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. Targeted therapies have profoundly changed the clinical prospect in human epidermal growth

. factorreceptor 2 (HER2)-positive breast cancer. In particular, the anti-HER2 monoclonal antibody

. trastuzumab represents the gold standard for the treatment of HER2+ breast cancer patients. Its
contribution in dampening cancer progression is mainly attributed to the antibody-dependent cell-

: mediated cytotoxicity (ADCC) rather than HER2 blockade. Here, multiple half chains of trastuzumab

. were conjugated onto magnetic iron oxide nanoparticles (MNP-HC) to develop target-specific and
biologically active nanosystems to enhance anti-HER2 therapeutic potential. HER2 targeting was
assessed in different human breast cancer cell lines, where nanoparticles triggered site-specific
phosphorylation in the catalytic domain of the receptor and cellular uptake by endocytosis. MNP-HC
induced remarkable antiproliferative effect in HER2+ breast cancer cells, exhibiting enhanced
activity compared to free drug. Accordingly, nanoparticles induced p27kip1 expression and cell cycle

. arrestin G1 phase, without loosing capability to prime ADCC. Finally, MNP-HC affected viability of

. trastuzumab-resistant cells, suggesting interference with the resistance machinery. Our findings

. indicate that multiple arrangement of trastuzumab half chain on the nanoparticle surface enhances
anticancer efficacy in HER2+ breast cancer cells. Powerful inhibition of HER2 signaling could promote
responsiveness of resistant cells, thus suggesting ways for drug sensitization.

The overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2) characterizes
' 20-30% of all breast cancers, which are classified as the HER2-positive subtype'. In this breast cancer population,
. the overexpression of HER?2 triggers multiple downstream pathways required for the abnormal proliferation of
cancer cells®. Being the disease addicted to HER2 for growth and proliferation, continuous inhibition of HER2
receptor represents the recommended treatment in case of HER2+ breast cancer’. The approval by the Food
and Drug Administration of the first anti-HER2 antibody trastuzumab (TZ) has revolutionized the clinical sce-
nario in HER2+ breast cancer leading to significantly improved disease-free and overall survival*’. Since then,
anti-HER2 strategies are used to control the disease and nowadays they include a number of targeted drugs, such
as lapatinib, pertuzumab and trastuzumab emtansine®’. Blockade of HER2 signaling is one of the key elements
. for improving the clinical outcome in HER2+ breast cancers, and several trials have investigated the efficacy of
: various combination of HER2-targeted drugs in addition to conventional chemotherapies®. Despite great progress
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Cell line Tumor subtype ERBB2 PIK3CA HER?2 expression
SKBR3 Luminal Amplification Wild type 3+
MDA-MB-453 Luminal Amplification Mutant 2+
MDA-MB-231 Basal-like No amplification Wild type 0-1+
MDA-MB-468 Basal-like No amplification Wild type 0

BT474TR Luminal Amplification Mutant 3+

JIMT-1 Basoluminal Amplification Wild type 2+

Table 1. Cell lines classification based on carcinoma subtype, PI3K and HER?2 status.

in the field, the wide variability in response to therapy and the frequent onset of drug resistance in patients upon
treatment still hamper the therapeutic success®. Furthermore, the need for long-lasting and optimal HER2 inhibi-
tion strongly encourages the development of new drugs and new techniques, particularly in case of resistant cells
and in the metastatic disease.

Antibody-conjugated nanoparticles may combine specific recognition of tumor cells with the capability to
act as delivery systems for active drugs’. Several bioconjugation strategies have been explored in order to achieve
stable and oriented immobilization of targeting moieties, for optimizing detection of specific tumor biomarkers
and obtaining targeted action'®!". In 2013, we analyzed the tumor targeting efficiency of multifunctional nano-
constructs bearing variants of TZ in a murine model of primary breast cancer'?. We found that functionalization
of small colloidal magnetic nanoparticles with the half chain of TZ (MNP-HC) provided increased stability and
afforded long-term accumulation in the tumor, as compared to equal nanoparticles conjugated with the entire
antibody or single-chain variable fragment (scFv) ligands. However, no functional studies have been performed
so far for supporting the therapeutic performance associated with the observed tumor homing and improved
retention mediated by the MNP-HC. Here, target specificity and biological activity of TZ-derived half chains
immobilized on multivalent colloidal nanoparticles were investigated on breast cancer cell lines. Direct com-
parison with free TZ was made in order to characterize the efficacy of nanoparticles with respect to the same
dosage of drug, following the idea that the spatial arrangement of the targeting moieties could be the key for
antibody-ligand interaction and subsequent activity modulation. In addition, as the conjugation with colloidal
nanoparticles seems to affect the therapeutic efficacy of TZ'?, we explored the anticancer activity of MNP-HC
both in HER2+ TZ-sensitive and resistant breast cancer cells.

