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Quantum measurement 
optimization by decomposition of 
measurements into extremals
Esteban Martínez-Vargas1, Carlos Pineda2 & Pablo Barberis-Blostein3 ✉

Using the convex structure of positive operator value measurements and several quantities used in 
quantum metrology, such as quantum Fisher information or the quantum Van Trees information, 
we present an efficient numerical method to find the best strategy allowed by quantum mechanics 
to estimate a parameter. This method explores extremal measurements thus providing a significant 
advantage over previously used methods. We exemplify the method for different cost functions in a 
qubit and in a harmonic oscillator and find a strong numerical advantage when the desired target error 
is sufficiently small.

One of the goals of metrology is to provide an optimal strategy to measure the value of a parameter under certain 
fixed conditions. For completeness, both an approximate value of the parameter and an estimation of the error 
must be given. If the physical system from which the parameter is to be estimated is analyzed within the frame-
work of quantum mechanics, we shall speak about quantum metrology1–5. Motivated by the fact that quantum 
systems can offer an important advantage over classical systems in precision when estimating a parameter6, there 
has been intense theoretical and experimental advances in the area in the last years7,8. Moreover, precision in the 
estimation of parameters has several applications in the development of quantum technologies9,10 and quantum 
state manipulation11.

To estimate a parameter of a physical system one acquires data through measurements; the estimation of the 
parameter is obtained by applying a function, known as the estimator, to the data. The probability distribution of 
measurement outcomes can be modelled using a statistical model of the experiment: the probability distribution 
of outcomes conditioned to the value of the parameter. This statistical model might describe, say, a noisy meas-
urement apparatus. In this article we specialize to the case of quantum mechanics, where the probability distri-
bution is given by the Born rule and the statistical model is obtained once it is decided which operator is going to 
be measured. In addition to the random component of measurement, we also consider classical noise, which we 
include through the density matrix formalism.

The cost function that quantifies the error of the parameter estimation of a quantum system (for example the 
mean square error) depends on both the measurement to be performed and the estimator; the optimal measure-
ment strategy consists of the quantum measurement and the estimator that extremizes it. However, finding the 
extreme of a cost function over all possible quantum measurements and estimators is not simple. Alternatively, 
when a Cramér-Rao type inequality exists, the problem can be reduced to find the extreme of another cost 
function (for example the Fisher information) over all the quantum measurements. This simplifies the problem 
because it is not longer necessary to maximize over the space of estimators. One still has to deal with extremizing 
a cost function over all quantum measurements, which in general is difficult. However, under special circum-
stances, such as symmetries, the problem can be simplified12.

It is possible, though very costly, to numerically find the maximum over all quantum measurements of cost 
functions. The straightforward way to solve the problem is to randomly sample the space of all positive operator 
value measures (POVMs), evaluate the cost function on this sample, and keep the maximum value obtained. This 
method, that we call the random sampling method (RSM), is very inefficient since the POVM space is large.

In this paper, we show how to numerically find the maximum over all quantum measurements of the Fisher 
information and the Bayesian version of this bound, the Van Trees bound13, in a way that is orders of magnitude 
faster than using the RSM. We rely on the following: (i) the cost functions of interest in quantum metrology are 
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convex with respect to the POVMs and (ii) the set of POVMs is convex14. Therefore, following the maximum 
principle15,16, the maximum over the POVMs must be on an extremal point of the POVM set. Our approach is 
simply to sample randomly extremal POVMs and get the highest value of the appropriate cost function. It is easy 
to produce efficiently a general POVM from a random unitary matrix, however, it is not trivial to produce ran-
domly extremal POVMs. For this we used the algorithm proposed by Sentís et al.17.

We call our method the random extreme sampling method (RESM). The techniques presented here can be 
used, for example, to find numerically the maximum value of the quantum Van Trees information18, the quantum 
Fisher information (even if the input state is not pure), or any convex cost function. Together with the maximum, 
the corresponding quantum measurement is obtained. The method can also be applied to the case of multivaria-
ble convex cost functions, and thus used to find the optimal measurement in the estimation of several parameters. 
For example: Given a multivariable statistical model we can construct the Fisher matrix, its diagonal elements 
gives a bound on the variance of each parameter. We can use our method to find the quantum measurement that 
maximizes any convex cost function of the diagonal elements.

