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ABSTRACT Most existing non-contact monitoring systems are limited to detecting physiological signs
from a single subject at a time. Still, another challenge facing these systems is that they are prone to noise
artifacts resulting from motion of subjects, facial expressions, talking, skin tone, and illumination variations.
This paper proposes an efficient non-contact system based on a digital camera to track the cardiorespiratory
signal from a number of subjects (up to six persons) at the same time with a new method for noise artifact
removal. The proposed system relied on the physiological and physical effects as a result of the activity of
the cardiovascular and respiratory systems, such as skin color changes and head motion. Since these effects
are imperceptible to the human eye and highly affected by the noise variations, we used advanced signal
and video processing techniques, including developing video magnification technique, complete ensemble
empirical mode decomposition with adaptive noise, and canonical correlation analysis to extract the heart rate
and respiratory rate from multiple subjects under the noise artifact assumptions. The experimental results of
the proposed system had a significant correlation (Pearson’s correlation coefficient = 0.9994, Spearman
correlation coefficient = 0.9987, and root mean square error = 0.32) when compared with the conventional
contact methods (pulse oximeter and piezorespiratory belt), which makes the proposed system a promising
candidate for novel applications.

INDEX TERMS Cardiorespiratory signal, camera imaging-based methods, imaging photoplethysmog-
raphy (iPPG), video magnification technique, complete ensemble EMD with adaptive noise, canonical
correlation analysis, graphical user interface.

I. INTRODUCTION
Two critical physiological variables of heart rate and
breathing rate are useful in the first instant of clinical interac-
tion with patients and might be monitored continuously for
hours or weeks if a patient is under intensive care. Long-
term monitoring of individuals with chronic illnesses might
occur in the home. In many situations, it would be desirable
to measure cardiorespiratory data from multiple individu-
als and to not assume that each individual fills the frame of
the camera. In some crisis situations, neonatal infants might
be placed in pairs or even more inside incubators, without
adequate instrumentation to monitor them all [1]. There are
many potential applications outside clinical environments.
Field triage with multiple wounded, security and quarantine
check points and other crowded controlled areas are some

obvious examples. In these instances, people are standing or
prone, with only modest movement. It would also be highly
desirable for future robots to be able to read vital signs of any
number of humans with whom they might interact.

Activity of both heart and lungs causes some physiological
and physical effects on the human body, such as skin color
change, heat patterns, arterial pulse motion, head oscillation
and thorax motion. Although most of these effects are invis-
ible to human operators due to limited spatiotemporal sensi-
tivity of the human eye, they can be very useful in biomedical
applications [2]–[5], when physiological signs, such as heart
rate (HR), heart rate variability (HRV), respiration rate (RR),
and blood oxygenation (SpO2) must be remotely acquired.
Many technologies for remotely tracking the cardiorespi-

ratory signal which contains important physiological signs
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that have been proposed during the last decades, include
technologies based on Doppler radar [6]–[11], thermal
imaging [12]–[17], and capacitive coupled electrocardiog-
raphy (ECG) measurement [18]–[21]. However, these tech-
nologies have been reported to be able to only extract the
cardiorespiratory signal from a single subject at a time, and
they are highly affected by noise artifacts particularly with a
moving subject. In addition, these technologies need special-
ized hardware, which are somewhat expensive [22], [23].

Many researchers have shown that the cardiorespiratory
signal can be remotely acquired from different types of
camera sensors (e.g. video camera, Webcam, time of flight
camera, Kinect etc.) by analyzing image sequences for sin-
gle/multiple channels to reveal the cardiorespiratory sig-
nal either with a dedicated light source or using ambient
illumination. Camera imaging-based technologies can be
divided into two categories: imaging Photoplethysmogra-
phy (iPPG) methods, which rely on optical properties of skin
color changes; and motion-based methods, which rely on the
mechanical activity of the heart and lungs. A comprehensive
review of the remote monitoring technologies can be found
in [22], [23]. As reported in a comprehensive review by
Kranjec et al. [23], the cardiorespiratory signal for multiple
subjects at a time could be acquired by using camera imag-
ing. However, there was only one study by Poh et al. [24]
that successfully extracted cardiorespiratory signal from three
subjects simultaneously under a single scenario (stationary
subjects). Furthermore, the cardiorespiratory signal is highly
affected by noise artifacts (e.g. subject’s motions, facial
expressions, talking, skin tone and illumination variations);
therefore, several studies proposed different algorithms to
remove or reduce the noise artifacts. The major researches
that used camera imaging-based technologies are reviewed
and summarized in Table 1.