Results

HER2 targeting by MNP-HC nanoparticles. MNP-HC were assessed for their capability to interact with
multiple human breast cancer cell lines, classified as distinct carcinoma subtypes with different levels of HER2
expression (Table 1)'%. The binding assay, performed at 37 °C, demonstrated a dose-dependent and target-re-
lated biorecognition of the cells (Fig. 1A-C). MNP-HC exhibited > 97% binding to all the tested cell lines when
incubated at a dose equal to 0.2 pg mL~! of trastuzumab, while decreasing the dosage different outcomes were
observed depending on the cell type. A complete binding was still detected in HER2-overexpressing SKBR3 cells
(99.6% when using 0.04 pg mL~" and 94.7% when using 0.01 pg mL~!), and in MDA-MB-453 at 0.04 ug mL~!
(97.3%). By contrast, reduced percentage of binding was recorded in the HER2-basal expressing MDA-MB-231
cells (45.3% at 0.04pug mL~", 6.4% at 0.01 pg mL™') and in MDA-MB-453 at 0.01 pg mL™" (21.7%), as following
reduced expression of the target on the membrane of these cells. No detectable binding of MNP-HC was observed
on HER2-negative MDA-MB-468 cells, unless using much higher doses (Supplementary Table 1). Binding spec-
ificity was attributed to the antibody-derived half chains coupled to the nanoparticle surface, as demonstrated by
comparison with IgG-conjugated nanoparticles. Moreover, higher mean fluorescence intensities were observed in
HER2-overexpressing cells, where dose-dependent mean fluorescence indicated increasing number of MNP-HC
per single cell when concentrations rose (Fig. 1D). By contrast, in MDA-MB-231, the mean fluorescence intensity
remained low and unvaried as concentrations increased, meaning reduced binding extent of MNP-HC when
HER?2 receptor was poorly available. Fluorescence intensity was low and constant even in case of IgG-conjugated
nanoparticles, since their binding did not correlate with specific target (Supplementary Fig. 1). Binding profiles at
4°C confirmed efficient HER2 targeting by MNP-HC (Supplementary Fig. 2). Competition assay was performed
on SKBR3 and MDA-MB-453 cells by using free TZ as direct competitor for the binding to HER2 receptor.
Obtained results demonstrated specific interaction of MNP-HC with HER2 receptor, as displayed by the > 91%
reduction in cell binding when an excess of unlabeled free TZ was added as a competitor (Fig. 1E). Targeting of
HER?2 receptor by MNP-HC was further supported by confocal microscopy on HER2-overexpressing cells incu-
bated for 30 min with the nanoparticles (Fig. 1F). Fluorescent signal from MNP-HC was recovered attached to the
cell membrane, where it overlapped with HER?2 staining.

Site-specific HER2 phosphorylation upon nanoparticles exposure. In order to get insights into the
targeted activity of MNP-HC on HER?2 receptor, we assessed the capability of nanoparticles to induce phospho-
rylation of tyrosine residue 1248 (Y1248) within HER2 catalytic site. Indeed, it was demonstrated that specific
binding of TZ is able to induce activation of HER2 tyrosine kinase by phosphorylation on Y1248 in sensitive
breast cancer cells, and that this is associated to inhibition of cancer cell growth'®. Therefore, site-specific HER2
phosphorylation could be considered a first read-out of TZ-mediated selective functionality. By treating HER2+
breast cancer cells with MNP-HC, we observed an increase in the ratio between Y1248-phosphorylated and total
HER?2 protein in MDA-MB-453 (Fig. 2A) and SKBR3 cells (Fig. 2B). No effect was induced by unconjugated
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Figure 1. HER?2 targeting by MNP-HC. MNP-HC binding to SKBR3 (A), MDA-MB-453 (B) and
MDA-MB-231 (C) after 1h incubation at 37°C (n = 3). Asterisks indicate significance vs. MNP-IgG; § vs. TZ.
(D) Mean fluorescence intensity of MNP-HC bound to the cells. (E) Competition assay in MDA-MB-453 and
SKBR3 incubated with MNP-HC with or without an excess of TZ as competitor (n = 3). (F) Confocal laser-
scanning micrographs of SKBR3 incubated for 30 min with MNP-HC or MNP-IgG (green) and stained for
HER?2 (red). Nuclei are stained with DAPI (blue). Scale bar: 10 pm.

nanoparticles, ascribing this effect to the TZ-derived moiety and not to other components of the nanoparti-
cle core. HER2 phosphorylation levels upon MNP-HC incubation were comparable, or even higher, to those
obtained in response to free TZ, thus indicating that the covalent conjugation to the nanoparticle did not affect
the functionality of TZ drug.
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Figure 2. HER2 site-specific phosphorylation. Western blot analysis of pY1248-HER2 and total HER2

in MDA-MB-453 (A) and SKBR3 (B) treated with MNP-HC, TZ or unconjugated nanoparticles (MNP).
Histograms show the densitometric quantification of pY1248-HER?2 levels relative to total HER2, adjusted
toward a-tubulin (n=3). Asterisks indicate significance vs. untreated cultures (Ctrl).