Our approach can also be used in other areas different from quantum metrology, where a maximization over 
POVMs is required. An example is statistical decision theory19. The problem is the following: we have a set of 
possible decisions, from which one is chosen depending on the outcome of a quantum system measurement. The 
distribution probability for the decisions is given by a quantum measurement. We look for the best decision. How 
good is the decision is rated by a cost function defined in the space of quantum measurements. The problem of 
finding the best decision is mapped to the problem of maximizing this cost function over all the quantum meas-
urements. Note that quantum parameter estimation can be cast as a problem of statistical decision theory, where 
the decision to be chosen is an estimation of the parameter.

Results
In this section we first introduce some convex cost functions that give bounds to the error of parameter estima-
tion. Then we present our main result: a numerical algorithm that allow us to find the maximum over all quantum 
measurement of any convex cost. We finish with examples of interest where we apply the algorithm.

Bounds in the error of parameter estimation.  We discuss how to get bounds for the error made in an 
estimation process. We use two error measures: the mean squared error and the Bayesian mean squared error, 
which is used when some information is known about the parameter. This discussion is general and just assumes 
that a statistical model is given. We also discuss how to apply these ideas for a quantum system.

Crámer-Rao inequality.  In this section, we introduce some basic quantities needed to develop further the dis-
cussion. Let

θ|p y( ) (1)

be the distribution probability of the outcomes y, of the random variable Y, conditioned to a fixed value of the real 
parameter θ. We assume that each y is a set of real numbers of fixed finite size. The function θ|p y( ) is the statistical 
model; y represents what is measured in an experiment and its probability distribution, p, depends on the param-
eter θ. Using the outcomes y, the parameter is estimated through the real-valued function θ̂ y( ), known as the 
estimator. The estimator is unbiased if it is on average correct, meaning that its expected value is equal to the 
actual value of the parameter,

ˆ ˆ∫θ θ θ θ〈 〉 = | = .py y y y( ) d ( ) ( ) (2)

The uncertainty of the estimator is given by the mean squared error, defined as

∫ς θ θ θ≡ − | .ˆ py y y( ( ) ) ( )d (3)
2 2

We say that the measurement strategy is optimal if the estimator minimizes the mean squared error. Finally, 
let us define the Fisher information

∫θ
θ

θ
θ≡






∂ |
∂




 | .F p py y y( ) ln ( ) ( )d

(4)

2

If the estimator is unbiased (i.e. if Eq. (2) holds), using the Cauchy-Schwarz inequality, one arrives to the 
Cramér-Rao inequality20,21:

F( ) 1 (5)2ς θ ≥ .

Note that ς2 depends on the choice of the specific estimator θ̂ y( ), whereas the Fisher information depends only 
on the distribution probability of the random variable. From the Cramér-Rao inequality, we see that the inverse 
of the Fisher information bounds from below the mean squared error independently of the estimator we use: the 
larger the Fisher information the smaller the error bound. Fisher showed that in the limit where the number of 
measurements goes to infinity, the maximum likelihood estimator saturates this inequality22.

Quantum Cramér-Rao inequality.  We want to find the best measurement strategy to estimate a parameter, θ, that 
appears in the Hamiltonian of a quantum system. In order to estimate the parameter we proceed as follows: we 
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start with an initial state and let the system evolve some fixed time. The dynamics of the system depends on the 
parameters of the Hamiltonian; after the evolution, the state of the system depends on the parameter we want to 
estimate: ρ ρ θ= ( ). We then measure some observable of the system and use the result to estimate θ. Fixing the 
Hamiltonian, time and initial state, we want to know if the strategy we are using minimizes the error in the 
parameter estimation.

General measurements in quantum mechanics are described by the positive operator valued measure (POVM) 
formalism, which we briefly recall in order to fix the notation. If E{ ( )}ξ  is a POVM parametrized by the real 
parameter ξ, for each value of ξ, ξE( ) is a self-adjoint operator on the system Hilbert space. They satisfy the com-
pleteness relation

Ê( )d 1, (6)∫ ξ ξ =

and the probability of measuring the result ξ is

ξ θ ρ θ ξ| = .p Tr E( ) ( ( ) ( )) (7)

In order for Eq. (7) to be a probability distribution we require that the elements E( )ξ  to be positive 
semidefinite,

ξ ≥ .E( ) 0 (8)

Notice that ξ can also belong to a finite set (or a combination of several discrete and continuous indices) if the 
number of possible outcomes is finite. The expressions throughout this article generalize replacing ∫ ξd  by ∑ξ.

