaemia is
amongst the most frequent manifestations of Cis-N. Sixty-
eight patients from our single, primary paediatric oncology
treatment centre were identified as having received cisplatin
over a 10-year period (2001-2011). Data on the need for either
oral or intravenous administration of magnesium supplemen-
tation prior to the end of treatment, as well as afterwards, was
collated from electronic and pharmacy data, which was

available for 65 patients, none of whom had a history of renal
problems predating their diagnosis of cancer. Of those 65,
33% required magnesium supplementation (oral or intrave-
nous) during treatment, with 27% requiring further supple-
mentation after the completion of treatment [77] (Fig. 1).
This is in keeping with other series, with ∼30% of patients
having long-term hypomagnesaemia potentially requiring
supplementation, e.g. 6/21 children at median follow-up of
2.5 years [11] and 6/18 at a mean follow-up of 2.3 years [77].

Although it is generally accepted that magnesium levels
should be measured prior to cisplatin chemotherapy, there are
no widely accepted or adopted guidelines for either overall mon-
itoring of serum magnesium levels or treatment of
hypomagnesaemia in children receiving cisplatin. It is important
to note that while serum hypomagnesaemia reflects circulating
magnesium depletion, only ∼1% of total body magnesium is
present in serum [78]. This is despite evidence from both animal
and clinical models that hypomagnesaemia may not only con-
tribute to Cis-N but also that preventing hypomagnesaemia may
even confer a degree of protection against cisplatin’s nephrotoxic
effects. In a retrospective cohort of adult cancer patients receiving
cisplatin, those who received magnesium supplementation IV
experienced a statistically significant reduction in nephrotoxicity
(6%) compared with those who did not (37%) [79]. Further,
pretreatment magnesium supplementation in adult lung cancer
patients has been demonstrated to reduce Cis-N [78], though
specific mechanisms for this renoprotective effect are poorly
understood.

Other rare but significant renal manifestations of Cis-N
include chronic renal failure, Fanconi’s syndrome (during
and after treatment [80]) and renal salt-wasting syndrome
(RSWS). RSWS describes a very rare clinical syndrome of
polyuria, volume depletion and loss of renal salts [81, 82],
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with only five of 23 case reports published since 1984 describ-
ing paediatric cases [81]. While the long-term sequelae of Cis-
N include longitudinal growth restriction [83], the role of
hypomagnesaemia, either acute or chronic, within this pur-
view is not understood.

Future perspectives

Further research is necessary to develop and validate pheno-
types, assays or techniques to identify Cis-N in children. No
standard methods of detection or classification exist for use in
the clinical or research environment. While novel proximal
tubular injury markers show promise for both more timely
identification of Cis-N and more specifically delineating the
site of kidney injury (e.g. KIM-1, NGAL), standardised clin-
ical markers are needed for research to commence in this area.

Registries that identify patients from large numbers of cen-
tres will be needed for rare phenotypes. This will require
standardisation of the phenotype both nationally and interna-
tionally. An alternative strategy would be to use magnesium
depletion and supplementation required as a phenotype of tu-
bular injury in children who have received cisplatin. This
would have several advantages, including simplicity and ob-
jectivity. Additional work will be required to establish whether
magnesium supplementation is a reliable and accurate marker
of tubular toxicity. If proven, the routine clinical recording of
the administration of medications (including supplements) to
patients would allow this marker to be applied retrospectively,
allowing retrospective data collection and increasing the rate of
recruitment for pharmacogenomic and other studies of these
uncommon conditions. In addition, further research is needed
in the form of longer-term pharmacovigilance to identify risk
factors for both clinical and subclinical chemotherapy-related
renal impairment (e.g. delayed bone growth [84] and impaired
growth and development [83, 84]).

Conclusion

Cisplatin is an important drug for treating children with cancer.
It is established in numerous treatment protocols, including as
a single agent. As such, despite well-characterised adverse re-
actions, cisplatin will remain a first-line anticancer treatment
for the foreseeable future, with no imminent alternatives with
similar efficacy. CIs-N is likely to be underestimated in terms
of both prevalence and severity, with implications for long-
term effects and outcomes. While current clinical and bio-
chemical biomarkers of kidney injury exist, none are
standardised or validated relevant to the severity of, recovery
from or long-term prognosis of Cis-N. The need for magne-
sium replacement, its route of administration and quantity and
frequency holds potential utility both as research and clinical
biomarkers for studying Cis-N in children with cancer.
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