The intracellular trafficking of MNP-HC.  Next, we investigated the cellular uptake of MNP-HC (Fig. 3A).
Fluorescence corresponding to TZ half chain indicated a progressive accumulation of the nanoparticles at the cell
membrane during the first hour of incubation, with faster kinetics in those cells with higher HER2 expression
(SKBR3 > MDA-MB-453). After 4 and 24 h, some signal was detected inside the cell cytoplasm, in proximity to
the plasma membrane, indicating nanoparticles internalization. At 48 h, the fluorescence decreased, indicating
reduced rate of de novo interaction with the cell membrane, and probably degradation of the organic components
of the nanoparticle, as previously reported'®. Because of low HER2 expression, MDA-MB-231 showed only weak
membrane signal, according to the mean fluorescence data observed in binding experiment (Supplementary
Fig. 3). In parallel, the intracellular trafficking of the iron oxide core was followed by transmission electron
microscopy (TEM) in SKBR3 cells (Fig. 3B). Dispersed nanocrystals were first observed outside the cells, and
progressively attached to the cell membrane at 1 h, with specific enrichment on plasma membrane protrusions,
according to previous observations of HER2 surface localization'”. At 4 and 24 h, nanoparticles were compar-
timentalized in endosomal vesicles, mainly in the peri-membrane region, and later in lysosomes, thus suggest-
ing the endocytic pathway as fate for the captured MNP-HC. Together with nanoparticles internalization, we
observed a time-dependent downregulation of HER2 receptor on the plasma membrane of MNP-HC-treated, as
well as TZ-treated cells (Fig. 3C). This effect was recovered in 48 h following treatment cessation.

Enhanced antitumor activity in HER2+ breast cancer cells. Upon binding to the extracellular
domain of HER2, TZ can potently suppress cancer cells growth, proliferation and survival by blocking HER2
signaling cascade and inducing cell cycle arrest®. In order to investigate whether MNP-HC maintain capabil-
ity to exert this activity, we analyzed viability of HER2+ breast cancer cells upon treatment with MNP-HC or
free TZ over one week. Results revealed a dramatic time-dependent reduction in the percentage of viable cells
upon MNP-HC treatment: only 35.6% and 26.6% of cells were recovered alive after incubation with 1 or 10pg
mL~! of nanoformulated TZ, respectively (Fig. 4A). MNP-HC improved the direct antitumor activity of free TZ
by 34.4% when using 1 g mL™! and by 41.8% when using 10 pg mL™'. To exclude a toxic contribution due to
the nanocrystal core, cells were also treated with equal amounts of unconjugated nanoparticles. The obtained
results demonstrated a safe profile of the nanoparticle itself, thus attributing the efficacy of MNP-HC to specific
HER?2-targeted activity.

We also assessed the effect of the nanoformulation on one of the key effectors of HER2-targeted therapies, the
cyclin-dependent kinase inhibitor p27Kip1'. Western blotting performed on total cell extracts after 24 h treat-
ment with free TZ or MNP-HC revealed a remarkable increase in p27Kip1 protein upon MNP-HC incubation,
with statistical significance versus free TZ (Fig. 4B). The nanoconjugation achieved efficient induction of p27Kip1
expression even at 1 ug mL~!, a dose resulting ineffective when using TZ alone. No effect was detected upon
treatment with unconjugated nanoparticles, supporting the involvement of TZ half chain in the HER2-targeted
activity. According to the increase in p27Kip1 expression, cell cycle arrest in G1 phase occurred in response to
MNP-HC (Fig. 4C). This effect was comparable to that achieved with an equal dose of free TZ, while unconju-
gated nanoparticles did not affect the physiological cell cycle. Reduced proliferation and cell cycle arrest were
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Figure 3. Nanoparticles intracellular trafficking. (A) Time course confocal microscopy of SKBR3 and
MDA-MB-453 cells incubated with MNP-HC (green). Nuclei are stained with DAPI (blue). Scale bar: 10 um.
(B) TEM images of MNP-HC, pointed by arrows, in SKBR3 cells. E, endosomes; L, lysosomes. Scale bar:

200 nm. (C) Confocal laser-scanning micrographs of SKBR3 cells incubated with MNP-HC or free TZ, and
stained for HER?2 (red). Nuclei are stained with DAPI (blue). Scale bar: 10 pm.

not associated with increased apoptosis of breast cancer cells (Fig. 4D), supporting the global biosafety of MNP
nanoparticles.