Fixing the POVM and thinking of (7) as the distribution probability of the outcomes [as in Eq. (1)], one can 
use the tools introduced in Section (2.1.1). In particular, we can calculate the Fisher information and use the 
Cramér-Rao inequality to know if a given estimator is optimal. However, note that there is a dependence of the 
Fisher information on the POVM we choose. In order to have the lowest bound for the error, we maximize the 
Fisher information over all the possible measurements23

F p p( ) max ln ( ) ( )d
(9)Q

E{ ( )}

2

ˆ ∫θ
ξ θ

θ
ξ θ ξ=






∂ |
∂




 | .

ξ

The quantity θF ( )Q  is known as the quantum Fisher information, and through the Cramér-Rao inequality,

ς θ ≥F ( ) 1, (10)Q
2

tells us the minimal possible error for the best measurement strategy for estimating a parameter appearing in the 
Hamiltonian of a quantum system. Equation (10) is a direct result from Eq. (5). Since Eq. (5) is valid for every 
POVM, it is valid for the one in which the maximum Fisher information is attained. The POVM that maximizes 
FQ is the one that should be used to get the smallest error in the parameter estimation1; we call this POVM the 
optimal POVM. If the quantum state is pure there are analytical formulas for finding FQ. Otherwise no general 
formula is known and one must rely in numerical methods.

Bayesian Cramér-Rao inequality.  We consider the case where we have some partial knowledge of the parameter 
to be estimated. An example: We want to estimate the velocity of one particle in a dilute gas at temperature T . 
Without doing any measurement, we know that the particle velocity can be interpreted as a random variable that 
satisfies the Maxwell-Boltzmann distribution. Note that with the information we already have, we can estimate 
the velocity as the mean of the Maxwell-Boltzmann distribution v K T m8 /( )b π=  with a variance 
µ π π= −K T m(3 8)/( )b . Here Kb is the Boltzmann constant and m the mass of the particle. It is reasonable to 
design the experiment to measure velocities around v. The result of the measurement should improve the estima-
tion, giving an error smaller than µ. Note that, in general, experiments designed to measure a parameter usually 
work for some expected range of its value, which implies assumptions were taken about the value of the 
parameter.

The Bayesian Cramér-Rao inequality can be used to decide what is the best estimator in the situation where we 
have partial knowledge of the parameter. We model the parameter as the random variable Θ, with outcomes θ, 
and probability distribution λ θ( ). The outcomes of the experiment are modelled as the random variable Y, with 
outcomes y, and probability distribution p y( )θ| . The cost function we want to minimize is the mean square error

Py y y( ( ) ) ( , )d d , (11)
2 2ˆ∫ θ θ θ θΞ = −

where P py y( , ) ( ) ( )θ θ λ θ= | .
It can be shown that the error is bound from below by the Cramér-Rao type inequality13,

Ξ ≥Z 1, (12)2

where the generalized Fisher information, Z, can be written as
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∫ ∫θ λ θ θ λ θ
θ

λ θ θ= +




∂
∂



 .Z F( ) ( )d ln ( ) ( )d

(13)

2

The first term of the sum is the expectation value of the Fisher information; the second term is the Fisher 
information of the probability distribution of the possible values of the parameter. The last term codifies what we 
already know about the parameter. As can be seen from the previous equation, the generalized Fisher information 
is larger than the Fisher information due to the knowledge we already have of the parameter. This has a simple 
interpretation: we can use λ θ( ) to estimate the parameter, and measuring the system necessarily diminishes the 
error in the estimation of the parameter. The best strategy for measuring a parameter, with known information 
codified in a probability distribution, is given by the estimator, θ̂ , that saturates inequality (12).