Most of the studies listed in Table 1 were limited to detect-
ing physiological signs from a single subject with varying
degrees of the noise artifacts immunity. Focusing on the
lack of algorithms for tracking physiological signs from a
number of subjects at a time and the noise artifact challenges,
the current study has two contributions. The first contribution
is to reveal the cardiorespiratory signal (HR and RR) from
multiple subjects (up to 6 persons) based on both iPPG and
head motion-based methods. The second contribution is to
propose a new method for noise artifact reduction based on
complete ensemble EMD with adaptive noise (CEEMDAN)
and canonical correlation analysis (CCA) under different
assumptions. Therefore, the proposed systemmay be of value
for upcoming remote monitoring systems in biomedical, clin-
ical and security applications.

II. METHODS AND PROCEDURES
A. ETHICAL CONSIDERATIONS
The research procedure described in this paper adhered to the
ethical tenets of the Declaration of Helsinki (Finland 1964).
It is part of a research protocol approved by the University

of South Australia Human Research Ethics Committee
(Adelaide, South Australia, Protocol No. 0000034901),
in which all of the participants who were recruited gave writ-
ten informed consent after a full explanation of the research
procedure before commencing the experiment.

B. SUBJECTS, VIDEO ACQUISITION AND VALIDATION
Agroup of eighteen healthy subjects (12males and 6 females)
between the ages of 6 and 50 years, with different skin
tones were recruited to the experiment. The input videos
were acquired by a digital camera (Nikon D5300) located
at a distance of 3 meters from the subjects in outdoor and
indoor environments. The input videos were captured for
20 sec at 60Hz and 30Hz frame rates with a resolution of
1920×1080. The subjects were instructed to breathe normally
and to partake in two scenarios during videoing (station-
ary scenario and non-stationary scenario). All subjects in
the stationary scenario were instructed to stay as still as
possible in front of the camera, not talk and not make any
facial expressions with normal breathing, whereas they were
instructed to naturally move and rotate their faces, talking,
blinking and making some facial expressions in the non-
stationary scenario. The reference methods for monitoring
of physiological signs (HR and RR) were measured using
a finger pulse oximeter (Rossmax SA210) [33] and Piezo
respiratory belt transducer (MLT1132) [34] and compared
with the 20 sec signal recording obtained from the proposed
system for validation purposes.

C. DATA ANALYSIS AND PROCESSING
The overall proposed system is composed of several main
processing methods, including video magnification methods,
face detection, CEEMDAN, CCA, component selection, fre-
quency analysis and peak detection as shown in Fig. 1.

1) VIDEO MAGNIFICATION METHODS
• Color Magnification Based-Method: Skin color vari-
ations in the face caused by the cardiac pulse were mag-
nified using Eulerian video magnification (EVM) [36].
To reduce the processing time, we applied the Lanczos
resampling method [38] to reduce the size of the image
sequences and magnified only the green (G) channel
since this channel has been found to contain the strongest
cardiac information signal [40]. The temporal band-pass
filter processing is set to between 0.15 Hz- 3 Hz, corre-
sponding to the anticipated range of the cardiorespira-
tory frequency band and then this band was magnified
by 15x. The cardiorespiratory signal derived from the
optical properties of skin color changes can be described
as the iPPG signal.

• Head Motion Magnification Based-Method: Based
on an efficient motion magnification method [43],
the image sequences of the input video are converted
from red green blue (RGB) colour space to YCbCr
colour space to separate the color data from the intensity
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TABLE 1. A research review of the camera imaging- based technologies.
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FIGURE 1. Processing stages overview of the proposed system.

data. Only the Y channel was used and downsized to
reduce the processing time. The Y channel was then
decomposed into different spatial frequency bands using
wavelet pyramids followed by a temporal band-pass
filter of 0.15 Hz- 3 Hz to extract frequency bands of
interest. The filtered signal was then magnified by 15x.