Taken together, these results showed that MNP-HC block HER2-mediated intracellular signaling and inter-
fere with HER2-driven cancer cell proliferation, thus triggering a direct and potent antitumor efficacy in HER2+
breast cancer cells.

The ADCC mechanism of action. Besides direct inhibition of HER2-mediated signaling, TZ promotes a
specific mechanism termed “antibody-dependent cell-mediated cytotoxicity” (ADCC) through the activation of
natural killer (NK) cells?®?!. The recognition of TZ Fc-~ bound to HER2 by CD16 receptor expressed onto NK
cells induces a signal cascade leading to the release of lytic granules against cancer cells*.

To evaluate whether MNP-HC were still able to activate ADCC mechanism even if TZ was presented as a
half chain fragment, we treated SKBR3 cells with MNP-HC at different concentrations (0.2, 2 and 20pg mL™Y)
and compared effect with free TZ and nonspecific IgG-conjugated nanoparticles used as positive and negative
controls, respectively. Upon addition of peripheral blood mononuclear cell (PBMC) population, which contained
approximately 5% NK cells, lysis of tumor cells induced by NK cells was quantified using a lactate dehydrogenase
(LDH) assay, which correlates the release of LDH enzyme by tumor cells to cytolytic activity of NK cells. Figure 5
confirms the strong effectiveness of TZ to induce ADCC even at the lowest concentration tested (0.2 jpg mL™?).
MNP-HC showed a dose-dependent activity in the induction of ADCC. This result was worthy of note, consider-
ing that to our knowledge this experiment represents the first example in which a fragment only of a monoclonal
antibody immobilized onto the surface of colloidal nanoparticles was able to elicit ADCC activation, suggesting
that nanoconjugate-mediated ADCC does not necessitate the presence of the whole antibody. As expected, cytol-
ysis was not observed when MNP-IgG were used in place of MNP-HC.
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Figure 4. Antitumor activity in HER2+- cells. (A) Viability of SKBR3 treated for 3, 5 or 7 days with 1 (left
panel) or 10 (right panel) pg mL™! of free or nanoformulated TZ, or with equal concentrations of MNP (n=6).
Asterisks indicate significance vs. untreated cultures; § MNP-HC vs. TZ. (B) Western blot analysis of p27Kip1
expression in cells treated with 1 or 10 pg mL™! of free or nanoformulated TZ, or with equal concentrations of
MNP. Densitometric quantification of p27Kip1 was relative to a-tubulin (n =4). Asterisks indicate significance
vs. untreated cells (Ctrl); § MNP-HC vs. TZ. (C) Cell cycle analysis of SKBR3 treated with MNP-HC, MNP or
TZ for 72 h. Results are mean percentage of cells in G1, S or G2/M phase (n =7). Asterisks indicate significance
vs. untreated cells (Ctrl). (D) The percentage of apoptotic cells was determined upon 24 or 72 h of treatment
with MNP-HC, MNP or TZ (15ug mL™!), and compared to untreated cells (Ctrl, n=6).

Impact of MNP-HC on trastuzumab-resistant cells.
effective therapeutic agents, we analyzed their capability to interfere with drug resistance, as a stand-alone treat-
ment or in combination with chemotherapy. To this purpose, we used two breast cancer cell lines both char-
acterized by HER2 overexpression and by TZ resistance: BT474TR and JIMT-1 (Table 1). We first checked the
capability of MNP-HC to interact with these cells (Fig. 6A), finding high percentage of binding in BT474TR
(99.7%), and a lower, although not negligible, binding in JIMT-1 (37.1%). Such a difference could sound disap-
pointing considering the high HER2 expression level in both cell types; however, our data agree with previous
publications reporting reduced binding of TZ to JIMT-1 cells, which was attributed to epitope masking®. Next,
we analyzed the antitumor potential of a sequential combination of MNP-HC and doxorubicin, a clinically-used

To explore to what extent MNP-HC could be
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Figure 6. Activity in TZ-resistant cells. (A) MNP-HC binding to BT474TR and JIMT-1 after 1 h incubation
with 0.2 pg mL™! of nanoformulated TZ at 37°C (n=3). (B,C) Viability of JIMT-1 (B) or BT474TR (C) treated
with sequential combination of free or nanoformulated TZ (10 pg mL™') and doxorubicin (Dox, 0.1 M), or
with single agents. Asterisks indicate significance vs. Ctrl; § vs. TZ; # vs. Dox (n=6).