If we want to estimate the outcomes of a random variable, the problem of finding the best strategy is exactly 
the same as discussed in this section. In this case the experiment is repeated several times with the values of 
the parameter satisfying the probability distribution of the random variable. An example: measure the veloc-
ity of several particles in thermal equilibrium in a dilute gas. The velocities for the classical particles obey a 
Maxwell-Boltzmann distribution.

In this context, we found useful24, a review of bayesian inference in physics.

Bayesian quantum Crámer-Rao inequality.  We want to estimate the parameter θ of a Hamiltonian in a quantum 
system where the known information about θ is codified in the probability distribution λ θ( ). Given a POVM, 
E{ ( )}ξ , a statistical model can be built through Eq. (7), and the problem is reduced to the classical one.

The POVM, ξE{ ( )}max , that maximizes the generalized Fisher information (13), together with the appropriate 
estimator, saturates the Cramér-Rao type inequality

Ξ ≥Z 1, (14)Q
2 ˜

where

Z p Pmax ln ( ) ( , )d d ln ( ) ( )d
(15)

Q
E{ ( )}

2 2

∫ ∫
ξ θ

θ
ξ θ θ ξ λ θ

θ
λ θ θ=
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+
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 .

ξ
˜

ˆ

We call ZQ
˜  the quantum Van Trees information.

If we want to minimize the error in the parameter estimation, and we codify what we know about the param-
eter in the probability distribution ( )λ θ , we have to implement the quantum measurement given by E{ ( )}max ξ 18.

Numerical algorithm.  The calculation of cost functions such as FQ or Z̃Q is not easy, as it implies an optimi-
zation over all POVMs. In this section, we present our main result: an efficient numerical procedure to calculate 
the maxima, over all POVMS, of convex cost functions.

Convexity.  The quantum Van Trees information is convex; this follows directly noticing that the set of 
POVMs14,25 and the Fisher information are convex. Fisher information can be rewritten as ∫= ′F p pdx( ) /2 , 
where the prime indicates the derivative with respect to θ. It then follows that

∫ ∫ ∫

∫

′
+

′
−

′ + ′
+

=
+

′ − ′ ≥

p
p
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p p
p p

p p p p
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( ) d 1
2
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[ ] d 0,
(16)
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2

1 2
2

1 2

1 2 1 2
1 2 1 2

2

provided that ≥p 01,2 . For a combination with other weights, continuity and a recursive procedure imply convex-
ity of F. From these two observations, we infer that the Van Trees information is also convex, as the integral of 
convex functions is also convex.

Since the maximum of the convex cost functions lies on the extremal points of all POVMs, we only need to 
search in this subset simplifying greatly the optimization task. A way to sample randomly such a set is presented 
in the following sub-section.

The algorithm.  The outline of the algorithm is as follows: We produce a random POVM, and decompose it in 
extremals. We then evaluate the cost function using extremal POVMs and choose the one which yields the high-
est value. We repeat the procedure several times and keep the optimal POVM. We provide an implementation in 
an online repository26.

Random Sampling Method.  To produce a random POVM, we use the purification algorithm27 backwards, 
which transforms a general POVM into a usual projective measurement in an enlarged space.

The first step is to produce a random unitary matrix that acts on both the original space and an ancilla Hilbert 
space. The dimension of this ancilla space is the number of outputs of the initial POVM. Because the extremal 
POVMs have at most d2 elements, where d is the Hilbert space dimension14, nothing is gained if the dimension of 
the ancilla space is larger than d2. For example, if we are trying to estimate a parameter of a qubit, we only need to 
use a dimension 2 Hilbert space and a dimension 4 ancilla space. If the Hilbert space is large or has an infinite 
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dimension, we run the algorithm for some arbitrary dimension of the ancilla space and then increase its dimen-
sion until stable results are obtained.

The aforementioned unitary matrix is chosen with a measure invariant with respect to multiplication by uni-
tary operators, i.e., with the Haar measure. The ensemble induced by the aforementioned measure is called the 
circular unitary ensemble (CUE)28. The easiest way to construct a representative member of the CUE is to con-
struct a member of the Gaussian unitary ensemble (GUE)28, the ensemble of hermitian matrices invariant under 
unitary conjugation subject to the condition that the ensemble average of the trace of the square of the matrices is 
fixed. Generating a member H of such an ensemble is simple: we build a matrix A with Gaussian complex num-
bers, all with equal standard deviation and zero mean. Let †= +H A A , we can then calculate the matrix elements 
of †UHU , for any unitary U , and verify that the distribution of all matrix elements of the rotated matrix remains 
invariant. Thus, the eigenbasis of H has the Haar measure, and then the matrix U that diagonalizes H is a member 
of the CUE with the appropriate measure. The routine CUEMember calculates such an operator and can be found 
in26.