2) FACE DETECTION AND FEATURE EXTRACTION
Based on the video obtained from the color magnification-
based method, we applied an effective face detection method
proposed by Liao et al. [45], which can deal with challenges
associated with unconstrained faces (e.g. faces in a crowd,
face rotation, inclined or angled faces) to obtain a number of
regions of interest (ROI) according to the number of subjects
in the input video. We also eliminated the eyes and mouth
regions from each ROI to reduce the noise artifacts result-
ing from blinking and talking during the measurements. For
each ROI, the time-series iPPG signal, ic(t), was obtained by
averaging all the image pixel values within the facial ROI as
follows:

ic(t) =

∑
x,y∈ROI I (x, y, t)

|ROI1|
(1)

where I (x, y) is the intensity pixel value at image loca-
tion (x, y), at time (t) and |ROI1| is the size of the facial ROI

FIGURE 2. IMFs of the CEEMDAN for the signal of interest.

for the subject 1. The observed signals from six subjects are
denoted by ic1(t), ic2(t), . . . ic6(t) respectively.
Based on the video obtained from the motion magnifica-

tion method, we also applied Liao’s method for detecting
faces and selected only small region on the forehead (rect-
angle region). Then, we selected a single feature point in
the centre of the rectangle for extracting head motion. The
selected feature point has two components in both the vertical
and horizontal axis. The vertical components for all image
sequence were only chosen to obtain time-series signal im (t)
resulting from head motion. The observed signals from six
subject are denoted by im1(t), im2(t), . . . im6(t) respectively.

3) COMPLETE ENSEMBLE EMD WITH ADAPTIVE NOISE
The empirical mode decomposition (EMD) [49] is one of
the most effective signal processing methods for removal of
noise artifacts from biomedical signals (e.g. removal of noise
artifacts from the ECG data [51], removal the noise artifacts
from the EMG data [53] and removal of the muscle artifacts
from the EEG data [55]). The EMD is a time-frequency
analysis method for adaptively decomposing a given non-
linear and/or non-stationary signal into a set of amplitude and
frequency components (multichannel signals), called intrin-
sic mode functions (IMFs). Later, a noise-assisted version,
called ensemble EMD, was proposed by Wu and Huang [57]
to reduce the mode mixing problem associated with the
EMD. However, ensemble EMD still has some limitations,
including residual noise, reconstruction error and modes for
different realizations of signal plus noise [60]. A recent
improved version of the ensemble EMD, namely the CEEM-
DAN method, has been proposed by Colominas et al. [60] to
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FIGURE 3. The CCA method (a) The selected IMFs components (S) (b) Transformation [x =W · S], where W is an un-mixing matrix and (c) CCA outputs
[y = CCA(x)].

solve the problems associated with the ensemble EMD. The
CEEMDAN method can efficiently decompose the signal of
interest into a set of IMFs with less noise and more physical
meaning.

The signal of interests, ic(t) generated from the first kind
of magnification, and im (t) generated from the second kind
of magnification for each subject, can be converted into
multichannel signals based on CEEMDAN decomposition as
follows: [60]

ic (t) , im (t) =
∑M

m=1
d̃m + rM (2)

where d̃m is the mth mode of the signal of interest obtained
by averaging the correspondingCEEMDANmodes, rM is mth

residue obtained from (r(m−1)−d̃m) andM is the total number
of modes.

An example of nine multichannel signal IMFs of the sig-
nal of interest, based on CEEMDAN decomposition with
100 realizations and iterations, is given in Fig. 2.

4) CANONICAL CORRELATION ANALYSIS
The CCA [67] is also an effective signal processing method
that can be used as a blind source separation (BSS), to sep-
arate a number of mixed signals [68], [69] and remove the
noise artifact from the biomedical signals [70]–[72].