anthracycline and excellent pilot chemotherapeutic drug. Measurement of cell viability revealed that the com-
bined treatment induced a significant antitumor activity in JIMT-1 cells (p < 0.001), whereas none of the antitu-
mor agents resulted effective when administrated alone (Fig. 6B). As expected, sustained viability of JIMT-1 cells
was maintained upon treatment with TZ with or without doxorubicin, indicating failure for TZ alone to both
affect viability of resistant cells and induce chemosensitivity. In BT474TR, inefficacy was confirmed for treatment
with TZ; however, treatment with equal dose of MNP-HC was able to slightly but significantly affect cell viability,
demonstrating an average 16% reduction after 3 days of treatment (p < 0.001 vs. TZ) (Fig. 6B). In this case, the
sequential treatment with doxorubicin did not further enhance the antitumor potential of MNP-HC, demonstrat-
ing no synergistic effect. In both JIMT-1 and BT474TR cell lines the inhibition of cell growth was not associated
with increased phosphorylation of Y1248-HER2 (Supplementary Fig. 4), thus suggesting that diverse molecular
mechanisms should be involved in driving the different response to MNP-HC in case of TZ resistance.
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Discussion

Trastuzumab has changed the natural history of HER2+ breast cancer, leading to a strong improvement in overall
survival®?*. The antiproliferative mechanism of TZ has not been completely elucidated, and in vivo a prominent
role could be hold by ADCC rather than a specific impact on HER2-mediated intracellular signaling®. Indeed,
after binding to HER2, the Fc portion of TZ antibody stimulates the antitumor immunity and the cytotoxic activ-
ity of natural killer cells, which recognize TZ-coated breast cancer cells. However, TZ may also exert a direct anti-
tumor activity by blocking HER2-mediated signaling. In the tumor cells, TZ binding on the extracellular domain
of HER2 inhibits relevant growth and proliferation pathways, such as those related to PI3K/Akt and MAPK, thus
reducing cancer cell division and tumor progression®. Strengthening HER? targeting and optimizing the activity
on downstream signaling could achieve a more potent anticancer activity and improve the global therapeutic
efficacy of TZ. In this study, we show that multiple and oriented immobilization of TZ-derived ligands on the
surface of colloidal nanoparticles improves the antitumor performance on HER2+ breast cancer cells by acting
predominantly through blockade of cell signaling.

MNP-HC nanoparticles showed efficient targeting of HER2, with induction of site-specific phosphorylation
in the catalytic domain of the receptor and rapid cellular uptake by endocytosis. The multivalent exposure of TZ
half chains also led to enhanced antitumor efficacy against HER2+ breast cancer cells, dramatically decreas-
ing cancer cell viability. This effect was associated with marked induction of p27Kipl expression and cell cycle
arrest in G1 phase in TZ-sensitive cells, thus indicating that once immobilized on the nanoparticle surface, the
antibody-derived ligands maintain their specificity for HER2 and block HER2-driven cancer cell proliferation.
Enhanced activity of MNP-HC vs. TZ could find explanation on the multiple immobilization of antibody deriv-
atives on carriers with narrow size, which could be suitable for targeting of receptor clustering. Amplified rec-
ognition and selectivity was likely triggered by ligands multimerization and spatial arrangement on the surface
of nanoparticles, upon orientation-controlled conjugation strategy?”-**. Indeed, treatment of HER2+ cells with
MNP-HC resulted in sustained phosphorylation of tyrosine residue 1248 even at low dosage of therapeutic drug,
as compared to free TZ. This phosphorylation has been shown to provide recognition sites for intracellular signal-
ing intermediates, which link TZ-bound HER?2 to inhibition of downstream transduction cascades that ultimately
result in gene expression changes and inhibition of cancer cell proliferation'®. By boosting HER2 recognition and
impact on HER2 receptor, MNP-HC induced reduction in cancer cell viability and arrest of the cell cycle, thus
enhancing anti-HER?2 efficacy of TZ antibody.

Our in vitro results also indicated that MNP-HC did not loose ADCC property, which normally covers the
majority of TZ activity against cancer cells. In this case, efficiency was lower as compared to TZ alone, likely due
to the half Fc portion presented by MNP-HC. Despite improvement of antitumor performance by MNP-HC was
related to a greater impact on intracellular signaling transduction, maintenance of ADCC capability suggests
additional potential for the nanocomplex in stimulating the host antitumor immunity.