It is well known that we can interpret an arbitrary n output POVM as a projective measurement in a space built 
from the original one and a coupled n-dimensional ancilla space. If µ| 〉 µ= …{ } n1, ,  is an orthonormal base in the 
ancilla space, |Ψ〉 a state in the original Hilbert space, and Q{ }m  the operators characterizing the POVM, we can 
define a unitary operator U such that

∑|Ψ〉| 〉 = |Ψ〉| 〉U Q m1 ,
(17)m

m

based on the completeness relation Q Q 1m m m∑ =† . Moreover, the projective measurement defined by the projec-
tors m m{1 }m n1, ,⊗ | 〉〈 〉 = …  is equivalent to the measurement defined by Q{ }m , in the sense that the probabilities are 
the same, and the states, after discarding the ancilla space, are also identical, see27. Equation (17) can also be 
interpreted as a way to induce a POVM measurement in the original Hilbert space, starting from a unitary oper-
ator in an extended Hilbert space. In fact, if we replace |Ψ〉 by the basis state | 〉j  and premultiply by the bra 〈 |〈 |i m , 
we obtain

〈 | | 〉 = 〈 |〈 | | 〉| 〉.i Q j i m U j 1 (18)m

Thus, from the random unitary U we can get all matrix elements of each of the Qm, according to Eq. (18). Since 
for all POVMs one can build a unitary transformation in the extended space such that Eq. (18) holds27, sampling 
all unitaries in the extended space guaranties sampling all POVMs with the corresponding number of outcomes. 
The routine POVM calculates the POVM in this way and can be found in26. The aforementioned method to sam-
ple POVMs will be called Random sampling method, or RSM for short.
Naimark dilationAt this point, we would like to mention another POVM sampling method, inspired in Naimark’s 
dilation theorem29.
We start with a unitary matrix, acting on the original space tensored with an ancilla space ancilla. The columns 
| 〉vi  of this matrix can be interpreted as an orthonormal basis on the extended space of dimension d′. Notice that
 d′ is a multiple of d, the dimension of the original Hilbert space. Let us define the d′ operators

= | 〉 ⊗ 〈 |M v v
d

r r1Tr ,i i iancilla

  
where | 〉r  is a random state on the ancilla space. Notice that 〈Ψ| |Ψ〉 = |〈 | |Ψ〉 ⊗ | 〉|M v r(i i

2, the probability of 
projecting to | 〉vi  the state r|Ψ〉 ⊗ | 〉, so all Mi are semipositive defined operators. Moreover, they inherit the 
completeness relation M 1i i∑ =  from the completeness relation v v 1i i| 〉〈 | =  of the orthonormal basis in the 
enlarged space. Thus, M{ }i  form a POVM of d′ outcomes.

If we build a POVM with the aforementioned recipe, with the unitary matrix chosen from the CUE and the 
state | 〉r  with the Haar measure, we say that we are sampling a POVM with the ND method.

Conversion to a rank-1 POVM.  To proceed further, we need a rank-1 POVM, so we must transform the afore-
mentioned POVM accordingly. Recall that a rank-1 POVM is one whose elements are all rank-1 operators. 
However, typically, the Q{ }m  are not rank-1 operators.

For any given Q Q{ }m
˜ ∈  that is not a rank-1 operator, we perform the spectral decomposition 

Q Q Qi
l

i i1 λ= ∑ ==
˜ ˜ ˜†  using a standard algorithm. Notice that the Q̃i are projectors, and 0iλ > . We then replace Q̃ 
with the l operators λ Q̃i i, and the completeness relation remains valid since Q Q Q Q( )i i i i i

˜ ˜ ˜ ˜† †
λ λ∑ = . Notice 

that the number of elements at the end of the algorithm will be larger than the number of outputs of the initial 
POVM.