To understand how CCA operates as a BSS, let j and
k be two multi-dimensional random signals. Consider the
linear combinations of these signals, known as the canonical
variates as follows [74]:

j = W T
j
[
j− j̄

]
, k = W T

k
[
k − k̄

]
(3)

where Wj and Wk are weighting matrices of j and k . The
correlation, ρ, between these linear combinations is given by:

ρ =
W T
j CjkWk√

W T
j CjjWjW T

k CkkWk

(4)

where Cjj and Ckk are the nonsingular within-set covari-
ance matrices and Cjk is the between-sets covariance matrix.

FIGURE 4. The GUI main panel of the proposed system.

The largest canonical variates can be found with the maxi-
mum value of ρ with respect to Wj and Wk .

We applied the CCA method on three IMFs components
which have the best frequency bands of interest (IMF4,
IMF5 and IMF6 since the frequency band fall within
0.15- 3 Hz in these components) as shown in Fig. 3.

Each signal of interest, ic (t) , im (t), is converted into a
multichannel signal (S), using the CEEMDAN method. The
IMFs determined to be outside frequency bands of interest
are removed and then, the remaining IMFs determined to
be within frequency bands of interest are used as inputs
with the un-mixing matrix W of the CCA method. The
original multichannel signal S̃, is then reconstructed without
unwanted IMFs, using the inverse of the un-mixing matrix
W−1. Now, the target signal of interest, ĩc (t), ĩm (t), without
the noise artifacts, can be reconstructed by adding the new
IMF components in the S̃ matrix. We selected the most peri-
odic components with the highest power spectra as the signal
of interest.
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FIGURE 5. The Bland-Altman plots and the statistics for HR measurements under the stationary scenario using (a) iPPG-based method, (b) motion-based
method.

5) FREQUENCY ANALYSIS AND TEMPORAL FILTERING
Frequency analysis based on Fast Fourier Transformer (FFT)
was applied to transform ĩc (t), ĩm (t), from the time domain to
the frequency domain followed by two 5th order Butterworth
band-pass filters with different frequency bands to separate
the cardiac signal from the respiratory signal. The selected
band-pass frequencies were of 0.5-3Hz that correspond to HR
range between 30-180 beats/min, and 0.15-0.5Hz that corre-
spond to RR range between 9-30 breaths/min. The inverse
FFT was severally applied to the filtered signals to obtain the
time-series cardiac and respiratory signals respectively.

6) PEAK DETECTION
The peak detection method was used to only pick the positive
peaks of the acquired signals and determine the number of
peaks and their locations. The peak detection was accom-
plished using ‘‘findpeaks’’ function in the Matlab software.
Since both peaks and their locations were detected, we could
measure HR and RR per minute using the following equation:

HR,RR =
60k
L

(5)

where k is the number of peaks in the acquired signal and L
is the time of the video in seconds. In addition, our proposed
system can estimate other physiological signs by measuring
the period between two consecutive peaks, which are called
heart rate variability (HVR) (cycle length between two con-
secutive cardiac beats) and the respiratory cycle (a single
cycle of inhalation and exhalation).

III. GRAPHICAL USER INTERFACE (GUI)
A GUI model was implemented in the Matlab software to
allow the user to load video data, select themagnification type
and execute the algorithm. The proposed GUI provides an

easy tool to see video information, number of subjects in each
input video and subject’s faces to enable the user to recognize
the HR and RR readings for each subject. Fig. 4 shows the
GUI main panel of the proposed system.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. STATIONARY SCENARIO
In this scenario, all subjects were instructed to stay as still as
possible in front of the camera and not talk or make any facial
expressions with normal breathing. The results were obtained
for a subject from a group of persons when different assump-
tions were considered (e.g. persons with different ages, skin
tone, and videoing with different lighting conditions). The
Bland-Altman method [82] was used to assess the level of
agreement between the experimental results obtained from
the proposed system and those obtained from the reference
methods. Furthermore, the relationship between the results
was evaluated using Pearson’s correlation coefficient (PCC),
Spearman correlation coefficient (SCC) and root mean square
error (RMSE). The Bland-Altman plots and the statistics for
HR measurements based on the magnification type is shown
in Fig. 5.