A significant proportion of HER2+ breast cancer patients is affected by primary TZ-resistance, and up to
70% of patients who previously responded to TZ develop resistance to treatment in the first year®. Among mul-
tiple mechanisms of resistance to TZ, some rely on proteolysis or masking of HER2, hindering TZ binding®.
Furthermore, highly glycosylated membrane proteins such as Mucin-4 could mask HER?2 binding sites for TZ*'.
We reasoned that it could have been possible that optimizing interaction with cancer cells by spatially-oriented
immobilization on nanocarriers might weaken drug resistance. In this study, we found that powerful inhibition
of HER?2 signaling by TZ-conjugated nanoparticles could favor responsiveness of drug resistant cells. In particu-
lar, treatment with MNP-HC achieved a significant reduction of cell viability in BT474TR TZ-resistant cell line.
In addition, in JIMT-1 cells, a resistant cell line described to be highly refractory to TZ treatment, we observed
that MNP-HC were able to sensitize cells to chemotherapy. Indeed, therapeutic resistance in breast cancer
includes multiple molecular mechanisms involved in the onset of resistance and the activation of alternative cell
type-dependent pathways. Main concern could be represented by the status of PIK3CA, which could accelerate
tumor progression, alter intrinsic phenotype of HER2+ cancers, and cause resistance to anti-HER2 therapies™.
Therefore, by suggesting multifaceted properties of MNP-HC efficacy on different TZ-resistant breast cancer cell
lines, our findings encourage further studies on the mechanisms involved in preventing or bypassing resistance.

Several studies have previously demonstrated the great potential of active functionalization of nanoparticles
toward cancer cells, and TZ-mediated targeting has been broadly investigated. However, functional implications
of such targeting remain almost unexplored and are still mostly unclear. In the present study, we have demon-
strated that immobilization of TZ half chain on colloidal nanoparticles not only provided an excellent homing
and internalization in HER2+ breast cancer cells, but also preserved a direct anti-HER?2 activity by inhibiting
HER?2-related intracellular signaling. Here a bare magnetic nanoparticle was used to avoid any bias in the analysis
of the anticancer efficacy of the nanoconjugate. However, such targeted nanoparticles could be loaded with cyto-
toxic drugs, providing a novel strategy based on a multi-acting HER2-targeted nanodrug against breast cancer.
In-one compound multiple action could contribute to overcome major limitations of currently used anti-HER2
treatments, such as chemoresistance and the need for therapeutic switch to different options.

Methods

Nanoparticles production. MNP-HC were synthesized following the protocol previously set up in our lab-
oratory'?. Briefly, TZ dissolved in EDTA-PBS (1 mgmL~!) was added to the 2-mercaptoethanolamine kit (MEA,
Thermo Fisher Scientific) to reduce the disulfide bridges between the two heavy chains of the IgG. The obtained
half-chain antibody portions (HCs) were immediately added to MNP (1 mg) and incubated at room tempera-
ture for 1h. The remaining PDP functional groups were saturated with excess PEG500-SH. Excess reagents were
removed by dialysis, and MNP-HC were collected. Nonspecific rabbit IgG-MNP, used as control, were prepared
according to the protocol above.
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Cell culture. SKBR3 and MDA-MB-231 cell lines were purchased by ATCC-LGC Standards and Caliper
LifeSciences, respectively. MDA-MB-453 were a generous gift from Dr. E. Tagliabue (IRCCS Istituto Nazionale dei
Tumori, Milano, Italy), while JIMT-1 and BT474TR were kindly provided by Dr. L. Santarpia (IRCCS Humanitas
Clinical and Research Center, Milano, Italy). SKBR3 were cultured in 50% high glucose Dulbecco’s Modified
Eagle Medium (DMEM), 50% Ham’s F12 Nutrient Mixture; MDA-MB-453, JIMT-1 and BT474TR in high glucose
DMEM; MDA-MB 231 in Minimum Essential Medium. All media were supplemented with 10% heat inactivated
fetal bovine serum (FBS), 2 mM r-glutamine, 100 U mL™! penicillin, 0.1 mg mL ™! streptomycin (Euroclone). All
cell lines grew at 37 °C in a humidified atmosphere containing 5% CO, and were subcultured prior to confluence
using trypsin/EDTA.