This check and the corresponding transformation of the POVMs are done with the routines projector and 
eivalues.
Random extremal sampling method Let us define a QTri i= , and = −A a Q GTr( )ij j j i

1  with G{ }j  an orthonormal 
traceless base for hermitian matrices of the appropriate dimension. In our case, we used the Gell-Mann 
matrices. We also define =A 1d j,2 , so that the completeness condition over POVMS reads  

=Aa b,
 
if we define the d2-dimensional vector b d(0, , 0, )= … . We now propose the linear program
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x
Ax b x

find
subject to , 0 (19)= ≥ .

Even though x a=  is a solution to the problem, the usual numerical algorithms provide an extremal point. 
Notice that if an element xi of the solution is 0, it means that we do not include the operator in the POVM. The 
construction of the matrix A and vector b is done with the routine AConstruction. Let this extremal 
solution be xext.
 The Mathematica LinearProgramming[c,A,b] implementation solves the following linear program:

= ≥
c x
Ax b x

minimize
subject to , 0, (20)

T

where c is a constant vector. As we are interested only in finding a solution and not in optimizing a given vector, 
we give a random vector c to the usual Mathematica LinearProgramming routine. This vector c has random 
entries between 0 and 1 given by the uniform distribution with the Mathematica routine RandomReal. This 
process is done by our routine LinearProg.

To obtain the extremal POVM we start by defining x′ via

= + − ′a px p x(1 ) , (21)ext

with p a scalar. Requiring that x 0′ ≥  can be enforced letting

=p a
x

min ,
(22)i

i

i
ext

which in turn implies that p is a probability and that for some i, x 0i′ = . If we define = xQ Qext ext  and xQ Q′ = ′ , 
we can write 

p pQ Q Q(1 )ext= + − ′.
 
Indeed, Qext is an extremal POVM17, and since one of the elements of x′ is null, ′Q  is a n 1−  output POVM 
(given that Q is an n output POVM) for which we can iterate the algorithm until a single output POVM is 
obtained. Notice that with this algorithm, all POVMs with a given number of outputs can in principle be 
sampled.

The routine BuildExtremal constructs an extremal POVM from the output of the Linear Program. The 
routine CalculateP calculates the p probability from Eqs. (21) and (22). Finally, the auxiliary solution ′Q  is 
built with the routine AuxiliarSol.
Examples.  In this section we apply the method described in the section Numerical algorithm to estimate the 
quantum Fisher information and the quantum Van Trees information. In the examples we observe a compu-
tational speedup when using the algorithm presented here compared with methods that randomly sample the 
whole POVMs space.

Qubit.  We use the algorithm to calculate the quantum Fisher information for estimating a parameter encoded 
in a pure qubit state. We use known analytical results to benchmark our numerical method.

We consider a spin 1/2 particle in the state,

θ η
η

η
|Ψ 〉 =













θ

θ

−e
e

( , )
cos( /2)
sin( /2)

,
(23)

i

i

/2

/2

where θ π∈ [0, 2 ) is the phase between the two basis states and [0, ]η π∈  is a known parameter that characterizes 
the weight of each element of the superposition. The problem is the following: we want to find the best strategy to 
estimate the phase θ given that η is known30.

Given a set of states parametrized by ξ, i.e. ρ ξ( ), we consider the following family of POVMs:

ξ ρ ξ ρ ξ= − .P( ) { ( ), ( )} (24)

Each of these POVMs has two elements that corresponds to the outcomes 1 and 2. In this subsection we shall 
consider the particular case

( ) ( , ) ( , ) (25)ρ ξ ξ η ξ η= |Ψ 〉〈Ψ |.