It is apparent from Fig. 5 (a) that the iPPG-based
method under the stationary scenario has a strong cor-
relation and statistics (PCC=0.9994, SCC=0.9987 and
REME=0.32 beats/min) between the HR estimates and the
HR reference values, while the statistics slightly changed
to 0.9961, 0.9956 and 0.76 beats/min respectively when the
motion-basedmethod was used instead as shown in Fig. 5 (b).

The statistics of the RR measurements based on
iPPG-based method shown in Fig. 6 (a) also presented
a higher correlation with the statistics (PCC=0.9893,
SCC=0.9874 and RMSE=0.32 breaths/min) than those
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FIGURE 6. The Bland-Altman plots and the statistics for RR measurements under the stationary scenario using (a) iPPG-based method, (b) motion-based
method.

FIGURE 7. The Bland-Altman plots and the statistics for HR measurements under the non-stationary scenario using (a) iPPG-based method,
(b) motion-based method.

obtained from the motion-based method (PCC=0.9706,
SCC=0.9502 and RMSE=0.64 breaths/min) shown in Fig. 6
(b). Therefore, our system presented a high feasibility and
tolerance of noise artifacts for both methods (iPPG and
motion) when the subjects were stationary.

B. NON-STATIONARY SCENARIO
In this scenario, all subjects were instructed to move and
rotate their faces by talking and making some facial expres-
sions. The statistical agreement of the HR measurements
using Bland-Altman plots for both methods against the ref-
erence method is shown in Fig. 7 (a) and (b).

The results from Fig. 7 (a) shows a high degree of corre-
lation between physiological measurements based on iPPG
for moving subjects with statistics of 0.9888, 0.9885 and
1.3 beats/min for PCC, SCC and RMSE respectively,
while the results obtained from the motion-based method
show less correlation with statistics of 0.9616, 0.9627 and
2.41 beats/min respectively as shown in Fig. 7 (b).

The RR measurements for moving subjects based on the
iPPG-based method shown in Fig. 8 (a), has correlations
(PCC=0.8455, SCC=0.8367 and RMSE=1.25 breaths/min)
which are substantially better than those obtained from
the motion-based method (PCC=0.6209, SCC=0.5963 and
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FIGURE 8. The Bland-Altman plots and the statistics for RR measurements under the non-stationary scenario using (a) iPPG-based method, (b)
motion-based method.

RMSE=2.08 breaths/min) as shown in Fig. 8 (b). The
motion-basedmethod seems to be affected by noise variations
with non-stationary subjects, when compared to the iPPG-
based method. Although some studies [56], [58], [59], [81]
have reported that the head motion-based method is more
efficient than iPPG-based method for subjects with differ-
ent skin tone, illumination conditions and unclear ROI (e.g.
videos captured from the back of the head or covered with a
mask). Since it depends on motion analysis more than skin
color analysis, the head motion-based method is still affected
by noise variations with moving subjects, when compared to
the iPPG-based method.

The imaging-based methods based on both color and
motion analysis, seem to be an attractive candidate for future
applications when noise andmotion artifact sensitivity cannot
be solved by a single method.

V. CONCLUSION
In this paper, we propose a new non-contact monitoring
system to extract HR and RR from multiple subjects with
noise artifact removal. The proposed system used the devel-
oping video magnification method to amplify the imper-
ceptible effects caused by cardiorespiratory activity, such
as skin color and head motion to extract the cardiorespira-
tory signal followed by a new noise removal method based
on a combination of CEEMDAN and CCA to remove the
noise artifacts resulting from the subject’s motions, facial
expressions, talking, skin tone and illumination variations.
The experimental results showed that the proposed system
has strong correlation in agreement with the reference mea-
surements in both the stationary and non-stationary scenar-
ios. Further studies with larger numbers of subjects with
different scenarios are clearly needed to confirm these out-
comes. Real-time and long-term monitoring with different

assumptions using different types of cameras are the main
considerations in future work, in order to increase system’s
reliability.
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