Cell binding assay. For in-plate cell binding assay, 3 x 10° cells were seeded on a 6-well plate and incubated
for 1h at 37°C with 0.01, 0.04, 0.2 pgmL~" of free or nanoformulated TZ, or with corresponding concentra-
tions of MNP-IgG dissolved in culture medium. Cells were washed three times with phosphate buffer saline
(PBS), incubated for 15 min in 2% bovine serum albumin (BSA, Sigma-Aldrich), 2% goat serum (Euroclone) in
PBS and stained with appropriate secondary antibody conjugated with Alexa Fluor 488 (0.5 pg/sample, Thermo
Fisher Scientific) in blocking buffer for 15 min at room temperature. After PBS washing, cells were analyzed by
CytoFLEX flow cytometer (Beckman Coulter), by gating on viable cells and acquiring 10,000 events for each
analysis. The level of binding per single cellular event was determined by geometric mean fluorescence intensity.
Cells incubated with the secondary antibody only were used to set the positivity region. For in-tube cell binding
assay, 5 x 10° cells were collected in plastic tubes and incubated for 2h at 4°C in 0.3% BSA-PBS supplemented
with 0.01, 0.04, 0.2ug mL™"! of free or nanoformulated TZ, or with corresponding concentrations of MNP-IgG.
Cells were washed three times with PBS, and processed as described above.

Competition assay. Cells (5 x 10%) were incubated for 30 min at 37°C in 0.3% BSA-PBS supplemented
with 0.1 uygmL~! of nanoformulated TZ previously labeled with fluorescein isothiocyanate (FITC) in presence or
absence of 100-fold molar excess of free unlabeled TZ. Cells were washed three times with PBS and analyzed by
CytoFLEX. After gating on viable and single cells, 10,000 events were acquired for each analysis. Untreated cells
were used to set the positivity region.

Protein analysis. For the analysis of Y1248-HER?2 phosphorylation, 3 x 10° cells were serum-starved in
medium containing 0.1% FBS overnight at 37°C, and incubated for 1h at 37°C with 4ugmL~" of nanoformulated
TZ or corresponding concentration of unconjugated nanoparticles. For the analysis of p27Kip1, cells were incu-
bated for 24 h at 37°C with 1 or 10ugmL~! of nanoformulated TZ or corresponding concentrations of unconju-
gated nanoparticles in complete medium. Untreated cells were used as reference for basal protein status, while cells
treated with free TZ were used as positive control. After the incubations, cells were washed with PBS, lysed in Triton
lysis buffer (20mM Tris-HCl pH 7.6, 150 mM NaCl, 1 mM EDTA, 10% Glycerol, 1% Triton X-100), containing 4%
Protease Inhibitor Cocktail (Roche), 1 mM PMSF (Sigma-Aldrich), 1 mM Na;VO, (Sigma-Aldrich), 10 mM NaF
(Sigma-Aldrich), and cleared at 17,100 x g for 15min at 4°C. Protein content was quantified by Bradford method.

Immunofluorescence and confocal laser scanning microscopy. Cells (0.5 x 10°) were seeded on
glass coverslips in a 24-well plate and incubated with 0.02 mgmL ' of MNP-HC or MNP-IgG or corresponding
concentrations of TZ for the indicated time points at 37 °C. When required, treatment was stopped after 48 h and
cells were cultured for additional 96 h in fresh medium. At the indicated time points, cells were washed three
times with PBS, fixed for 5 min with 4% paraformaldehyde (Sigma-Aldrich), permeabilized for 10 min with 0.1%
Triton X-100, and incubated in 2% BSA, 2% goat serum in PBS for 2 h at room temperature. For analysis of cell
uptake, MNP-HC were detected by Alexa Fluor 488-conjugated anti-human secondary antibody for 2h at room
temperature. For analysis of HER2 membrane expression, cells were immunodecorated overnight at 4°C with
anti-HER2/ErbB2 antibody (clone 29D8, Cell Signaling Technology, Inc.) diluted in blocking buffer, washed three
times with PBS and incubated with Alexa Fluor 546-conjugated secondary antibody (Thermo Fisher Scientific)
for 2h at room temperature. Nuclei were stained with DAPI (0.1 pg mL™"). Coverslips were mounted in Prolong
Gold antifade reagent (Thermo Fisher Scientific) and images were acquired with Leica SP8 microscope confocal
system equipped with laser excitation lines 405 nm, 488 nm, 535 nm and 633 nm. Images were acquired with
63 x magnification oil immersion lens.

Transmission electron microscopy. Cells (9 x 10°) were incubated with 0.02 mgmL~! of MNP-HC for
15min or 1, 4, 24, 48 h at 37°C. Cells were washed three times with PBS, collected in 1.5mL eppendorf, fixed in
2.5% glutaraldehyde (Electron Microscopy Sciences) in 0.1 M phosphate buffer, pH 7.2, for 2 h, rinsed with phos-
phate buffer, post-fixed in 1.5% osmium tetroxide (Electron Microscopy Sciences) for 2h, dehydrated by 70, 90
and 100% EtOH, and embedded in epoxy resin (PolyBed 812 Polysciences Inc). Ultrathin sections were examined
by TEM (Zeiss EM109).