Using Eq. (7) we find that the probability of measuring outcome 1 or 2 for the POVM ξ is given by

p

p p

(1 ) ( , ) ( , ) ( , ) ( , ) ,

(2 ) 1 (1 ) (26)

θ θ η ξ η ξ η θ η

θ θ

| = 〈Ψ |Ψ 〉〈Ψ |Ψ 〉

| = − | .
ξ

ξ ξ

The Fisher information for this probability distribution is
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θ η
η ξ θ

=
+ −

ξ ηF ( ) sin ( )
1 cos ( ) tan (( )/2)

,
(27)

( , )
2

2 2

which is a function of the parameter we want to estimate, i.e. θ. Notice that there is a dependence on the initial 
state, via η, and on the POVM used, via ξ; we make these dependencies on the POVM explicit via a superscript. 
When the state is pure, the maximum quantum Fisher information can be analytically calculated23. In this exam-
ple the quantum Fisher information is the maximum of F ( )( , ) θξ η  with respect to ξ:

θ θ η= = .
ξ

ξ ηF F( ) max ( ) sin ( )
(28)Q

( , ) 2

In order to evaluate the performance of the proposed algorithm, we apply the RSM and RESM methods and 
compare their performance with the exact result (28). We define the errors 

θ

θ

∆ = −

∆ = −

F F
F F

( ) ,
( ) ,

Q

Q

RSM RSM

RESM RESM
 
where FRSM and FRESM are the Fisher information numerically calculated using the RSM and RESM respectively. 
In Fig. 1(b), we plot running time vs error for the two methods. It is clear from the plot that RESM is better, and 
the longer the program runs, the better the results using RESM compared with RSM. For this example, we 
obtain an error two orders of magnitude smaller running the program for the same length of time.

Now we consider that we have some information about θ codified in the probability distribution θp( ); limits to 
the error in the estimation are given by the Cramér-Rao type inequality (14). We assume that the angle θ has the 
uniform distribution p( ) 1/2θ π=  in Eq. (29). First we consider the maximization of the generalized Fisher infor-
mation over the family of POVMs, ξP( ), given by Eqs. (24) and (25)

˜ ∫ θ θ θ= .
ξ

ξ ηZ max d p( )F ( )
(29)Q

P ( , )

Because we are using a subset of all the POVMS ˜ ˜Z ZQ Q
P

≤ , this approach allows us to get an analytic approxi-
mation for the quantum Van Trees information. For a uniform superposition (η π= /2), the Fisher information 
becomes independent of ξ; in fact ˜ ˜Z Z 1Q Q

P
= = , see Eq. (27). This implies that any POVM from the family ξP( ) 

maximizes the Fisher information. In general we obtain

η η= − | |Z̃ ( ) 1 cos( ) , (30)Q
P

so we can assert that if only POVMs of the family ξP( ) are allowed, the best estimation is in the case where 
/2η π= .

Now we apply RESM to calculate Z̃Q and compare with Z̃ ( )Q
P

η , see Fig. 1(a). The maximum of Z̃Q is again 
obtained when /2η π= . That means that the lowest error in the phase estimation is obtained when the weights of 
the superposition are the same. The figure suggests that Z ZQ Q

P˜ ˜= .
We observed that surprisingly, almost any extremal POVM is useful for finding the maximum Z̃Q. We require 

very few samplings (≈10) to observe good agreement between Eq. (30) and the numerical calculations. We also 
arrive at a reasonable estimate with 1 sample for most ηs.

Phase estimation.  We calculate the Van Trees information for the phase estimation problem, one of the work-
horses of quantum metrology. Since for this case no analytical solutions are known, this is an interesting testbed 
for our method.

Initial coherent state.  We want to estimate the phase difference θ between two paths that light can follow, see18 
for a similar calculation. We probe the system with a coherent state, such that one path yields the state α| 〉 (with α 
a complex number) and the other

φ θ α α| 〉 = | 〉 = | 〉θ θˆe e( ) , (31)in i

where n̂ is the number operator.
Assume that we know, with some error, the size and the refractive index of the object that creates the phase 

difference. We can make an initial estimation of the phase difference between the two paths because it is propor-
tional to the length travelled inside the object. We can model this situation assuming that θ is a random variable. 
As an example, we consider a Gaussian distribution centered at π, with standard deviation π/4 and trimmed at the 
edges (0 and 2π). Using RESM, we calculate the quantum Van Trees information for different values of α| |, see 
Fig. 2(a). The line is obtained using Eq. (24) with ( ) ( ) ( )ρ ξ φ ξ φ ξ= | 〉〈 | as an ansatz. The figure suggests that the 
family of POVMS proposed is a good ansatz. When α| | decreases, the Van Trees information decreases, but when 
α| | = 0 still Z 0Q >˜ , since an estimation of the phase difference can be done with the information we already have 
about the parameter prior to any measurements. In order to do the calculation we approximate the coherent states 
with a truncated Hilbert space and limited the number of outcomes of the POVMs. We observe the results as a 
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function of Hilbert space dimension and the number of outcomes of the POVMs. We find that a Hilbert space of 
dimension 7 and a POVM of 10 outcomes give us stable results.

Initial displaced thermal state.  As a final example, we consider estimating a parameter, chosen from a given 
distribution, encoded in a non-pure state. Again, there are no analytical expressions for the quantum Fisher infor-
mation for this case. We calculate ZQ

˜  in order to bound the error in estimating the parameter. We build upon the 
last example, considering a thermal state displaced by the same operator that would give the state (31). Let

ρ θ α ρ α= 







θ θ−ˆ ˆˆ † ˆT e D T D e( , ) ( ) ( ) ( )
(32)

i n
th

i n

with

T n T
n T

n n( ) ( )
(1 ( )) (33)th

n

n

n 1∑ρ =
〈 〉

+ 〈 〉
| 〉〈 |+

and

n T
k T

( ) exp 1
(34)B

1
2ν α〈 〉 =



















−








= | |
−

be the state in which the parameter (θ) is encoded. For the Fig. 2(b), we used again a Gaussian distribution with 
mean π and standard deviation π/4.

In Fig. 2(b) we show the numerical calculations of ZQ
˜  using the algorithm RESM. We compare it with the the 

ansatz composed of the two outcome POVM (24) with ρ ξ φ ξ φ ξ= | 〉〈 |( ) ( ) ( ) , see Eq. (32). We see that the points 
calculated with the RESM algorithm which are a lower bound of ZQ

˜  beat the ansatz case for most points. We 
expect such behavior as the state in consideration (32) is a mixed state.

Discussion
The random extreme sampling method (RESM) can be used to find efficiently the maximum of a cost function 
over all possible quantum measurements. Particularly it is useful for finding limits in the precision of parameter 
estimation, through the cost function known as the quantum Fisher information, when the state to be measured 
is a mixed state. It can also be used to find the optimal measurement strategy by a given convex cost function by 
finding the POVM that maximizes it, at a considerable lower computational cost.

Figure 1.  We study the numerical accuracy (a) and time cost (b) of estimating the quantum Van Trees 
information, for a qubit encoding parameter θ on its phase, see Section 2.3.1. (a) A numerical estimation was 
done using the RSM method with n 10ens =  (green triangles) and =n 1000ens  (purple triangles) samples and 
using the REMS method with =n 1ens  (cyan circles) and =n 10ens  (red diamonds) samples. The ansatz (29), 
resulting in Eq. (30), is shown as a blue line. We consider different families of states parametrized by η, see Eq. 
(23). The number of outcomes of the POVM is fixed to 4, as this is the maximum number of outcomes for an 
extremal POVM in a 2-dimensional Hilbert space25. Note that the RESM method gives much better results with 
one sample than the RSM method with 1000. (b) Error in the numerical estimation of FQ, see Eq. (28), sampling 
directly the whole space of POVMs (RMS) or only its extremal points (RESM) for η π= /2, with respect to the 
computational time invested. The slope for RSM case is m 0 63RSM = − .  and for RESM is m 1 84RESM = − . . The 
error with the method proposed decreases much faster using RESM rather than RMS.
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Methods
The code implementation can be obtained in the repository26. To reproduce the results presented in 2.3.1, set the 
flag -o to Qubit and vary the flag --EtaAngle from 0 to π. For the results in sections 2.3.2 and 2.3.2, set the 
flag -o to CohPlusTherGaussian and to DispTherGaussian respectively. We also set the temperature 
with -T 0.001, the number of times to sample the space with -s 150 (or 200 for the displaced thermal state), 
the dimension of the Hilbert space to describe the system with --HilbertDim 7 and the number of outcomes 
of the POVM with --Outcomedim 10. For the pure state, as in 2.3.2, set -o CohPlusTherGaussian 
--MixConstant 1. The squared norm of α is set with the option --MeanPhotonNumb, which can be var-
ied to reproduce the plots. The whole data set can be obtained with the command make all.
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