Western blotting. A 20yg protein aliquot was resuspended in Laemmli buffer, resolved on polyacrylamide gels
under reducing conditions and transferred to polyvinylidine difluoride membranes (Immobilon-P, EMD Millipore
Corporation). Membranes were blocked with 5% skim milk or 5% BSA in Tris buffer saline (TBS) with 0.1% Tween-20
(Sigma-Aldrich) for 1h at room temperature, and incubated with appropriate primary antibodies: anti-phospho-HER2/
ErbB2 Tyr1248 (Cell Signaling Technology, Inc.), anti-HER2/ErbB2 (clone 29D8, Cell Signaling Technology, Inc.),
anti-p27 KIP1 (Abcam), or anti-a-tubulin (Sigma-Aldrich). Antibodies conjugated to horseradish peroxidase (Abcam)
were used as secondary antibodies, and chemiluminescence reaction was developed with the ECL star kit (Euroclone).
Densitometric analysis of protein bands was performed with Image]J software.
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Cell cycle analysis.  Cells (10%) were seeded on a 12-well plate and incubated for 72h at 37 °C with 15ugmL ™!
of nanoformulated TZ or corresponding concentration of unconjugated nanoparticles. Cells were washed twice
with PBS, fixed with cold ethanol 70% for 1h at room temperature, and labeled with 80 pgmL~! Propidium Iodide
(Sigma-Aldrich), 100 ugmL~! RNase A (Sigma-Aldrich) and 0.1% Triton X-100 (Sigma-Aldrich) in PBS. After
gating on viable and single cells, 20,000 events were acquired with CytoFLEX. Untreated cells and cells treated
with free TZ were used as negative and positive control, respectively.

Cell viability assay. Cells (3 x 10°) were seeded on a 96-well plate and incubated with 1 or 10pugmL ! of free
or nanoformulated TZ, or with corresponding concentrations of unconjugated nanoparticles, by replacing incu-
bation medium every two days. After 3, 5 and 7 days of incubation, cells were washed with PBS and tested with
CellTiter 96® AQ,cous Non-Radioactive Cell Proliferation Assay (Promega Corporation), according to the man-
ufacturer’s instructions. For the combination treatment with doxorubicin, 5 x 10 cells were seeded on a 96-well
plate and incubated for 24 h with 10 ug mL ™! of free or nanoformulated TZ, or with corresponding concentrations
of unconjugated nanoparticles. Then, medium was replaced by 0.1 uM of doxorubicin hydrochloride (Pfizer) for
additional 48 h. Absorbance was read using a testing wavelength of 490 nm and a reference wavelength of 630 nm.
The results were normalized on viability of untreated samples (set at 100% viability).

Celldeath assay. Cells (10°) were treated for 24 or 72h with 15ugmL~" of free or nanoformulated TZ, or with cor-
responding concentration of unconjugated nanoparticles, washed twice with PBS and treated with Annexin V-PE-Cy5
Apoptosis Detection Kit (BioVision) following the manufacturer’s protocol. Cells were analyzed within 15 min with
CytoFLEX, by gating on viable cells and acquiring 20,000 events for each analysis.

Antibody-dependent cell-mediated cytotoxicity. ADCC was evaluated using CytoTox 96® Non-Radio-
active Cytotoxicity Assay (Promega Corporation), by adding effector (E-PBMCs) onto target cells (T-SKBR3,
5x10%) at a E:T ratio of 40:1 in 96-wells. Firstly, target cells were coated with 0.2, 2 and 20 pg mL ™! of free or nano-
formulated TZ for 30 min at 4°C in RPMI-1640 medium. As control, cells were coated with equal concentrations
of MNP-IgG. Then, PBMCs were added and after 4h at 37 °C, LDH release from target cells was measured by
Ensight™ multimode plate reader (Perkin Elmer) setting absorbance wavelength at 490 nm. Percentage of ADCC
was calculated as follows:

experimental abs — effector spontaneous — target spontaneous y

% specific lysis = 100

target maximum — target spontaneous

where target maximum is the absorbance value of target cells upon lysis; target and effector spontaneous is the
absorbance value of target and effectors cells, respectively.

Statistical analysis. Statistical analyses were conducted using two-tailed Student’s t-test. Unless other-
wise specified, plots show mean = standard error (SE) and the statistical significance is set as follows: *p < 0.05,
#kp < 0.01, #¥p < 0.001.

Ethical issue. Blood collection for ADCC studies was authorized by the Ethical Committee of the University
of Milano-Bicocca as prot. 351 (protocol number 0078634/17) and was conducted in accordance with the
International Conference on Harmonization (ICH) Good Clinical Practice (GCP) guidelines. All patients that
decided to participate signed a written informed consent prior to inclusion in the study.
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